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Dirac magnons in honeycomb nanostructures
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Magnon eigenmodes of an artificial structure consisting of cylindrical nanometric particles arranged in a
honeycomb array are theoretically investigated, in zero applied field. The dispersion curves of the fundamental
mode are calculated for two principal directions of the first Brillouin zone. A Dirac-like behavior, consisting of
linear band crossing and zero-width gap, is found for moderate interdot separation. A tight-binding model fits
the calculated behavior; the corresponding Dirac velocity has been obtained.
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I. INTRODUCTION

After the discovery of unusual two-dimensional electronic
excitations in graphene and of topological insulators [1], there
has been a growing interest in materials, excitations, and
structures that show analogous behaviors. The excitations
of such systems, called Dirac materials, are well described
by relativistic Dirac or Weyl equations. Silicene, gemanene
[2], and stanene [3] are honeycomb lattice materials that
have been proposed as alternatives to graphite to achieve an
experimentally measurable quantum spin Hall effect; other
nonhoneycomb lattice structures and materials have also been
considered, as HgTe/CdTe quantum wells [4]. Although the
majority of the discussion has focused on electrons, other
excitations can show a Dirac-like spectrum, i.e., linear band
crossing, gapless or with a small gap. They include excitations
with Bose-Einstein statistics, such as phonons [5], photons
[6], plasmons [7], and magnons [8–12].

Magnons are attractive as information carriers and in
magnonic data processing because of the energy efficiency
that can be achieved by avoiding the Joule effect that affects
devices traditionally operated by electrons. In the gigahertz
frequency regime where magnonic devices operate, the ex-
citation wavelength is of the order of tens or hundreds
of nanometers, allowing the spin-wave control by properly
shaped artificial nanostructures, i.e., magnonic crystals, pro-
viding a large degree of freedom in manipulation. These
nanostructures assume the form of periodic networks of mag-
netic nanoelements and are intensively studied [13]. While
artificial nanostructures have already been studied as Dirac
materials for plasmons [7], photons [6,14], and Cooper pairs
[15], the behavior of Dirac magnons in artificial nanos-
tructures is largely unexplored. The possibility of making
honeycomb arrays of magnetic circular nanodots has been
demonstrated, but the investigation was limited to long wave-
length excitations (k = 0), without obtaining the dispersion
curves [16].
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The aim of this paper is to present a theoretical investiga-
tion of the spin eigenmodes of an artificial structure consisting
of low cylindrical nanometric particles arranged in a honey-
comb array, in zero applied field. The theory is based on a
dynamical matrix approach which takes into account dipolar
and exchange contributions, within a Bloch-wave expansion
of the magnetization variables. When the dot separation is
moderate and therefore the interdot interaction small, the col-
lective modes can be well described by a tight-binding model.
The frequency-wave vector dependence is investigated along
two principal directions, and a Dirac-like behavior is found
close to the K point of the first Brillouin zone.

II. SAMPLE GEOMETRY AND MAGNETIC PROPERTIES

The nanostructure investigated is shown in Fig. 1; it
consists of an infinite two-dimensional artificial honeycomb
lattice of ferromagnetic cylindrical dots placed on a non-
magnetic substrate. The cylindrical dot radius is a = 50 nm,
height 20 nm; several values for the nearest-neighbor distance
d are considered.

This structure can be described as a hexagonal Bravais lat-
tice with a basis consisting of two identical but topologically
inequivalent sites A and B, as shown in Fig. 2, where the
primitive vectors a1 and a2 are also shown. The corresponding
first Brillouin zone is shown in the right part of Fig. 2, with
its principal points and the primitive vectors of the reciprocal
lattice b1, b2.

For this simulation, Permalloy was chosen as the magnetic
material, since artificial nanostructures are often experimen-
tally made with this well-known material; furthermore, it
has such small anisotropies that they can be neglected, thus
preserving the spatial symmetries of the structure. It must
be emphasized that the hexagonal symmetry is one of those
which allow the realization of a Dirac material, and in many
cases its breakage, due, for example, to magnetic anisotropies,
leads to the destruction of the Dirac points [17,18]. The mag-
netic parameters are saturation magnetization Ms = 800 ×
103 A/m, exchange constant A = 13.0 × 10−12 J/m, and gyro-
magnetic ratio γ = 185 rad GHz/T. Damping is not included,
as we focus on the determination of stationary states and
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FIG. 1. Sample geometry. A finite portion of the periodic two-
dimensional lattice is represented, together with the reference frame
used in the text.

the corresponding magnonic band structure rather than on
transport properties of the magnonic crystal.

III. MICROMAGNETIC CALCULATIONS

Due to the nanometric size of the structure, the position-
dependent magnetization must be evaluated with a spatial
resolution smaller than the exchange length. The magnetiza-
tion ground state and its dynamics in a single nanostructure
(the basis, that in our case consists of two cylindrical dots A
and B) can be determined with numerical approaches, based
on the discretization of the particle in space, i.e., its partition
into a large number N of identical cells (finite-difference
method). The normalized magnetization in each cell i, Mi, can
be written as the sum of a static and a (small) dynamic term
perpendicular to the static one:

Mi = M0i + mi. (1)

Several micromagnetic packages are available for the calcula-
tion of the static magnetization M0; in the following, we use
OOMMF 1.2β4 [19], which also includes periodic boundary
conditions. When dealing with an infinite lattice, made of
periodic repetitions of the basis, the interactions between dif-
ferent bases must be taken into account. For the ground-state
calculation, the magnetization of all bases can be assumed
identical so that the number of independent vector variables
remains N .

A method based on the magnetization dynamical matrix
of the system is then exploited for studying the magnetization
dynamics [20]; in the following, it is briefly outlined. With this
approach, the Landau-Lifshitz equation for the magnetization
[21],

− 1

γ

∂M
∂t

= M × Heff, (2)

is linearized and solved in m. The effective field takes into
account the dipolar and exchange contributions,

Heff = h + 2A

Ms
∇2m; (3)

here h is the dynamic dipolar field, there is no Zeeman inter-
action because we consider the case of no externally applied
magnetic field, and Gilbert attenuation is neglected. Note that,
while the exchange interaction is actually needed to properly

FIG. 2. Honeycomb lattice with primitive vectors a1 = √
3dx̂,

a2 = d/2(
√

3x̂ + 3ŷ) (left), and first Brillouin zone with primitive
vectors b1 = 2π

3d (
√

3x̂ − ŷ), b2 = 4π

3d ŷ (right).

describe the inner magnetization of each dot (together with the
dipolar one), the interdot interaction only occurs through the
dipolar term because the disks are not in contact. Equation (3)
is then written as a system of 2N linear equations in the
2N discretized variable components [20]. In particular, h is
related to the magnetization distribution through the demag-
netizing tensor

←→
N :

hi = M2
s

2

N∑

j=1

←→
N ( j, i)m j . (4)

In order to extend this approach to an infinite lattice, the
dynamic magnetization and field are written in the Bloch form
[22],

m(r + R) = eik·Rm(r) (5)

h(r + R) = eik·Rh(r), (6)

where R = n1a1 + n2a2, n1, n2 ∈ Z, and k is a Bloch wave
vector; the effective fields of Eq. (3) are extended to include
the interactions between cells belonging to different bases.
This allows the numerical solution of Eq. (2) in a closed form,
keeping the number of independent vector variables equal to
N . For each eigenmode, the frequency f and magnetization
profile m(r) are thus determined. Due to the finite accuracy
with which the demagnetizing tensor is calculated iteratively
and other roundoff errors, the calculated frequencies are af-
fected by an error of ±0.003 GHz. For each k, calculating
the eigenmodes takes about 2 hours on an 8-core Intel Xeon
server.

Although a hexagonal Bravais lattice has a basis with dif-
ferent symmetry than a rectangular one, which is that used
by both the OOMMF software and dynamical matrix method to
implement the two-dimensional (2D) periodicity, it is possible
to work around this problem by mapping the hexagonal lattice
into a rectangular Bravais lattice, with a rectangular basis of
double size (shown with dotted lines in Fig. 2) [23]. Therefore
the calculated dispersion curves result folded in the halved
first Brillouin zone and must be manually unfolded to recover
the dispersion in the original symmetry. In the following, this
procedure is carried out implicitly; the results are discussed
directly in the hexagonal lattice in order not to complicate the
presentation.
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FIG. 3. Fundamental mode of an isolated dot, f = 15.114 GHz.
(a) Dependence of |h| on the radial coordinate. (b) Contour plot
representing the position-dependent real part of mz.

IV. RESULTS AND DISCUSSION

For values of the nearest-neighbor distance d ranging
from 140 to 260 nm, the ground state and the spectrum of
eigenmodes of the honeycomb structure are calculated. The
micromagnetic cell is a 2.5 × 2.5 × 20 nm size rectangular
parallelepiped; in a basis (two magnetic cylinders) there are
N = 2528 active cells. Since we assume no applied field, in
the ground state the magnetization forms a vortex; clockwise
direction and core pointing up are chosen. While in well-
separated dots the magnetization is circularly symmetric, for
smaller values of d the interdot interaction introduces a slight
deformation, calculated and properly taken into account.

The eigenmodes of a cylindrical dot in the vortex ground
state, apart from the gyrotropic mode, can be labeled with two
integer indices (r, l ), where the radial number r counts the
circular nodal lines and the azimuthal number l corresponds to
a phase shift of 2π l along a circular line [24]. We will mainly
focus on the behavior of the fundamental (0,0) mode because
it has a nonvanishing average dynamic magnetization, thus
giving rise to significant interdot interactions. Figure 3 shows
the profile of the dynamic magnetization and field of the (0,0)
mode of a single dot for d → ∞, i.e., when there is no interdot
coupling. Apart from the factitious fourfold symmetry, due
to creating the disk out of square-based parallelepiped cells
[25–27], one can see that the dynamic field extends signif-
icantly beyond the edge of the dot, and this is the cause of
interdot coupling and the appearance of collective modes of
the artificial lattice.

Similarly to what happens to electrons in solids when the
atomic wave functions overlap, as d becomes smaller and
comparable with the dot size the degeneracy is progressively
removed and a magnonic band opens. Actually, in a honey-

FIG. 4. Frequency dependence of the collective acoustical (solid
red line) and optical (dashed green line) (0,0) modes on the separa-
tion d . For each d the modes span a frequency interval (band).

comb lattice, the fundamental spin mode gives rise to two
bands, acoustical and optical, according to the relative phase
of the magnetization in sites A and B; they are shown in Fig. 4.
The frequency is always lower for the optical mode, because
interdot dipolar interaction favors (lower frequency) opposite
magnetizations. For finite d the frequency of collective modes
of each kind extends over a band as the Bloch wave vector k
varies. For the separation marked with a vertical line in Fig. 4,
d = 200 nm, the acoustical and optical bands are plotted in
Fig. 5 along two principal directions. These curves show a
peculiar behavior near the K point of the Brillouin zone, where
the two bands approach each other to form a gap of zero
amplitude (within the error affecting the numerical simula-
tion). Moreover, close to K the curves effectively exhibit a
linear behavior. These are distinctive markings of Dirac-like
collective excitations. The bands calculated along �K’ are
identical (within the calculation error) to those calculated
along �K and are not shown. A pseudospin index could then
be introduced to represent the two Dirac states around K and
K’ [28], with a degeneracy that can be broken, for example, by
boundary conditions or an asymmetric perturbative potential.
Also, an in-plane external field may break the degeneracy (due

FIG. 5. Band diagram of the acoustical (solid red line) and op-
tical (dashed green line) (0,0) modes at d = 200 nm. Calculated
frequencies (dots); lines are a guide for the eye. The dotted lines
correspond to the fitted Dirac velocity. The insets are contour plots
showing the real part of mz in a portion of the infinite lattice, for some
significant cases; the color scale is the same as Fig. 3.
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to the fact that Damon-Eshbach-like modes do not have time-
reversal symmetry), giving rise to intriguing effects; however,
the bosonic nature of the excitations treated here and the
unboundedness of the system seem to exclude the interesting
effects that are produced at the Fermi energy in other systems
by magnetic external fields, such as the integer or fractional
quantum Hall effect [29].

A deeper insight can be gained by using a tight-binding
approximate model to interpret these results. The motion
equation can be mapped to a single orbital tight-binding
Hamiltonian [8,17],

H = ε
∑

i

(a†
i ai + b†

i bi ) − h̄t
∑

〈i j〉
(a†

i b j + aib
†
j ), (7)

where the operators ai and bi destroy a magnon at the site i in
the A and B sublattice, respectively. Here ε is the on-site hop-
ping energy (diagonal term), h̄ the reduced Planck constant,
and t the transition rate between the A and B sites. The first
term, with the summation running over the Bravais hexagonal
lattice, describes the on-site magnon energies; the second,
with the summation running over nearest-neighbors, describes
the coupling between sublattices A and B. In reciprocal space
Eq. (7) becomes

H =
∑

k

[ε(a†
kak + b†

kbk ) + �(k)a†
kbk + �∗(k)akb†

k], (8)

where ak and bk are the Fourier transform of ai and bi, respec-
tively, and � a structure factor depending on nearest-neighbor
vectors. Around the K point, also called Dirac point, the wave
vector can be expanded as k = K + q; the eigenvalues are

ω±(q) = ε

h̄
+ vD|q|, (9)

with

vD = ±3dt/2 (10)

the Dirac velocity. Equation (9) expresses the essence of the
behavior of a Dirac material, and is well suited to describe the
dispersion curves found for d = 200 nm. A linear regression
of the calculated frequencies around the Dirac point (k =
1.2092 × 107 ± 1.51 × 106 m−1), towards both the � and M
directions, shows that the two slopes, positive and negative,
are very close in modulus, vD = 37.98 ± 2.43 m/s and vD =
−38.07 ± 2.20 m/s (with the standard error obtained from the
regression). The bands appear substantially symmetric with
respect to frequency inversion close to the K point, which
supports the fact that the interaction between second nearest
neighbors is negligible [28]. Figure 5 shows (dotted lines) the
two straight lines corresponding to vD = ±38 m/s. With this
value, the transition rate between the A and B sites of the
honeycomb lattice turns out to be t = 0.127 GHz; moreover,
f0 = ε/h = 15.107 GHz, very close to the noninteracting dot
fundamental frequency.

This picture no longer applies if the interdot interaction
becomes too large. Figure 6 gathers the (0,0) bands calculated
for d ranging from 140 to 260 nm (with the wave vectors
related to each of the Brillouin zone sizes in order to be able
to compare the curves). For d � 180 nm, i.e., d/a � 3.6, a
noticeable gap opens at the K point, indicating that the results
of the simplified tight-binding model introduced above no

FIG. 6. Band diagram of the acoustical (solid red line) and
optical (dashed green line) (0,0) modes for d = 140 . . . 260 nm.
Calculated frequencies (dots); lines are a guide for the eye. For
some k values the frequency of the d = 140 nm optical mode could
not be calculated unambiguously due to its intersection with other
resonances.

longer apply. This happens because the stray field generated
by the (0,0) mode of different dots gives rise to excessive
overlap, so that the assumptions of the tight-binding model
are no longer satisfied. Indeed, in this case the profiles show a
significant deformation with respect to the circular symmetry
of the mode shown in Fig. 3.

The dependence of the Dirac velocity on the separation
d is shown in Fig. 7; Dirac velocities have been obtained
through the same fitting procedure described above for d =
200 nm. The implicit dependence of the transition rate t on
the separation distance d dominates on the explicit factor d in
Eq. (10), as t is proportional to the dipolar coupling between
adjacent dots, which in turns is inversely proportional to the
cube of the distance, at not too small distances. Therefore
for d → ∞ the transition rate tends to zero and so does the
Dirac velocity; in this limit the collective behavior of spin
waves fades, the spin modes of different dots are no longer
coupled, their frequencies degenerate, and the bands become

FIG. 7. Dirac velocity of the (0,0) mode as a function of d ,
found through a linear fitting close to the K point. The vertical bars
represent the standard deviation, the line is a guide for the eye.

104418-4



DIRAC MAGNONS IN HONEYCOMB NANOSTRUCTURES PHYSICAL REVIEW B 107, 104418 (2023)

FIG. 8. Band diagram of the acoustical (solid red line) and op-
tical (dashed green line) (0,1) modes at d = 160 nm. Calculated
frequencies (dots); lines are a guide for the eye. The insets are
contour plots showing the real part of mz in a portion of the infinite
lattice, for some significant cases; the color scale is the same as
Fig. 3.

flat. For the opposite case, the limit is given by the fact that the
tight-binding approach fails when the dots become too close,
as discussed above. Other factors make it possible to increase
the dipolar coupling, as increasing the dot volume or using
a magnetic material with bigger Ms but the mentioned limits
still hold. For a nanometric artificial crystal, the Dirac velocity
remains in the range of tens of m/s; the important result that
in graphene Dirac electrons make massless particle physics
accessible at speeds 300 times slower than that of light [30] is
thus further extended.

The field outside the dot decays with a characteristic length
which depends on the effective wavelength of the excitation,
and therefore on the mode kind (indices r, l) and dot size
(radius a). For example, the effective wavelength for the
mode (0,1) is half that of the (0,0) mode, and a Dirac-like
behavior can be found for d as small as 160 nm; its bands
are shown in Fig. 8. The two bands approach each other
to form a gap of essentially zero amplitude; however, for
this mode the overall band width is small due to its van-
ishing average magnetization, and for the same reason it is
also difficult to detect experimentally; it is therefore of less
interest. Note that in this case the dipolar interdot interac-
tion favors (lowest frequency) the acoustic mode, for which
two adjacent dots have opposite magnetizations facing each
other.

Finally, the role of chirality, i.e., of the orientation of
the direction of rotation with respect to the direction of the
ground-state magnetization in the vortex core, has been inves-
tigated for d = 200 nm. The frequency of the spin modes of a
dot does not depend on chirality; therefore, when the chirality
is inverted in all dots, the calculated band diagram (not shown)
remains exactly the same as in Fig. 5. More interestingly, the
system appears robust with respect to the inversion of the
chirality of dots B only, with the chirality of dots A unchanged
and therefore opposite to that of dots B. Figure 9 shows the
acoustical and optical bands calculated for this system with

FIG. 9. Band diagram of the acoustical (solid red line) and op-
tical (dashed green line) (0,0) modes at d = 200 nm for a system
with alternated chirality between A and B sublattices. Calculated
frequencies (dots); lines are a guide for the eye. The bands of the
system with uniform chirality (taken from Fig. 5) are also shown for
comparison (gray dotted lines).

alternating chirality. In this case the bands change slightly
with respect to the system with uniform chirality (0.1% max-
imum), but the gapless Dirac behavior is maintained at the K
point. In other words, the system is robust with respect to the
perturbation. This can be understood in the light of the fact
that at K point the two modes are each located in a sublattice
(A or B), which has uniform chirality, and since it does not
influence the frequency of the modes, both have the same
frequency.

V. CONCLUSIONS

The dispersion curves of spin waves on a honeycomb arti-
ficial nanostructure have been calculated along two principal
directions of the Brillouin zone. A Dirac-like trend has been
found close to the K point for a moderate value of the interdot
coupling. A model based on a tight-binding Hamiltonian is
found to well describe the behavior of the collective mode dis-
persions, thus allowing the extraction of the main parameters
of the model.

Since the interdot coupling is driven by the dipolar inter-
action (there is no exchange coupling between nontouching
dots), these results can be generalized to some extent to
disks of different size. Changing the dot radius mainly af-
fects the dispersion curves through the different interdot
coupling, in turn due to the variable extent of the stray
field. Therefore, apart from the absolute frequency varia-
tion of the mode, the Dirac-like behavior should hold for
the fundamental mode when the lattice parameter is greater
than about three times the dot radius; within this limit the
system is robust with respect to dot radius variations. The
geometrical parameters of this model calculation have al-
ready been chosen among those accessible experimentally;
the effects found appear interesting for the purpose of con-
trolling the spin waves and are able to stimulate experimental
studies.
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