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Superfluidlike spin transport in the dynamic states of easy-axis magnets
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The existing proposals for superfluidlike spin transport have been based on easy-plane magnets where the U(1)
spin-rotational symmetry is spontaneously broken in equilibrium, and this has been limiting material choices for
realizing superfluidlike spin transport to restricted classes of magnets. In this work, we lift this limitation by
showing that superfluidlike spin transport can also be realized based on easy-axis magnets, where the U(1)
spin-rotational symmetry is intact in equilibrium but can be broken in nonequilibrium. Specifically, we find
the condition to engender a nonequilibrium easy-cone state by applying a spin torque to easy-axis magnets,
which dynamically induces the spontaneous breaking of the U(1) spin-rotational symmetry and thereby can
support superfluidlike spin transport. By exploiting this dynamic easy-cone state, we show theoretically that
superfluidlike spin transport can be achieved in easy-axis magnets under suitable conditions and confirm the
prediction by micromagnetic simulations. We envision that our work broadens the material library for realizing
superfluidlike spin transport, showing the potential utility of dynamic states of magnets as venues to look for
spin-transport phenomena that do not occur in static magnetic backgrounds.

DOI: 10.1103/PhysRevB.107.104417

I. INTRODUCTION

Spintronics is a field that harnesses spin degree of freedom
of electrons to store, transport, and process information in
order to go beyond the conventional electronics where only a
charge degree of freedom has been used [1–3]. Since informa-
tion is encoded in the form of spin, it is important to achieve
efficient spin transport in spintronics, which demands that we
identify and employ low-dissipation magnetic materials and
spin transport therein. In magnetically ordered materials, spin
can be transported by the collective excitations of constituent
localized spins, i.e., spin waves, whose quanta are called
magnons [4–7]. Since magnon-based information transport
and processing can be realized without the Joule heating in
principle, generating and controlling magnons have been ac-
tively investigated to realize magnonic devices [8–10], which
includes the experimental demonstration of long-distance spin
transport in certain magnets [11–13]. Most of the previously
studied magnonic spin transport has been based on diffusion
of magnons, which has a critical problem in that the spin cur-
rent exponentially decays away from the spin-current source
[11]. To circumvent this problem of rapidly decaying spin
current of diffusive magnons, a novel type of spin transport
referred to as superfluidlike spin transport has emerged as an
alternative for efficient spin transport [14].

Superfluidlike spin transport is a spin analog of mass su-
perfluidity. The mass superfluidity can occur when the wave
function defined by ψ = √

neiθ , where n is a particle density
and θ is an arbitrary phase, breaks the U(1) phase symmetry
spontaneously [15]. Likewise, superfluidlike spin transport
can occur in magnetically ordered systems when the magnetic
order parameter breaks the U(1) spin-rotational symmetry
spontaneously [14,16]. In contrast to the exponential decay-
ing of diffusive spin transport, superfluidlike spin transport
has the characteristic of algebraically decaying spin current,

which enables long-distance spin transport in certain magnets
[17–26]. The existing research of superfluidlike spin trans-
port has been focused only on easy-plane magnets in which
the system breaks the U(1) spin-rotational symmetry sponta-
neously in equilibrium [27–30].

In this work, for a potential material platform for superflu-
idlike spin transport, we consider easy-axis magnets, where
the magnetization aligns with the easy axis and thus does
not break U(1) spin-rotational symmetry spontaneously in
equilibrium. Instead of using the equilibrium U(1) symmetry
breaking as done for previous proposals based on easy-
plane magnets, we turn to the dynamic breaking of the U(1)
spin-rotational symmetry. More specifically, to break U(1)
spin-rotational symmetry spontaneously in easy-axis magnets,
we apply a spin torque and engender a dynamic easy-cone
state to support superfluidlike spin transport [31–37]. The
system is schematically illustrated in Fig. 1. The easy-axis
magnet subjected to a suitable spin torque forms a spin-torque
oscillator, in which the local magnetization (shown as the
blue arrows) precesses within cones (depicted by the dashed
black lines with the cone angle θ ) by breaking the U(1) spin-
rotational symmetry dynamically. Applying a charge current
in the left metal injects a spin current JL from the left metal to
the left end of the magnet via the spin Hall effect [34,38–40].
The injected spin current is transported through the magnet
by superfluidlike spin transport in the form of the spatially
varying order parameter. The spin transport generates a spin
accumulation μR at the interface between the ferromagnet and
the right metal, which can be probed either by spin pumping
[41,42] or by the inverse spin Hall effect. In our system,
nonlocal spin transport refers to the generation of the spin
accumulation μR at the right end of the ferromagnet by the
spin-current injection from the left end. By the theoretical
analysis based on the Landau-Lifshitz-Gilbert (LLG) equa-
tion [43,44] and the micromagnetic simulations, we show
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FIG. 1. Schematics of the experimental setup for realizing super-
fluidlike spin transport in a magnet having the z axis as an easy axis
subjected to a spin torque, denoted by a spin-torque oscillator. In the
magnet, the blue arrows depict the spatially varying magnetization
and the dashed cones represent the precession trajectories (forming
cones with tilting angle θ from the easy axis) of the local spins driven
by the spin torque. The black arrow of the left metal represents the
charge current, which injects the spin current (JL ) to the left end
of the ferromagnet via the spin Hall effect. The red arrows of the
left and the right metals are the direction of spin accumulations,
at the interfaces between the metals and the ferromagnet. The spin
accumulation μR at the right metal generated by the nonlocal spin
transport from the left metal can be detected via the inverse spin Hall
effect.

that the spin accumulation μR decays algebraically as the
ferromagnet length increases, exhibiting superfluidlike spin
transport. Here, we remark that there have been previous stud-
ies on nonequilibrium realization of spin superfluidity without
easy-axis anisotropy in the B phase of 3He and in YIG films
[45–50]. The previous works utilized pumping of incoherent
magnons to induce the nonequilibrium spin superfluidity and
thus differs from our work that employs spin torque to induce
U(1) symmetry breaking.

The paper is organized as follows. In Sec. II, we describe
the model system, namely the easy-axis ferromagnet sub-
jected to a spin torque, and identify the condition with which
superfluidlike spin transport can be realized by theoretical
analysis and micromagnetic simulations. In Sec. III, we the-
oretically and numerically show that our system can indeed
support algebraically decaying spin current, i.e., superfluid-
like spin transport. In Sec. IV, we summarize our results.

II. MODEL

Our model system which is illustrated in Fig. 1 is a quasi-
one-dimensional ferromagnetic wire whose energy is given by

U =
∫

dV

[
Am′2 − Keffm2

z + K2m4
z

2
− H · m

]
, (1)

where m is the three-dimensional unit vector in the direction
of the magnetization, the prime (′) is the gradient with respect
to the z coordinate along the wire, A is the exchange coef-
ficient, Keff > 0 is the first-order effective anisotropy which
combines the shape anisotropy and the first-order easy-axis
crystalline anisotropy, K2 > 0 is the second-order anisotropy
[51–56], and H is the external magnetic field. The exemplary
materials that are known to have the second-order anisotropy
are NdCo5 [57,58], Ta/Co60Fe20B20/MgO [52], Pt/Co/Cu
[55], Pt/Co/MgO [56], and FeCoB/MgO [59]. We assume

that the system is quasi-one-dimensional so that the magneti-
zation varies only along the z direction: m(z, t ). The external
magnetic field is applied along the easy-axis direction: H =
H ẑ. We consider the cases where the ground state is given
by the uniform magnetization in the z direction m(z, t ) ≡ ẑ,
which is satisfied when K2 < (Keff + H )/2. Note that the
energy U is invariant under uniform rotations of the mag-
netization about the z axis, i.e., m �→ Rzm with an arbitrary
rotation matrix Rz about the z axis, indicating that the system
possess the U(1) spin-rotational symmetry about the z axis.
Since the ground state m(z, t ) ≡ ẑ is invariant under the spin
rotations, it does not break the U(1) spin-rotational symmetry.

The equation of motion for the dynamics of the magne-
tization m subjected to a spin torque is given by the LLG
equation [43,44] augmented by the spin-torque term:

sṁ − αsm × ṁ = −m × heff + τST, (2)

where s is the saturated (scalar) spin density, the dot (˙)
denotes differentiation with respect to time, α > 0 is the di-
mensionless Gilbert damping parameter, heff = −δU/δm is
the effective field, and τST = τSTm × (m × ẑ) is an externally
applied spin torque polarized along the z direction. The spin
torque for the U(1) symmetry breaking can be realized either
by the spin-transfer torque utilizing an additional ferromagnet
with fixed magnetization [32] as done for the Co/Pt multilayer
or CoFeB/MgO/CoFeB structure [60], by spin-orbit torque
utilizing heavy metals such as Pt and their spin Hall effects
[61] as done for NiFe/Pt and YIG/Pt [60], or by thermal spin
torque utilizing thermally induced spin current as done for
NiFe/Pt [62]. We assume that this spin torque τST is exerted
uniformly on the ferromagnet.

To endow the ferromagnet with the capability to sup-
port superfluidlike spin transport, it is necessary to induce
the ferromagnet to break the U(1) spin-rotational symmetry
dynamically, which can be done by driving it into a self-
oscillatory mode with the sufficiently strong spin torque. The
detailed condition for this oscillating phase can be obtained as
follows. The LLG equation in terms of the polar angle (θ ) and
the azimutal angle (φ) with m = sin θ cos φx̂ + sin θ sin φŷ +
cos θ ẑ is given by

s(θ̇ sin θ + αφ̇ sin2 θ ) = A(φ′ sin2 θ )′ + τST sin2 θ, (3)

s(φ̇ sin θ − αθ̇ ) = A(φ′2 sin θ cos θ − θ ′′)

+ H sin θ + Keff sin θ cos θ

− 2K2 sin θ cos3 θ. (4)

Equation (3) has a clear physical meaning: It is the spin
continuity equation. The first term and the second term on
the left-hand side are the time evolution of the z component
of spin density and the damping term, respectively. The first
term on the right-hand side of Eq. (3) is the divergence of spin
current density, js = −A sin2 θ ∂xφ, and the second term is the
spin current coming from the bulk spin torque.

Now, we look for a condition under which the spin torque
induces a dynamic easy-cone state and thus the spontaneous
breaking of the U(1) spin-rotational symmetry. A steady-state
solution of Eqs. (3) and (4) with constant polar angle with
θ̇ = 0 satisfies

τST = α(Keff cos θ + H − 2K2 cos3 θ ). (5)
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Then, the condition that the system is in a dynamic easy-cone
state with 0 < θ < π is given by

α(Keff + H − 2K2) < τST < α

⎛
⎝2

3

√
Keff

6K2
Keff + H

⎞
⎠, (6)

Keff

6
< K2 <

Keff + H

2
, (7)

where τc,1 = α(Keff + H − 2K2) is the lower critical torque
that is given by the value of the right-hand side of Eq. (5)

at θ = 0 and τc,2 = α( 2
3

√
Keff
6K2

Keff + H ) is the upper critical

torque. The lower critical torque τc,1 is the minimum torque
that is required to drive the ferromagnet into the dynamic
easy-cone state, i.e., self-oscillatory state. When we apply
the torque lower than the lower critical torque, the magne-
tization is kept along the z axis without breaking the U(1)
spin-rotational symmetry. The physical meaning of the upper
critical field is as follows. When we apply the spin torque
larger than the upper critical torque τc,2, the magnetization
reverses into the negative z direction completely, i.e., m = −ẑ,
which does not show the dynamic oscillation of the mag-
netization. Equation (7) states the condition for the system
parameters, Keff, K2, and H . When K2 is smaller than Keff/6,
e.g., in the absence of the second-order anisotropy K2 = 0,
the system does not possess a dynamic easy-cone state, but is
saturated along either the positive z direction (for weak spin
torques) or the negative z direction (for strong spin torques).
This means that finite second-order anisotropy is crucial for
the easy-axis magnet to be able to support superfluid spin
transport. The condition K2 < (Keff + H )/2 is to ensure that
the unperturbed ground state of the ferromagnet is given
by the z direction, as discussed above. When the spin torque
and the system parameters satisfy Eqs. (6) and (7), the system
is driven into a dynamic easy-cone state, where the magneti-
zation precesses about the z axis with arbitrary initial values
for the azimuthal angle φ and thereby spontaneously breaks
the U(1) spin-rotational symmetry.

To confirm the spontaneous U(1) spin-rotational symme-
try breaking under conditions [Eqs. (6) and (7)], we run the
micromagnetic simulation using MUMAX3 [63] with the fol-
lowing material parameters of NdCo5: Keff = 2.4 × 106 J/m3,
H = 1 T, Ms = 1.1 × 106 A/m, A = 1.05 × 10−11 J/m, and
α = 0.1 [57,58,64,65]. The demagnetization effects are cap-
tured by the first-order effective anisotropy Keff through the
shape anisotropy in our simulations, as done analytically in
Refs. [52,55,56,59], which is expected to be a good ap-
proximation when the system is a quasi-one-dimensional
cylindrical wire [66–68]. We run the simulation with three
different values of second-order anisotropy: K2 = 0.4 ×
106 J/m3, 1 × 106 J/m3, and 1.6 × 106 J/m3. For the polar
angle in the presence of a spin torque, the analytical result
[which can be obtained by solving Eq. (5) for θ ] and the
simulation results are shown in Fig. 2(a) as the lines and
the symbols, respectively, which agree with each other. In
Fig. 2(a), the blue and the red symbols correspond to the
cases with K2 = 1.6 × 106 J/m3 and K2 = 1 × 106 J/m3, re-
spectively. For these cases, the ferromagnet is in a steady
state with nontrivial polar angle θ �= 0, π , i.e., in a dynamic
easy-cone state under suitable spin-torque values. The black

(a)

(b)

FIG. 2. (a) The polar angle (θ ) of the magnetization as a func-
tion of the bulk spin torque (τST). The lines show the theoretical
results [Eq. (5)] and the symbols represent the simulation results. The
circles, the triangles, and the squares correspond to K2 = 2Keff/3,
K2 = 5Keff/12, and K2 = Keff/6, respectively. (b) The spin accumu-
lation (|
μR|) at the right boundary of the ferromagnet induced by
a spin-current injection JL from the left boundary as a function of
the ferromagnet length (L). The lines show the theoretical result
[Eq. (13)] and the symbols correspond to the simulations results.
The circles, the triangles, and the squares correspond to input spin
current JL = 2 × 10−6 J/m2, 6 × 10−6 J/m2, and 10 × 10−6 J/m2,
respectively.

symbols correspond to the cases with K2 = Keff/6, where the
polar angle is either 0 or π regardless of the spin-torque values
as discussed above and the dynamic easy-cone state is not
available.

The obtained dynamic easy-cone state can be interpreted
in the framework of the Gross-Pitaevskii equation [69,70] as
follows. The LLG equation (2) for the magnetization m can
be recast into the equation for the complex order parame-
ter defined by ψ (x, t ) = mx(x, t ) − imy(x, t ) = √

ρeiφ , where
ρ = sin θ and φ are analogous to the density and the phase
of the condensate [23,71]. The LLG equation in terms of the
complex order parameter ψ is given by

is
∂ψ

∂t
=

[
(Keff − 2K2 + H ) +

(
−1

2
Keff + 3K2

)
|ψ |2

]
ψ

+ sα

(
1 − 1

2
|ψ |2

)
∂ψ

∂t
+ iτST

(
1 − 1

2
|ψ |2

)
ψ, (8)

up to the third order in ψ . The first term on the right-hand
side of the equation originates from the potential energy of
our system [Eq. (1)], in which (Keff − 2K2 + H ) can be in-
terpreted as the single-particle potential and (−Keff/2 + 3K2)
can be regarded as the interaction strength. The condition to
possess a vacuum ground state and the condition to have a sta-
ble condensate under pumping (i.e., the repulsive interaction)
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are respectively given by K2 < (Keff + H )/2 and Keff/6 < K2,
which are identical to the conditions in Eq. (7) that were
obtained directly from the LLG equation.

There are two additional terms on the right-hand side in the
equation that break the time-reversal symmetry: The second
term is the damping term and the third term represents the
particle pumping by the spin torque. To have a finite conden-
sate ψ �= 0 in a steady state, the pumping ∝ τST should be
sufficiently strong to dominate the damping term. This condi-
tion is given by τST > α(Keff + H − 2K2), which is identical
to the lower critical torque that we obtained above. The upper
critical torque is not available in Eq. (8), since it is truncated to
the third order in the order parameter and thus cannot capture
the dynamics of the dense condensate.

III. SUPERFLUIDLIKE SPIN TRANSPORT

Now, let us investigate the nonlocal spin transport behav-
ior of an obtained dynamic easy-cone state of the easy-axis
ferromagnet by assuming that our system satisfies Eqs. (6)
and (7) so that it breaks the U(1) spin-rotational symmetry
dynamically. The situation that we consider is depicted in
Fig. 1. To inject a spin current JL to the ferromagnet through
the left end, one heavy metal with a finite charge current is
attached to the left end of the ferromagnet. To detect a spin
accumulation μR at the right end of the ferromagnet, the other
heavy metal with no external current is attached to the right
end of the ferromagnet. When we attach the metals to the
left and right boundaries of the ferromagnet, there arise two
effects: the spin-current injection from the metal with a finite
current and spin pumping from the ferromagnet to the metals
[24], which determines the boundary conditions for the spin
current at the left end x = 0 and the right end x = L:

js(0) = JL sin2 θ − γ sin2 θ φ̇(0), (9)

js(L) = γ sin2 θ φ̇(L), (10)

where js = −A sin2 θ ∂xφ is the spin current of the ferromag-
net, L is the length of the ferromagnet, θ is the polar angle
of the magnetization, γ = h̄g↑↓/4π , and g↑↓ is the effective
interfacial spin-mixing conductance between the ferromagnet
and the normal metal [39,72]. The first term ∝ JL on the
right-hand side of Eq. (9) is the spin current injected from the
left metal to the ferromagnet by the spin Hall effect, where JL

is proportional to the product of the charge current flowing in
the left metal and the effective spin Hall angle of the interface
between the ferromagnet and the left metal. The second term
∝ γ on the right-hand side is the spin current ejected from
the ferromagnet to the left metal by the spin pumping. The
right-hand side of Eq. (10) is the spin current ejected from the
ferromagnet to the right metal by the spin pumping.

By solving the bulk LLG Eq. (3) with the boundary con-
ditions [Eqs. (9) and (10)] for a steady state, we obtain the
following spin current density and the precessional velocity
of the azimuthal angle:

js(x, t ) = [JL − (γ + αsx)ω + τSTx] sin2 θ, (11)

φ̇(x, t ) ≡ ω = JL + τSTL

2γ + αsL
, (12)

where the value of the polar angle θ changes from the value
obtained from Eq. (5) due to the additional input spin current
from the left boundary [73]. The precession of the magne-
tization induces a finite spin accumulation given by μR =
−h̄ẑ · m × ṁ = −h̄ sin2 θ φ̇ with h̄ the reduced Planck con-
stant, which can be measured experimentally [20,41,42].

To investigate the nonlocal spin transport from the left end
x = 0 to the right end x = L through the dynamic ferromag-
net, we employ the spin accumulation μR at the interface
between the ferromagnet and the right heavy metal and extract
the component that is induced by the spin-current injection
JL from the left metal. In other words, we use the difference
of the spin accumulation μR between the two cases: with
spin-current injection from the left end (JL �= 0) and with-
out the spin-current injection (JL = 0). Using φ̇ of Eq. (12),

μR = μR(JL �= 0) − μR(JL = 0) is given by


μR = −
(

JL

2γ + αsL
sin2 θ

)
h̄

− τSTL

2γ + αsL
(sin2 θ − sin2 θ0)h̄, (13)

where θ0 is the polar angle obtained from Eq. (5) in the
absence of an input spin current JL = 0. The first term on the
right-hand side is the spin accumulation at the right end in-
duced by injecting a spin current JL at the left end. It decays al-
gebraically ∼1/L for sufficiently long samples as a function of
the ferromagnet length L, which is the characteristic superflu-
idlike spin transport. The second term can be interpreted as the
effect of the polar-angle change (from θ0 to θ ) induced by the
spin-current injection JL from the left end. The algebraic de-
caying behavior of the second term is not evident from the an-
alytical expression above, but we can show that, by linearizing
Eq. (4) with respect to the injected spin current JL, the second
term is approximately given by [2h̄s cos θ0/(6K2 cos2 θ0 −
Keff )]JLτSTL/(2γ + αsL)2, which decays as 1/L for suffi-
ciently long samples. Therefore, the spin accumulation 
μR

at the right end induced by the spin-current injection from the
left end decays as 1/L as the ferromagnet length L increases,
exhibiting superfluidlike spin transport.

To confirm our theoretical prediction of superfluidlike
spin transport in a dynamic cone state of ferromagnets, we
perform the micromagnetic simulations and compare the
simulation results against the theoretical results [Eq. (13)].
In simulations, we use the same material parameters that
were mentioned above and the fixed second-order anisotropy
K2 = 1.6 × 106 J/m3. For simplicity, we assumed that the
spin pumping effect is negligible by setting γ = 0 J/m2. Fig-
ure 2(b) plots the spin accumulation difference 
μR between
JL �= 0 and JL = 0 as a function of the ferromagnet length L
for several different values of the input spin current JL. The
nonlocal spin transport 
μR decays algebraically, not expo-
nentially, as the ferromagnet length L increases. Our analytical
[Eq. (13)] and simulation results [Fig. 2(b)] show that we can
realize superfluidlike spin transport using dynamic states of
easy-axis ferromagnets. These are our main results.

IV. SUMMARY

To go beyond the previous works on superfluidlike spin
transport that have been restricted to easy-plane magnets,

104417-4



SUPERFLUIDLIKE SPIN TRANSPORT IN THE DYNAMIC … PHYSICAL REVIEW B 107, 104417 (2023)

we have investigated the possibility of superfluidlike spin
transport in an easy-axis ferromagnet driven to a spin-torque
oscillating regime. We have identified the condition for the
spin torque with which the system can be stabilized to a
dynamic easy-cone state that breaks the U(1) spin-rotational
symmetry spontaneously. By combining the theoretical anal-
ysis and the micromagnetic simulations, we have shown that
the spin current injected from one end of the ferromagnet
decays algebraically, rather than exponentially, as the system
length increases, whereby demonstrating that superfluidlike
spin transport can be achieved in an easy-axis ferromagnet un-
der suitable dynamic biases. We hope that our work stimulates
further investigations of superfluidlike spin transport and other
unconventional spin transport in various types of magnets,
departing from simple easy-plane or easy-axis magnets.
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