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Triforce order scenario for UNi4B

Takayuki Ishitobi and Kazumasa Hattori
Department of Physics, Tokyo Metropolitan University, 1-1, Minami-osawa, Hachioji, Tokyo 192-0397, Japan

(Received 20 May 2022; revised 12 January 2023; accepted 22 February 2023; published 15 March 2023)

We theoretically investigate possible symmetry-broken states in UNi4B, constructing a localized pseudotriplet
crystalline electric field model. For a long time, its low-temperature symmetry-broken phase in UNi4B has been
considered to be a magnetic toroidal order forming atomic-scale vortices lattice with disordered sites at each
center of the vortices. However, recent observation of current-induced magnetizations offers a reinvestigation
about the validity of this order parameter because of the contradiction in their anisotropy. Our model takes
into account the quadrupole degrees of freedom, whose importance is recently evidenced by the sound-velocity
softening. We find that the quadrupole moments play an important role in determining the magnetic structure
in the ordered states. For a wide range of parameter space, we obtain two triple-Q magnetic orders in our
36-site mean-field analysis: toroidal order and another one with the same number of disordered sites as in
the toroidal order. We name the latter “triforce” order after its magnetic structure. Importantly, the triforce
order possesses exactly the same spin structure factor as the toroidal order does, while the phase factors in
the superposition of the triple-Q structure are different. We show that the triforce order is consistent with the
observed current-induced magnetization when the realistic crystal structure of UNi4B is taken into account.
We compare the predictions of the triforce order with the experimental data available at present in detail
and also discuss possible applications of the present mechanism of triple-Q orders to anisotropic correlated
systems.
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I. INTRODUCTION

Antiferromagnetic (AFM) orders with noncollinear and
noncoplanar spin configurations have attracted much at-
tention, as they can lead to rich phenomena such as
magnetoelectric (ME) effects [1–3], anomalous Hall effects
[4], and nonreciprocal transport [5]. Periodic topological spin
textures, for example, skyrmion lattices [6–15] and hedgehog
lattices [16–19], can generate emergent electromagnetic fields
[20–24], which result in anomalous transport phenomena such
as topological Hall effects [25–30]. Various noncollinear and
noncoplanar AFM spin structures, including the topological
ones, appear as multiple-Q orders, which are characterized by
multiple modulation vectors Q [31]. Multiple-Q orders pos-
sess phase degrees of freedom in their complex coefficients
of the superposed waves. The importance of the phase has
been emphasized recently in a line of discussion about their
stability and topology [32–35].

In addition to the multiple-Q spin texture, multipole de-
grees of freedom also exhibit multiple-Q orders [36–45].
Multipole moments represent anisotropic charge and/or mag-
netic densities. This makes their single-site properties and
interactions anisotropic. It has been pointed out recently that
such anisotropy of multipole moments stabilizes the multiple-
Q orders [41,45–48]. When two or more types of multipole
moments are active, couplings between them are in a nontriv-
ial form in comparison to isotropic spin-spin couplings. For
example, a noncollinear multiple-Q magnetic order is realized
inside an antiferroquadrupole ordered phase due to the cou-
plings between the magnetic dipole and electric quadrupole

moments [49–53]. The ordered quadrupole moments act as a
site-dependent single-site anisotropy on the magnetic dipole
moments and cause the noncollinear magnetic orders. In the
case of conventional AFM orders for large effective spin
systems, quadrupole moments are induced and can affect the
order of the transition [54–56]. This suggests that even in-
duced quadrupole moments can play an important role in the
phase transition.

The concept of multipole has been utilized in intersite mul-
tipoles beyond atomic degrees of freedom. Such augmented
multipoles include, e.g., cluster multipoles [57–60] and bond
multipoles [61–64]. The augmented multipoles are useful for
understanding macroscopic symmetry in symmetry-broken
phases and are directly related to possible responses under
external fields [65–68]. Among many responses, linear ME
effects are one of the main subjects in both perspectives
of fundamental and applied physics and have been studied
particularly in multiferroic materials [69,70]. It has been con-
sidered that both time-reversal and spatial inversion symmetry
must be broken to realize ME effects. However, recently ME
effects in metals [71] have been reinvestigated [72–75] and
summarized in systematic classifications [65,66]. In metals,
ME effects can emerge even though the time-reversal sym-
metry is preserved. Such ME effects in metals are called
magnetocurrent (MC) effects, where electric currents break
the time-reversal symmetry.

UNi4B is one of the first candidates for bulk metals show-
ing MC effects [76,77], as is trigonal tellurium [78]. The
U ions form an almost regular triangular lattice in UNi4B.
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FIG. 1. Schematic configurations of (a) toroidal order and (b) tri-
force order proposed in this paper. Arrows represent magnetic dipole
moments. Sites without an arrow are disordered without both mag-
netic and quadrupole moments in (a), while quadrupole moments
emerge at magnetically disordered sites in (b).

The magnetic moments of the U ions antiferromagnetically
order below TN ∼ 20 K [79]. From the neutron scattering
experiment, a triple-Q magnetic order with one-third of U
ions remaining paramagnetic has been proposed [79]. In the
triple-Q order, the ordered moments form vortices on the
triangular ab plane. See Fig. 1(a), where the unit of the vor-
tex is shown. This vortex structure is equivalent to a ferroic
ordering of toroidal moments parallel to the c axis [59,77]. In
the toroidal ordered states, the in-plane transverse ME effect
is theoretically predicted [77] and is indeed experimentally
confirmed [76]. However, the theoretical predictions and the
observed ME effects are not completely consistent. The ex-
periment shows that not only in-plane but also out-of-plane
currents induce the in-plane magnetization [76]. Remarkably,
the in-plane and out-of-plane current-induced magnetization
need different irreducible representations of D6h in the or-
der parameter [65,66]. This inconsistency suggests that the
magnetic and/or crystal structures should be reconsidered.
Recent neutron and resonant x-ray scattering, and 11B-NMR
experiments clarify that the crystal structure of UNi4B is not
hexagonal P6/mmn (No. 191, D1

6h) but orthogonal Cmcm
(No. 63, D17

2h) [80–82]. Nevertheless, the toroidal order with
the orthogonal distortion cannot explain the ME effects. Thus,
the magnetic structure should be reconsidered, and this is
the main subject of this study. Note that the in-plane and
out-of-plane current-induced magnetization need different ir-
reducible representations even in D2h. This excludes orders
with the D2h center, such as the toroidal order, except for acci-
dental cases. This is a remarkable constraint on the magnetic
structure.

Recently, Yanagisawa et al. have reported a softening in
the C66 mode, and this does not stop even below TN in their
ultrasound experiment and proposed a crystalline electric field
(CEF) model [83]. They have demonstrated that the softening
stops at T ∗ � 0.3 K, where the specific heat also shows a
broad anomaly [84]. These observations indicate that the E2g

quadrupole moments are active even in the ordered phase, and
they gradually freeze via crossover or order at ∼T ∗. The pres-
ence of the softening is inconsistent with the Kondo screening
mechanism for the partial disorder in the early stage of the
study about UNi4B [85]. Thus, the effects of the quadrupole
moments on the magnetic order, including partial one, are
worthwhile to be considered. We will clarify the interplay
between the magnetic and the quadrupole moments in this
paper.

In this study, motivated by the CEF model proposed in
Ref. [83], we investigate the effects of quadrupole degrees of
freedom on the ordered magnetic structure in UNi4B. A local-
ized model with both magnetic dipole and electric quadrupole
degrees of freedom is introduced and analyzed by means of a
36-site mean-field approximation. The numerical results and
symmetry-based arguments show that the quadrupolar interac-
tions play a crucial role in determining the ordered magnetic
structure. Interestingly, we find that a triple-Q order shown in
Fig. 1(b), which we call “triforce order” named after its unit
cell structure [86], is more favorable than the toroidal order
in many aspects observed in the experiments. We compare the
physical quantities in the triforce order with the experimental
ones and propose several experiments which can semidirectly
check the triforce order scenario.

This paper is organized as follows. In Sec. II, we introduce
the local CEF Hamiltonian with the multipole degrees of free-
dom at the U ions and the interactions between the magnetic
and the quadrupole moments. The Landau free energy charac-
teristic of this system is also discussed. In Sec. III, we analyze
the model within the mean-field approximation and discuss its
phase diagrams. In Sec. IV, we examine the triforce order as
the order parameter for UNi4B and discuss the existing experi-
mental data. Possible extensions of the present mechanism for
triple-Q orders are also discussed. Finally, Sec. V summarizes
this paper. Throughout this paper, we use the unit with the
Boltzmann constant kB = 1 and the Planck constant h̄ = 1.

II. MODEL

In this section, we will introduce a localized moment
model on a triangular lattice, with the site point group symme-
try D6h and the lattice constant set to unity. Here, we neglect
the effect of the orthogonal distortion in our model calcula-
tions since it is small [76,81,82]. The perturbative effects of
the realistic crystal structure, such as the orthogonal distor-
tion, will be discussed in Sec. IV B. The CEF scheme is based
on the model derived in the recent ultrasonic experiments
[83]. The interaction parameters are chosen in such a way
that they reproduce the observed thermodynamic quantities.
We will discuss the Landau theoretical analysis and show the
importance of dipole-quadrupole couplings for determining
stable magnetic structures.

A. CEF scheme and multipole operators

We first discuss the local states at the U ions. Recently,
Yanagisawa et al. have carried out the ultrasonic experiment
and proposed a CEF scheme [83]. They claim that the valence
of U ions is U4+ (5 f 2), and the atomic ground states are
those for the total angular momentum J = 4 with the nine-
fold degeneracy. They split into several CEF states. The CEF
ground state is a �5 non-Kramers doublet, and the first excited
state is a �4 singlet with its excitation energy E4 ∼ 20 K.
The other states are separated more than 600 K above in the
energy and safely ignored at low temperatures. We take into
account the �5 and �4 states forming a pseudotriplet as a
minimal model. In this pseudotriplet, three magnetic dipolar
and five electric quadrupolar moments are active. In the ba-
sis of (|�5+〉 , |�5−〉 , |�4〉)T, where ± in �5± represents the
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eigenvalues of the z component of the total angular mo-
mentum Jz and the superscript T represents the transpose,
we define the operators for the dipole {Jx, Jy, Jz}, the E2g

quadrupole {O22, Oxy}, and the A1g quadrupole O20 as

O22 = Q̄

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠, Oxy = Q̄

⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠, (1)

Jx = J̄ab√
2

⎛
⎝0 0 1

0 0 1
1 1 0

⎞
⎠, Jy = J̄ab√

2

⎛
⎝0 0 −i

0 0 i
i −i 0

⎞
⎠, (2)

Jz = J̄c

⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠, O20 = Q̄′

⎛
⎜⎝

− 1
2 0 0

0 − 1
2 0

0 0 1

⎞
⎟⎠, (3)

where Q̄ = 5.27, J̄ab = 2.34, J̄c = 0.71, and Q̄′ = 0.831 are
determined by the detail of the CEF scheme proposed in
Ref. [83]. We use the Cartesian coordinates x, y, and z, which
are parallel to a, b, and c axes in the usual hexagonal notation,
respectively. We note that the xy plane is the magnetic easy
plane, while the z axis is the hard axis. This is due to the
difference between the magnitudes of the matrix elements
J̄ab > J̄c. Note that Jx and Jy, which correspond to the pri-
mary order parameter in UNi4B, have their matrix elements
between the ground doublet �5± and the excited singlet �4,
while Jz, O22, and Oxy are finite only in �5± as shown in
Fig. 2(a). Hereafter, we focus on the in-plane components
Jx,y and O22,xy, ignoring Jz and other quadruple moments.
This is a quite natural starting point to construct a minimal
model for this system; the primary-order parameters Jx,y in
the magnetic sector and the ground-state components O22,xy

in the quadrupole sector are retained. The A1g quadrupole O20

simply represents the excitation energy from the �5 to �4.
We use normalized operators such as Õ22 = O22/Q̄, where
the tilde will be omitted in the following. This means Q̄ and
J̄ab are included in the definition of interactions introduced in
Sec. II B.

For later purposes, we introduce important wave
vectors in this study. The important wave vectors in
the first Brillouin zone are �: p = (0, 0) ≡ k0, K:
kK(1/2,

√
3/2) ≡ kK, (kK/

√
3)(−√

3/2,−1/2) ≡ k1,
(kK/

√
3)(

√
3/2,−1/2) ≡ k2, and (kK/

√
3)(0, 1) ≡ k3,

where kK ≡ 4π/3. This comes from the fact that the
ordering vectors of the magnetic moments in UNi4B are
kn (n = 1, 2, 3), which are parallel to (− sin ωn, cos ωn)
with ωn = 2nπ/3. In terms of the reciprocal lattice
vectors g1 ≡ 2π (1,−1/

√
3) and g2 ≡ 2π (0, 2/

√
3),

kK = g1/3 + 2g2/3 = ( 1
3

2
3 ), k1 = −g1/3 − g2/3 = ( 1̄

3
1̄
3 ),

k2 = g1/3 = ( 1
3 0), and k3 = g2/3 = (0 1

3 ). Note that cubic
mode-mode couplings are possible among these wave vectors.
For example, k3 − k1 = kK and also trivially k3 − k3 = k0

hold. From these relations, one can expect that the quadrupole
moments at the K and the � points play a role in determining
the magnetic structure through the cubic couplings, as will be
discussed in Sec. II D.

FIG. 2. (a) CEF level scheme used in this study. Red and blue
arrows represent the finite matrix elements for the magnetic dipoles
Jx,y and the electric quadrupoles O22,xy, respectively. (b) Exchange
interactions JM,Q

1,2 and KM
1 are indicated along the corresponding

bond, where the superscripts are omitted in the figure. The primi-
tive translation vectors a1 and a2 are indicated by arrows, and the
bond angle θi j relative to the x axis is also defined. (c) Eigen-
values of the exchange interactions for (JM

1 , JM
2 , JQ

1 , JQ
2 , KM

1 ) =
(0, 11, 1.5, −3.33, −1.5) K along the high-symmetry lines shown
in the inset. J‖

p (J⊥
p ) is the eigenvalue of the exchange ĴM

p . JQ
p is

that for the quadrupoles and degenerate owing to the isotropic na-
ture of the exchange coupling constants. (d) Eigenvectors at p = kn

(n = 1, 2, 3) are parallel (perpendicular) to the wave vector p for J‖
p

(J⊥
p ).

B. Exchange interactions

Here we consider minimal intersite exchange interactions
between M = (Jx, Jy)T and Q = (O22,−Oxy)T in the triangu-
lar plane, implicitly assuming ferroic configuration along the
z axis. The interplane couplings do not play a major role in the
phase transition in UNi4B, and we neglect them for simplicity.
We note that the most important term to realize the planar
magnetic orders at the ordering vectors kn (n = 1, 2, 3) in
UNi4B is not the nearest-neighbor magnetic coupling JM

1 but
the next-nearest one JM

2 . Magnetic interactions between the
further neighbor sites do not play an important role in the dis-
cussion of the magnetic order in UNi4B. They can be regarded
as renormalization of JM

1,2 in the expression of the magnetic
susceptibility at the ordering vector kn. The importance of JM

2
is evident because JM

1 causes the 120◦ order for JM
1 > 0 or a

trivial ferromagnetic one for JM
1 < 0, but they are not realized

in UNi4B. This is also consistent with the Néel and the Curie-
Weiss temperatures as discussed in Sec. II C. We also take into
account simple isotropic quadrupole interactions JQ

1 and JQ
2

between the nearest-neighbor and the second-neighbor sites,
respectively. These four couplings consist of the main part in
our minimal model for UNi4B in this paper, and the exchange
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Hamiltonian reads as

Hint =
∑

X=M,Q

∑
n=1,2

JX
n

∑
(i, j)n

X i · X j + Hani. (4)

Here, (i, j)1(2) represents the summations for the nearest-
neighbor (next-nearest-neighbor) pairs. See also Fig. 2(b).
Here the last term in Hani is introduced in order to make the
magnetic moment at kn parallel or perpendicular to kn and
given by the nearest-neighbor anisotropic coupling:

Hani = KM
1

∑
(i, j)1

(
Mn

i jM
n
ji − Mt

i jM
t
ji

)
, (5)

where Mn
i j = M i · ni j and Mt

i j = Mi · t i j are the projections to
the bond-parallel and the bond-perpendicular directions with
ni j = (cos θi j, sin θi j )T, and t i j = (− sin θi j, cos θi j )T, respec-
tively, where θi j is the angle for the i- j bonds as shown in
Fig. 2(b). This term does not play a major role in deter-
mining the phase transition but mainly controls the magnetic
configurations. Although there might be many other coupling
constants in the real UNi4B, the model above is the simplest
in the following senses. First, this consists of the shortest
magnetic interactions which lead to the magnetic orders at
kn with the moment direction perpendicular to kn. Second,
this consists of the simplest quadrupole interactions within the
same range as those in the magnetic sector. Terms not present
in Eq. (4) can affect the results in this paper quantitatively, but
deriving the exact interaction Hamiltonian is beyond the scope
of this paper.

We now consider the eigenmodes of the interactions ma-
trices ĴM

p and ĴQ
p in the Fourier space. By straightforward

calculations, we obtain

Hint =
∑

p

[
M−p · (ĴM

p M p
)+ Q−p · (ĴQ

p Qp

)]
, (6)

ĴX
p =

(
J

X,A1g
p + J

X,E2g,22
p J

X,E2g,xy
p

J
X,E2g,xy
p J

X,A1g
p − J

X,E2g,22
p

)
, (7)

where X = M or Q. See the detailed profile of ĴX
p shown in

Appendix A. The form (7) is common to any two-dimensional
irreducible representations in D6h point group.

Figure 2(c) shows the eigenvalues of ĴX
p for a typical pa-

rameter set along the high-symmetry lines shown in the inset.
Let us concentrate on the magnetic part. The two eigenvalues
of ĴM

p are degenerate at the � and the K points due to the
presence of the C3 rotational symmetry at these points. Thus,
the interactions there are isotropic, and the eigenvectors are
arbitrary. In contrast, ĴM

p at p = k1,2,3 has two distinct eigen-

values J‖
p and J⊥

p . The eigenvectors at p = k1,2,3 are locked
by the direction of p. One is parallel to kn, while the other is
perpendicular:

vn‖ =
(− sin ωn

cos ωn

)
, vn⊥ =

(
cos ωn

sin ωn

)
, with ωn = 2nπ

3
.

(8)

As we mentioned before, the anisotropic coupling KM
1 con-

trols the direction of the magnetic moment at p = kn. The
eigenmode for the smaller eigenvalue is vn‖ (vn⊥) for KM

1 > 0
(<0). Table I summarizes the eigenvalues and eigenvectors at

TABLE I. Eigenvalues and eigenvectors of ĴM
p . The exchange

parameters JM
i (KM

i ) are the ith -neighbor isotropic (anisotropic)
interactions for the magnetic dipole moments. The eigenvectors at kn

depend on the sign of KM
1 , while those at k0 and kK can be any linear

combinations of the two degenerate eigenmodes. We thus denote
“deg.” (degenerate) for k0 and kK. Note that this list is applicable
also to the quadrupole exchange interactions by JM

n → JQ
n , etc.

Eigenvectors

p Eigenvalues KM
1 < 0 KM

1 > 0

k� 6(JM
1 + JM

2 ) deg. deg.

kK −3(JM
1 − 2JM

2 ) deg. deg.

kn −3JM
2 + 3|KM

1 | vn‖ vn⊥
−3JM

2 − 3|KM
1 | vn⊥ vn‖

p = k� , kK, and kn. The eigenvectors along the M-K line are
locked by the directions of the nearest k1,2,3, not p itself, due
to the mirror symmetry.

C. Parameters

Before discussing the properties of the model [Eq. (4)], we
introduce constraints on the model parameters E4, JM,Q

1,2 , KM
1

appropriate to UNi4B.
First, the CEF excitation energy E4 is set to E4 = 20 K as

proposed in Ref. [83]. We will use this value of E4 throughout
this study. We note that the ordering wave vectors in UNi4B
are kn (n = 1, 2, 3), which are not at the high-symmetry
points. We do not discuss the reason why the ordering vector
is at k1,2,3 in detail here. We use this fact as a starting point
of our analysis. A possible origin for this will be discussed
in Sec. IV, where we analyze the realistic crystal structure
of UNi4B. Within our model, the eigenvalues J⊥,‖

k1,2,3
are not

exactly at the extremum. Thus, the magnetic orders at p = kn

are considered to be realized by some commensurate locking.
The physical origin for this is the realistic crystal structure
of UNi4B, as we mentioned above. Nevertheless, the J⊥,‖

k1,2,3

must be minimum among the values listed in Table I. These
conditions lead to the conclusion that JM

1 is smaller than JM
2

in its magnitude, contrary to the naive expectation concerning
their distance. We consider this is not unphysical since this
is indeed supported also by the following constraints (9) and
(10), which arise from the Néel and the Curie-Weiss tempera-
tures observed in the experiments [79].

Next, we discuss the constraints arising from the observed
Néel temperature TN = 20 K and Curie-Weiss temperatures
θM

CW = −65 K estimated in the magnetic susceptibility mea-
surement [79], and θ

Q
CW = 11 K in the ultrasonic experiment

[83]. In the mean-field approximations, the above three scales
are related to the exchange interactions in the corresponding
sectors:

−JM
k1,2,3

= 3
(
JM

2 + |KM
1 |) ∼ 1.87×TN = 37.5 K, (9)

−JM
� = −6

(
JM

1 + JM
2

) ∼ θM
CW = −65 K, (10)

−JQ
� = −6

(
JQ

1 + JQ
2

) ∼ θ
Q
CW = 11 K. (11)
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The numerical factor 1.87 in Eq. (9) is introduced so that the
magnetic transition temperature in the mean-field approxima-
tion is ∼20 K.

Finally, we discuss the anisotropic interactions. The neu-
tron scattering experiments [79] suggest that the ordered
magnetic moment is perpendicular to the ordering wave vector
p, which means KM

1 < 0 in our model. Under these con-
straints, two parameters remain undetermined, and we take JM

1

and JQ
1 as the control parameters. In the actual microscopic

calculations in Sec. III, it suffices that one only considers
the small JM

1 limit, and the results exhibiting the magnetic
orders at kn can be understood by analyzing the JM

1 → 0 limit.
Thus, although the model itself contains several parameters,
the practical parameter is indeed only JQ

1 , and this controls
the effect of the quadrupole moments on the magnetic order
as discussed in Sec. II D 3.

D. Coupling between dipole and quadrupole
moments and Landau theory

In this section, we will discuss Landau free energy for this
system. The analysis here is important to understand the mi-
croscopic mean-field results in Sec. III. We will demonstrate
that third-order couplings between the magnetic dipole M and
quadrupole moments Q are the key to the stability of magnetic
orderings. We will show that each magnetic order favors a
specific third-order coupling consisting of fields at p = k� ,
kK, and kn.

1. Single-site Landau free energy

Let us start by discussing the coupling between the
dipoles and the quadrupoles. We define mean fields act-
ing on the magnetic dipoles M and the quadrupoles Q, as
h = (hx, hy)T and h̃ = (h̃22,−h̃xy)T, respectively. In polar co-
ordinates h = h(cos θ, sin θ )T and h̃ = h̃(cos φ, sin φ)T, the
single-site mean-field Hamiltonian is given in the basis of
(|�5+〉 , eiφ |�5−〉 , eiθ |�4〉)T as

HMF =
⎛
⎝0 h̃ h

h̃ 0 hei(2θ+φ)

h he−i(2θ+φ) E4

⎞
⎠. (12)

Here, the field-direction anisotropy arises in the form of
2θ + φ. In the absence of the quadrupole interaction (h̃ = 0),
φ is an arbitrary phase factor in the definition of |�5−〉, and
one can set φ = −2θ . Thus, the eigenvalues of HMF are in-
dependent on θ , and the magnetic anisotropy vanishes. In the
presence of quadrupole interactions (h̃ = 0), the eigenvalues
of HMF depend on 2θ + φ. This indicates that the configura-
tion of Q strongly affects that of M. Note that this effect is
important even when the primary order parameters are not Q
but magnetic dipole moments M. In the following, we will
show that multiple-Q magnetic structures can be stabilized by
this coupling.

To investigate the dipole-quadrupole coupling in more de-
tail, we perform Landau expansion and obtain the effective
free energy. To avoid confusion between classical variables
and quantum operators, we will use “m” and “q” instead
of “M” and “Q” as the classical dipole and the quadrupole
fields, respectively. First, there are trivial “φ4” terms in the

free energy per site F loc
24 = F loc

2m + F loc
4m in the magnetic dipole

sector as

F loc
2m = a

2N

∑
r

∑
μ

mμ(r)mμ(r), (13)

F loc
4m = b

4N

∑
r

⎡
⎣∑

μ

mμ(r)mμ(r)

⎤
⎦

2

, (14)

where N is the number of the sites in the triangular lattice.
Here, we have introduced the dipole field at the real space po-
sition r: mμ(r) (μ = x, y), which corresponds to M in Eqs. (4)
and (5). We have ignored the intersite effects in the fourth-
order terms since they are in general irrelevant in the sense
of renormalization group. The third-order term per site in the
free energy arising from the single-site CEF potential is

F loc
3 = − c

3N

∑
r

{[
m2

x (r) − m2
y (r)
]
q22(r)

+ 2mx(r)my(r)qxy(r)
}
, (15)

where qν (r) (ν = 22, xy) is the quadrupole field, and q22 (qxy)
corresponds to O22 (Oxy). See Appendix B for the expression
of the coefficient c > 0 and the detail of the derivation. In the
polar coordinate,

m(r) =
[

mx(r)
my(r)

]
= m(r)

[
cos θ (r)
sin θ (r)

]
, (16)

q(r) =
[

q22(r)
−qxy(r)

]
= q(r)

[
cos φ(r)
sin φ(r)

]
, (17)

F loc
3 reads as

F loc
3 = − c

3N

∑
r

m2(r)q(r) cos[2θ (r) + φ(r)]. (18)

The anisotropy arises in the form of 2θ (r) + φ(r) as expected
from the mean-field Hamiltonian (12).

2. Landau free energy in momentum space

Let us introduce Fourier transforms mμ
p defined as

mμ(r) =
∑

p

mμ
p eip·r, mμ

p = 1

N

∑
r

mμ(r)e−ip·r, (19)

and similar ones for qν
p. Since they are real in the real space,

(mμ
p )∗ = mμ

p̄ and (qν
p)∗ = qν

p̄ with p̄ ≡ −p. In the momentum-
space representation, F loc

3 reads as

F loc
3 = − c

3

∑
G

∑
p,p′,p′′

f3(p, p′, p′′)δp+p′+p′′,G, (20)

where G is the reciprocal lattice vectors. f3 decomposes into
several terms reflecting different physical processes. Here, we
are interested in those processes including the magnetic dipole
fields at p = k1,2,3 since they correspond to the primary order
parameters in this study. For later purpose, it is useful to
introduce a simplified notation and the polar coordinate for
p = kn (n = 1, 2, 3) such that

mn ≡
(

mx
n

my
n

)
= mneiδn

(
cos ωn

sin ωn

)
with ωn = 2nπ

3
. (21)
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We have introduced a common phase factor eiδn for both x
and y components with 0 < δn � 2π and mn � 0. ωn is the
angle variable corresponding to the eigenvector vn⊥ [Eq. (8)].
This choice of the mode is sufficient for our discussion below
since mp for p = k1,2,3 is the primary order parameter and
the anisotropic interactions determine the unique eigenvector
with the lower energy: v⊥ for KM

1,3 < 0 (see Table I). For
p = −k1,2,3, mn̄ = mne−iδn (cos ωn, sin ωn)T.

In the following, we will write the third-order couplings
consisting of mn and those coupled with them. For notational
simplicity, we use the abbreviations in such a way that the
wave vector p is represented by a subscript γ and the fields are
expressed as mμ

γ and qν
γ . Here, γ = 1, 2, 3, 1̄, 2̄, 3̄, K, K′, and

0 indicate k1,2,3, −k1,2,3, kK, −kK, and k0, respectively. For
the quadrupole fields, qν

k1,2,3
= qν

1,2,3, qν
k0

= qν
0, and qν

kK
= qν

K.
There are four relevant processes in f3(p, p′, p′′) including

the primary order parameters mμ
1,2,3 as

f3(p, p′, p′′) = f3,123 + f3,K + f3,� + f3,111 + · · · . (22)

By introducing “quadrupole” consisting of mμ
γ , M22

γ γ ′ ≡
mx

γ mx
γ ′ − my

γ my
γ ′ and Mxy

γ γ ′ ≡ mx
γ my

γ ′ + my
γ mx

γ ′ , the four terms
in Eq. (22) are given as

f3,123 = 2
(
M22

12q22
3 + Mxy

12qxy
3 + c.c.

)+ c.p., (23)

f3,K = 2
(
M22

13̄q22
K + Mxy

13̄
qxy

K + c.c.
)+ c.p., (24)

f3,� = 2
(
M22

11̄q22
0 + Mxy

11̄
qxy

0

)+ c.p., (25)

f3,111 = (M22
11q22

1 + Mxy
11qxy

1 + c.c.
)+ c.p. (26)

The abrreviation “c.p.” means cyclic permutations 123 → 231
and 312. Equations (23)–(26) represent mode-mode coupling
processes among the primary dipole moments m1,2,3 and the
quadrupole moments at k1,2,3, kK, and k� with the quasimo-
mentum conservation.

Now, we derive the fourth-order renormalization by inte-
grating out all the quadrupole fields. This can be done by
taking into account the quadratic terms for the quadrupole
fields qγ ≡ (q22

γ ,−qxy
γ )T,

F Q
2 = 1

2

∑
p

∑
νν ′

qν
−paQ

pνν ′qν ′
p . (27)

The important terms in Eq. (27) are those for p = k1,2,3, kK,
and k� since they are coupled with mn in Eq. (20). They are
not primary order parameter and thus gapped. This allows us
to regard aQ

pνν ′ as a diagonal matrix depending on p in the
zeroth-order approximation. This means one can approximate
F Q

2 as

F Q
2 � 1

2
aQ

0 |q0|2 + aQ
∑

n=1,2,3

|qn|2 + aQ
K|qK|2 + · · · , (28)

with aQ
0 , aQ, aQ

K > 0.
By minimizing F Q

2 + F loc
3 in terms of q0, q1,2,3, and qK,

with keeping Eqs. (23)–(26) and (28), and then substituting
the stationary values qγ = q̄γ into F Q

2 + F loc
3 , the following

fourth-order terms appear:

δF4m = −
{

4c2

9aQ

[
m4

3

4
+ m2

1m2
2 + m1m2m2

3 cos (δ23 − δ31)

]

+ 4c2

9aQ
K

[
m2

1m2
2 − m1m2m2

3 cos(δ23 − δ31)
]

+ 2c2

9aQ
0

[
m4

3 − m2
1m2

2

]}+ c.p. (29)

Here, we have introduced δi j ≡ δi − δ j , and the stationary
values q̄γ are

q̄0 = c

3aQ
0

(
2m2

3 − m2
1 − m2

2√
3
(
m2

1 − m2
2

)
)

, (30)

q̄K = c

3aQ
K

(
2eiδ12 m1m2 − eiδ23 m2m3 − eiδ31 m3m1√

3(eiδ23 m2m3 − eiδ31 m3m1)

)
, (31)

q̄1 = c

3aQ

[
2e−i(δ2+δ3 )m2m3 + e−i2δ1 m2

1

](− 1
2√
3

2

)
, (32)

q̄2 = c

3aQ

[
2e−i(δ3+δ1 )m3m1 + e−i2δ2 m2

2

]( − 1
2

−
√

3
2

)
, (33)

q̄3 = c

3aQ

[
2e−i(δ1+δ2 )m1m2 + e−i2δ3 m2

3

](1
0

)
. (34)

Note that the stationary directions of qn are q̄n ‖ mn ‖ vn⊥ for
n = 1, 2, 3. See Eq. (8) for the definition of v1,2,3⊥.

3. Stability of triple-Q states

We now discuss the effective free energy for the primary
order parameters mn (n = 1, 2, 3). The Fourier transform of
F loc

2,4m [Eqs. (13) and (14)] consisting of mn are given by

F loc
2m =

∑
n=1,2,3

amm2
n + · · · , (35)

F loc
4m = b

4

∑
p1,p2,p3,G

∑
μ,μ′

mμ
p1

mμ
p2

mμ′
p3

mμ′
G−p1−p2−p3

(36)

= 3b

2

(
m2

1 + m2
2 + m2

3

)2 + · · · , (37)

where am ≡ a + J⊥
kn

with J⊥
kn

being n independent and the el-
lipsis indicates terms including no mn. For T ∼ TN, the modes
with smaller F loc

4m + δF4m realize.
First, we calculate the free energy for a single-Q state.

Let us set the ordering wave vector to p = k3 and define
m ≡ √

2m3. The free energy reads as

F single = 1

2
amm2 + 1

4

[
3b

2
− c2

9

(
2

aQ
0

+ 1

aQ

)]
m4. (38)

From Eqs. (30)–(34), the induced quadrupoles are

q̄0 = cm2

3aQ
0

(
1
0

)
, q̄K,1,2 =

(
0
0

)
, q̄3 = cm2

6aQ

(
e−i2δ3

0

)
,

(39)

where the phase factor δ3 is arbitrary.
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Next, we examine triple-Q states. To capture essential
points in the microscopic mean-field results shown in Sec. III,
we concentrate on symmetric triple-Q states with m1 = m2 =
m3. These triple-Q states possess the C3 rotational symmetry
along the c axis. We find two such solutions. See Appendix C
for the detail of the derivations. For aQ < aQ

K, δ1,2,3 = δ where
δ is arbitrary and the free energy is given as

F triple-(1) = 1

2
amm2 + 1

4

[
3b

2
− c2

3aQ

]
m4, (40)

where m1,2,3 = m/
√

6 has been used. These triple-Q config-
urations include the toroidal order shown in Fig. 1(a), which
realizes for δ = π/2. As for the induced quadrupole moments,
we obtain

q̄0,K =
(

0
0

)
, q̄n = cm2

6aQ
e−i2δ

(
cos ωn

sin ωn

)
, (41)

with n = 1, 2, 3.
For aQ > aQ

K, triple-Q states with (δ1, δ2, δ3) = (δ, δ, δ ±
2π/3) and the equivalent permutations for {123} are realized,
where δ is arbitrary. See the discussion in Appendix D. The
free energy is given as

F triple-(2) = 1

2
amm2 + 1

4

[
3b

2
− c2

9

(
2

aQ
K

+ 1

aQ

)]
m4. (42)

Again, m1,2,3 = m/
√

6 has been introduced. The induced
quadrupole moments are

q̄0 =
(

0
0

)
, q̄K = cm2

6aQ
K

(
1
∓i

)
, (43)

q̄1(2) = ∓i
cm2e−i2δ

√
3aQ

v1(2)⊥, q̄3 = e±iπ/6 cm2e−i2δ

√
3aQ

v3⊥.

(44)

For the other domains, one can derive the expressions from
Eqs. (30)–(34). These triple-Q orders include the triforce or-
der shown in Fig. 1(b), which is realized for δ = 0.

Now, let us compare the three free energies (38), (40), and
(42), which are all conventional φ4 type. Interestingly, the
value of the local fourth-order term is the same and given by
3bm4/8. Thus, the lowest free-energy solution is determined
solely by the the magnitude of the fourth-order term in m that
arises from the third-order m-q coupling in Eqs. (38), (40), and
(42), as long as we consider the solution near the second-order
transition temperature at am = 0.

We show which state among the three realizes at the tran-
sition temperature TN as functions of aQ and aQ

K in Fig. 3. It is
easy to derive the phase boundaries from Eqs. (38), (40), and
(42): the single-Q–triple-Q(1) phase boundary along aQ

0 =
aQ, the single-Q–triple-Q(2) phase boundary along aQ

0 = aQ
K,

and that between the two triple-Q along aQ = aQ
K. These

results show that the quadrupole interactions determine the
magnetic structure at least near the second-order transition.
We will numerically examine these aspects in Sec. III. We
emphasize that the discussion in this section relies only on
the phenomenological Landau free energy for mn, without
assuming the microscopic exchange parameters ĴM

p and ĴQ
p .

FIG. 3. Stable phases for T � TN as functions of aQ and aQ
K.

When microscopic parameters vary, aQ
0 changes in addition to the

changes in aQ and aQ
K.

III. RESULTS

In this section, we will show the results of microscopic
mean-field calculations. We minimize the free energy numer-
ically, assuming 6×6 sites parallelogram magnetic unit cell in
a triangular lattice. First, we will show the phase diagram in
temperature T and the interaction JQ

1 plane in Sec. III A. Then,
in Sec. III B, the nature of each ordered state is explained.

A. T -JQ
1 phase diagram

We have discussed in Sec. II D 3 that the third-order
couplings between the magnetic dipole and the electric
quadrupole moments play important roles in determining the
stability of magnetic orderings. The magnetic moments at
k1,2,3 couple to the quadrupole moments at k1,2,3, kK, and k� ,
via the third-order coupling (22). In our setup described in
Sec. II C, there are two free parameters. Let us examine the
cases for fixed JM

1 and vary JQ
1 with keeping the constraints

(9)–(11). The variations in JQ
1 can control the effects of the

quadrupole moments on the magnetic orders. We will examine
such effects arising from JQ

1 on the phase diagrams in the
following.

To make our presentation simple, let us concentrate on the
case with a simple parameter set. Namely, we set JM

1 = 0 since
JM

1 is not relevant to the appearance of the magnetic orders
at p = kn. This simplification does not alter the qualitative
aspects that will be shown in this section. The cases for finite
JM

1 and for other parameter sets without the experimental con-
straints are discussed in Appendix E. Figure 4 shows the T -JQ

1
phase diagram for JM

1 = 0 under the constraints (11). The
ordered patterns of each phase and the unit cell smaller than
nine sites (blue frame) are illustrated. Note that the minimum
eigenvalue of ĴQ

p , JQ
p , is at the K point for JQ

1 > 0, at the
� point for 11/2 < JQ

1 < 0, and at k1,2,3 for JQ
1 < −11/2 in

the unit of Kelvin. The horizontal phase boundaries between
triforce ↔ single-Q and single-Q ↔ toroidal phases at high
temperatures ∼20 K correspond to the critical JQ

1 at which the
positions of the minimum in JQ

p change. The detail of each
phase will be explained in Sec. III B.
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FIG. 4. T -JQ
1 phase diagram for JM

1 = 0 and JM
2 = 11 K with

constraints (9)–(11). The phase boundaries drawn by the filled circles
represent second-order transitions, while the open circles mean first-
order ones. The wave vectors at which JQ

p has minima in each region
are indicated on the right. For each phase, schematic configurations
of magnetic dipole and electric quadrupole moments are illustrated.
The quadrupole moments at the sites with finite dipole moments are
not shown for simplicity. The blue triangular (rectangular) frame
indicates the ordered unit cell for the single-Q (AFQ 120◦) state.
For the others, the unit cell is 3×3.

The “triforce” phase [Fig. 1(b)] is named after its magnetic
structure [86] and is stable in a wide region of JQ

1 > 0. As
shown in Fig. 4, the magnetic unit cell of the triforce order
consists of six noncollinearly ordered magnetic sites and three
quadrupole ordered ones. We will discuss the detail of this
phase in Sec. III B 1. When JQ

1 is larger, a quadrupole order is
realized, which is labeled by AFQ 120◦, the three-sublattice
(A,B,C) 120◦ structure of quadrupole moments: the angles
of the sublattice quadrupole moments [Eq. (17)] are φA = 0,
φB = 2π/3, and φC = 4π/3. Such 120◦ structure in triangular
lattice systems is known to be stable for large antiferroic
nearest-neighbor interactions [87,88]. The detail of AFQ 120◦
phase will be discussed in Sec. III B 4.

When −11/2 < JQ
1 < 0, a single-Q phase is favored.

Similar to the triforce phase, two-thirds of the sites are mag-
netically ordered, while there are finite quadrupole moments
at the other one-third. However, three differences from the
triforce phase exist. First, the unit cell for the single-Q order
contains three sites, while that for the triforce phase does
nine sites. Second, the magnetic moments order collinearly,
while those for the triforce phase are noncollinear. Third, the
quadrupole moments have large ferroic components. The third
point is the reason why this phase is favored when JQ

p has a
minimum at the � point.

For JQ
1 < −11/2, a toroidal order is realized. Similar to

the triforce phase, the magnetic unit cell consists of six non-
collinearly ordered magnetic sites and three disordered sites.
Interestingly, the pure toroidal phase is unstable and replaced
by another magnetically ordered phase without magnetically
disordered sites at low temperatures. This is in stark contrast
to the cases for the larger JQ

1 , where the triforce and single-Q
phases are stable even at zero temperature.

In the triforce, the single-Q, and the toroidal phases, one-
third of the whole lattice sites are magnetically disordered.
When considering the stability against lowering T , the for-
mer two are stable, while the toroidal phase is unstable. In
the triforce and the single-Q phases, the quadrupole mo-
ments order at the magnetically disordered sites. Thus, the
two phases can be stable down to zero temperature, at least
from the point of view of the entropy. In the toroidal phase,
however, the disordered sites are “truly” disordered without
any ordered moments. The local entropy at the disordered
sites must be released by, e.g., another phase transition. Al-
though the second transition can be any orderings lifting the
degeneracy at the disordered sites, magnetic orders are quite
natural since the magnetic interaction between the disordered
sites (JM

2 = 11 K) is larger than that of quadrupolar one
(JQ

2 ∼ 4 K). Indeed, several AFM orders at the disordered
sites take place for JQ

1 < 0, as shown in Fig. 4. Note that tak-
ing the large JM

2 is the most direct and natural way to realize
the ordering vector at k1,2,3. In this sense, the toroidal order
tends to be unstable since the bonds connected by JM

2 contain
the disordered sites. In contrast, the triforce and single-Q
phases can be stable since the magnetic interactions between
magnetically disordered sites are JM

1 and KM
1 , which are not

necessarily large for the ordering vector at k1,2,3 realized.
For sufficiently large JM

1 > 0, a magnetic 120◦ structure is
realized as expected. However, we note that as far as the
ordering wave vectors are at the kn, the three phases appearing
in the phase diagram for JM

1 = 0 are stable. The condition
for realizing the magnetic 120◦ structure is JM

1 > 3JM
2 + |KM

1 |
when one assumes the transition is continuous. In addition, a
stripe order with p = g1/2 or the equivalent M points appears
for (JM

2 − |KM
1 |)/2 < JM

1 < 3JM
2 + |KM

1 |. The detail of the JM
1

dependence is discussed in Appendix E 1.

B. Properties of ordered phases

In this section, we will discuss the detail of the ordered
phases appearing in the phase diagram shown in Fig. 4. We
will start by analyzing the triforce phase since this phase
has many properties consistent with the experimental data,
as will be discussed in the following and also in Sec. IV.
Throughout this section, we will use M as the expectation
value for the magnetic dipole moments and Q for the electric
quadrupole moment to distinguish the quantities calculated
in the microscopic mean-field calculations and the Landau
theory in Sec. II D, where we have used m and q.

1. Triforce order

First, we explain the magnetic and the quadrupole structure
of the triforce order. The magnetic moment M(r) and the
quadrupole one Q(r) at the position r in the triforce order are
given by

M(r) =
∑

n=1,2,3

Mn cos(kn · r + δn), (45)

Q(r) =
∑

n=1,2,3

Qn cos(kn · r + δ′
n)

+ Q′
K cos(kK · r) + Q′′

K sin(kK · r), (46)
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FIG. 5. Cluster multipole decomposition of (a) magnetic dipole
moments and (b) electric quadrupole moments for the triforce order.
The moments at the vertices of the dotted triangles are virtual ones
introduced in the cluster construction [59].

where δ ≡ {δ1, δ2, δ3} = {0, 0, 2π/3} and δ′ = {−π/2,

−π/2, π/6}. These phase factors are consistent with
the result in Sec. II D 3. The arbitrary phase factor δ in
δ = {δ, δ, δ + 2π/3} defined above Eq. (42) is now fixed to
δ = 0. See Appendixes C 2 and D. Here, Mn = Mvn⊥ and
Qn = Qvn⊥ are perpendicular to kn (n = 1, 2, 3). See Eq. (8)
for the definition of v1,2,3⊥. Note that we take a convention
that M and Q can take negative values in order to allow π

rotation of Mn and Qn. Indeed, the sign of Q changes as
varying temperature, as will be discussed later and shown in
Figs. 6(a) and 7. Q(r) includes the components at k = kK,
Q′

K = (QK, 0)T, and Q′′
K = (0,−QK )T. The Fourier modes

M1,2,3 are exactly the same as those in the toroidal order
[Eq. (51)]. The difference lies only on the phase factors; for
the toroidal order δ1,2,3 = π/2 [see Eq. (51)].

As illustrated in Fig. 4, the unit cell consists of an inverted
triangle formed by the three nearest-neighbor sites, a larger
triangle formed by the three third-nearest-neighbor sites, and
a nearest-neighbor inverted triangle by the quadrupolar order.
Within each triangle, the magnetic or quadrupole moments
form the 120◦ structure. We call it “triforce” order, named
after the arrangement of the magnetic moments in the unit cell
[86].

Next, we consider the symmetry of the triforce phase. To
this end, we use the cluster multipole decomposition, which
is useful for the description of the global symmetry in a given
ordered state [59]. We can choose the cluster center at a C3

rotational symmetric point, which is the highest symmetry
point. There are two types of such C3 symmetric points: the
center of the nearest-neighbor magnetic triangle or that of
the quadrupole triangle, and the choice does not affect the
result for macroscopic symmetry. Figure 5 shows the cluster
multipole decomposition of (a) the magnetic moments and (b)
the quadrupole moments in the triforce phase. In Fig. 5(b),
the only quadrupole moments on the magnetically disordered
sites are shown for simplicity. Note that there are finite
quadrupole moments also at the magnetically ordered sites.

FIG. 6. T dependence of the order parameters and the ther-
modynamic quantities. The interaction parameters are (JM

1 , JM
2 , JQ

1 ,

JQ
2 , KM

1 ) = (0, 11, 0.15, −1.98, −1.5) K. (a) Order parameters
M1,2,3 and Q1,2,3,K in the p space, and (b) those in the real space. The
magnetic moments are finite only at 2N/3 sites with the same mag-
nitudes and are denoted by M2/3. At these 2N/3 sites, the magnitudes
of the quadrupole moments are also uniform and denoted by Q2/3.
For the remaining N/3 sites, which are magnetically disordered,
the magnitude of the quadrupole moments is uniform and labeled
as Q1/3. (c) T derivative of the order parameters in the real space
dM2/3/dT and dQ2/3,1/3/dT . (d) Magnetic (quadrupole) susceptibil-
ities χM (χQ) and specific heat C divided by T , C/T .

The configuration of the magnetic moments is decomposed
into A−

2u magnetic toroidal dipole and B−
1g magnetic octupole

moments in the D6h symmetry. Here, the superscript “±”
in the irreducible representations (irreps) describes the time-
reversal parity, and the subscripts “g” and “u” for the spatial
inversion parity as in the standard notation. The configuration
of the quadrupole moments consists of A+

1g electric monopole
and B+

2u electric octupole. They can be interpreted as induced
moments: (A−

2u)2, (B−
1g)2 = A+

1g, and A−
2u ⊗ B−

1g = B+
2u. These

moments are important when we discuss the experimental
data in Sec. IV. Note that the cluster multipole decomposition
contains both even- and odd-parity components. This is be-
cause Eqs. (45) and (46) have both cos(kn · r) and sin(kn · r)
parts irrespective of any choices of the origin taken.

We now discuss the temperature dependence of the order
parameters and several thermodynamic quantities in the tri-
force phase. Figures 6(a)–6(c) show temperature dependence
of the order parameters for JQ

1 = 0.15 K and the other param-
eters are the same as in Fig. 4. The amplitudes of the order
parameters Mn ≡ |Mn| in the p space are shown in Fig. 6(a).
There is a single second-order transition at TN ∼ 20 K.
The magnetic dipole moments M1,2,3 = M at p = k1,2,3 are
the primary order parameters, which are proportional to
(TN − T )1/2 below TN, while the quadrupoles QK at the K
point and Q1,2,3 = |Q| at p = k1,2,3 are induced as the sec-
ondary order parameters, which are proportional to TN − T
below TN. These T dependencies are the conventional
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FIG. 7. Schematic profile of the quadrupole moments in the tri-
force phase. (a) K point component QK, which corresponds to the
120◦ structure of quadrupole moments and (b) k1,2,3 component
Q1,2,3. (c) Quadrupole configurations near the transition temperature
TN and (d) those at T = 0 K.

mean-field type and consistent with the Landau analysis in
Sec. II D. The primary dipole and the induced quadrupole
moments at the K point increase monotonically as lowering
T . In contrast, the quadrupole Q1,2,3 changes its sign at ap-
proximately ∼10 K as shown in Fig. 6(a).

The reason for the sign change in Q1,2,3 can be understood
by illustrating the quadrupole moments for p = kK and k1,2,3

separately in the real space. Figures 7(a) and 7(b) show the
schematic configuration of each contribution. In the triforce
phase, QK and Q1,2,3 contribute cooperatively at the six of nine
sites (the larger triangle), while interference destructively at
the three of nine sites (the smaller triangle). Thus, the magni-
tudes of the quadrupole moments differ in the two groups. At
high temperature, two-thirds are larger, as shown in Fig. 7(c),
since the quadrupole moments are directly induced by the
onsite magnetic moments. In contrast, at low temperature, the
quadrupoles at one-third of the sites become larger, as shown
in Fig. 7(d), since their amplitudes should be their eigenvalues
in the ground state at the nonmagnetic sites. In other words,
this comes from a constraint of vanishing entropy at T = 0.

Figure 6(b) shows the magnitudes of the order parame-
ters in the real space. We denote |M(r)| and |Q(r)| at the
magnetically ordered sites by M2/3 and Q2/3 in Fig. 6(b),
respectively. They increase as T decreases in accord with the
usual mean-field behavior. In contrast, |Q(r)| at the remaining
one-third of the sites (≡ Q1/3) shows unusual behavior with
slightly convex downward T dependence in the intermediate
temperature region. There, −dQ1/3/dT has a peak at ∼7 K
[Fig. 6(c)]. This characteristic temperature dependence of the
order parameter affects various physical quantities [Fig. 6(d)].
The uniform quadrupole susceptibility χQ and the specific-
heat coefficient C/T have a shoulder at ∼5 K, which reflect
that the quadrupole moments at the nonmagnetic sites begin
to freeze at around 5 K.

To close this subsubsection, we discuss the susceptibilities
shown in Fig. 6(d). We note that the magnetic susceptibility
increases even below TN since the magnetically disordered
sites remain. The isotropy in the susceptibility reflects the
presence of the C3 rotational symmetry in the triforce phase.
The quadrupole susceptibility increases at low temperatures,
which reflects the fact that the quadrupole moments are not
frozen at one-third of the sites. Interestingly, the quadrupole
susceptibility is discontinuous at TN. This is a general mean-
field nature of susceptibility of the secondary order parameters
q [89,90]. Let us consider a minimal Ising-type Landau free
energy with m and q,

F = α

2
m2 + β

4
m4 − (h̃ + γ m2)q + δ

2
q2, (47)

where h̃ is the field that couples with q. Here, α, β>0, γ>0,
and δ > 0 are coefficients. By minimizing F in terms of q and
m, we have

q = h̃

δ
− γ α̃

δβ̃
θ (−α̃), (48)

where θ (−α̃) is the step function, α̃ = α − 2γ h̃/δ, and β̃ =
β − 2γ 2/δ. One can easily find that q is continuous but χQ ≡
∂q/∂ h̃ is discontinuous at the transition point α̃ = 0 even for
h̃ → 0. The explicit form is given by

χQ =
{

1
δ

(α > 0),
β

δβ̃
(α < 0).

(49)

Replace q by Q0 and α by T − TN for the triforce order. The
discontinuity in χQ at TN is common to the other phases,
although we will not show them in this study.

2. Toroidal order

Historically, the toroidal order has been considered to be
realized in UNi4B [77,79]. The toroidal order breaks the inver-
sion symmetry and, thus, the order parameter is classified in
the odd-parity cluster multipoles [65]. In our model based on
the CEF scheme proposed in Ref. [83], it appears as the high-
temperature phase for JQ

1 < 0 in the phase diagram (Fig. 4).
Let us first discuss the structure of the toroidal order. The pure
toroidal structure at high temperatures is shown in Fig. 1(a)
and represented as

M(r) =
∑

n=1,2,3

Mn sin(kn · r), (50)

Q(r) = −
∑

n=1,2,3

Qn cos(kn · r), (51)

where Mn = Mvn⊥ and Qn = Qvn⊥, as predicted in Eq. (41).
As mentioned in Sec. III B 1, Mn are exactly the same as
those in the triforce phase. We note that the phase factors
δn in M(r) =∑n=1,2,3 Mn cos(kn · r + δn) cannot be deter-
mined in the mean-field approximation. We here fix δn =
−π/2 in Eq. (50), which corresponds to A−

2u toroidal dipole
configuration shown in Fig. 4. In the mean-field approxima-
tion, the phases δn’s are arbitrary as long as δ1 = δ2 = δ3.
This means that there exist other phases with the same free
energy. For example, an even-parity B−

1g magnetic octupole
state possesses the same free energy, which is written as
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FIG. 8. Temperature dependence of the order parameters in the p
space for (a) JQ

1 = −5.7 K (toroidal), (b) JQ
1 = −0.15 K (single Q),

(c) JQ
1 = 5.25 K (AFQ 120◦), and (d) JQ

1 = 3.75 K (AFQ 120◦ and
triforce). The other parameters are the same as in Fig. 4.

M(r) =∑n=1,2,3 Mn cos(kn · r). This accidental degeneracy
is lifted by, e.g., sixfold local anisotropy proportional to
cos(6θ ), which exists in general but not in the pseudotriplet
model [Eq. (12)]. See Appendix D for the related analysis.

Since there are three disordered sites in the magnetic unit
cell, further symmetry breakings take place at lower temper-
atures. In the vicinity of the single-Q phase, there is a small
parameter region where magnetic moments emerge at the two
of the three disordered sites, while the other site remains
disordered. This phase is labeled by cT+AFM1, where cT
means “canted toroidal.” The ordered moments that emerge in
this phase are antiparallel with each other, and the magnetic
moments are slightly modulated at the six sites forming a
toroidal hexagon. In this phase, there is a mirror symmetry,
which interchanges the two sites where the magnetic moments
emerge in cT+AFM1 indicated by the shorter arrows in Fig. 4.

As T decreases further, magnetic moments appear at the
remaining disordered sites as shown in Fig. 4. This phase
has finite ferromagnetic moments and no symmetry except
for the simultaneous horizontal mirror and time-reversal op-
erations. We label this phase by cT+AFM2. For the smaller
JQ

1 , this phase transition takes place directly from the high-
temperature pure toroidal phase. Note that the transition in
this case is of first order. Another route to this phase is from
the single-Q phase through a first-order transition (see Fig. 4).

Figure 8(a) shows the temperature dependence of the mag-
nitudes of the order parameters in the p space for JQ

1 =
−5.7 K and the other parameters are the same as in Fig. 4.
In the toroidal phase above ∼18.5 K, the magnitudes of the
magnetic moments M1,2,3 take the same value, which reflects
the C3 rotational symmetry. The first-order transition into
cT+AFM1 breaks the C3 symmetry and leads to M1 > M2,3.
In the cT+AFM2 phase below ∼18 K, the magnitudes of
M1,2,3 are all different, and finite M0 and MK emerge. This
reflects the low symmetry of this phase.

3. Single-Q order

Let us now focus on the single-Q phase appearing in the
phase diagram shown in Fig. 4. The ordered moments M(r)
and Q(r) at the position r in the single-Q phase for the order-
ing vector e.g., p = k3, are given by

M(r) = M3 sin(k3 · r), (52)

Q(r) = −Q3 cos(k3 · r) + Q0, (53)

where M3 = (M3, 0)T, Q3 = (Q3, 0)T, and Q0 = (Q0, 0)T.
The magnetic unit cell contains three sites. Collinear antiferro-
magnetic moments emerge at the two of the three sites, while
the remaining site is nonmagnetic. At low temperatures, the
quadrupole moments at the nonmagnetic sites grow.

Let us comment on the symmetry. The symmetry of
the single-Q state for p = k3 is ∼yMx when expressed in
the real-space coordinate (x, y, z) and the magnetic dipole
(Mx, My, Mz ). This is decomposed into two irreps, A−

2u :
xMy − yMx magnetic toroidal dipole and E−

2u,xy : xMy +
yMx magnetic quadrupole. They induce the E2g,22 electric
quadrupole (Q0) through the relation A−

2u ⊗ E−
2u,xy = E+

2g,22.
Figure 8(b) shows the temperature dependence of M3, Q3,

and Q0 in the single-Q phase for JQ
1 = −0.15 K. The primary

order parameter is M3, while Q0 and Q3 are induced as the
secondary ones. As for the other domains for p = k1(2), the
primary order parameter is M1(2), and Q0 and Q1(2) are in-
duced. As in the triforce phase, the quadrupole moments at
the magnetically disordered sites develop at low temperature,
and this leads to increases in Q0,3 down to ∼3 K. One can also
see the sign change in Q3 as T varies, which arises in a similar
manner to the triforce phase.

4. AFQ 120◦ order

Finally, we briefly discuss AFQ 120◦ phase realized for
large JQ

1 in Fig. 4. When JQ
1 is large, the quadrupole inter-

actions become dominant in the interaction energy, the pure
quadrupole order is realized. The ordered moment Q(r) at the
position r in AFQ 120◦ phase is given by

Q(r) = Q

[
cos(kK · r + δ)

sin(kK · r + δ)

]
, (54)

where Q is the magnitude of the quadrupole moment, and
δ is an arbitrary phase factor. This is a 120◦ structure of
quadrupole moments consisting of QK at p = kK and kK′ =
−kK. Figure 8(c) shows the temperature dependence of QK for
JQ

1 = 5.25 K. The angle of the quadrupole moments can freely
rotate as long as their relative angles are fixed at 120◦, as in
AFM Heisenberg magnets in the triangular lattice [87,88].

In the intermediate region of JQ
1 , the phase transition from

AFQ 120◦ to the triforce order occurs as lowering T as shown
in Fig. 8(d) for JQ

1 = 3.75 K. We note that, in this regime,
Q1,2,3 increases monotonically as lowering T owing to the
large JQ

1 . See the difference between the data in Figs. 8(d)
and 6(a).

IV. DISCUSSIONS

We have discussed that our model consisting of �4-�5

CEF states exhibits various triple-Q phases in addition to the
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single-Q ordered phases. In this section, we will compare the
theoretical results with the experimental data in UNi4B in
detail. Our main conclusion is that the triforce order is better
in explaining the overall results in the experiments than the
toroidal order. We review the experimental data of UNi4B,
focusing first on the neutron scattering in Sec. IV A. Next,
we will examine the impact of the realistic crystal structure in
Sec. IV B. This turns out to be quite important to explain the
data of the current-induced magnetization in UNi4B, which
is discussed in Sec. IV C. The triforce order in combination
with the realistic crystal structure can explain the anisotropy
in the current-induced magnetization in UNi4B, while the
others fail. Thermodynamic properties are also discussed in
Sec. IV D. In Sec. IV E, we will propose several experiments
that can examine the triforce order scenario in UNi4B. Finally,
in Sec. IV F, we will discuss possible theoretical extensions
of the mechanism for the triple-Q magnetic order, which is
triggered by the coupling with the quadrupole moments.

A. Neutron scattering experiments

First, we discuss the ordering wave vectors and magnetic
moments in our results, comparing with those observed in
the neutron scattering experiments [79,82]. There are clear
magnetic Bragg peaks in the experimental data at k = k1,2,3.
Thus, the AFQ 120◦ phase is inconsistent with the experimen-
tal data. In our calculations, there are mainly three magnetic
ordered phases: triforce, toroidal, and single Q. The ordering
wave vectors kn and the magnetic moment Mn ‖ vn⊥ are the
same in the triforce and the toroidal orders, both of which
agree with the neutron scattering experiments. The single-Q
order is also consistent when multiple domains of single-Q
states are considered. Note that analyses of spin structure fac-
tors in the neutron scattering experiments are not a powerful
way to distinguish a multiple-Q state from multiple-domain
states of single-Q orders for p = k1,2,3. Although various
moments at high-harmonic wave vectors can be induced in
general, the magnetic part includes those at k1,2,3 for the
present case because 2k1,2,3 is equivalent to −k1,2,3. This fact
makes the analysis of the order parameter in UNi4B nontrivial.
Thus, all the three states cannot be ruled out by the neutron
scattering data. To identify the magnetic order in UNi4B, we
need to examine other aspects of these phases.

We should also comment about the observed weak re-
flections at k = ( h

6
k
6 0) = hg1/6 + kg2/6 in the paramagnetic

phase [79,81,82]. The unit cell in the crystal with 3×4 U sites
and the magnetic unit cell with 3×3 U sites as shown in Fig. 1
mismatch. The interpretation of these results is discussed in
Sec. IV B.

B. Realistic crystal structure

We here discuss how the realistic crystal structure of
UNi4B influences the ordered phases obtained in this study
based on the regular triangular lattice model. Recent experi-
ments [80–82] show that the space-group symmetry of UNi4B
is Cmcm (No. 63, D17

2h) in the paramagnetic phase and there
are two crystallographically distinct U sites. Sites labeled by
8 f form honeycomb structure, and those labeled by 4c lie in
the center of the honeycomb hexagon [81,82]. In total, there

are four types of U ions: those surrounded by 0, 2, 4, and
6 B atoms, which are 4c(1), 8 f (1), 8 f (2), and 4c(2) sites,
respectively. Although the neutron data are also explained by
the space-group Pmm2 (No. 25 C1

2v), we assume Cmcm since
there is no significant difference for discussing the magnetic
structure [82]. The inequivalence of the two sites leads to
different CEF potential at 4c and 8 f sites, which has been
neglected in this study. We will discuss two aspects expected
when the CEF schemes are modulated differently at the 4c and
8 f sites.

1. Odd-parity moments

First, we note that the 8 f sites have no inversion sym-
metry. This means that odd-parity multipole moments can be
active at the 8 f sites. Our model is based on the assumption
that the effects of this local inversion symmetry breaking are
negligible, which is valid when the electrons at U ions are
well localized. If strong hybridizations between f and d or
s electrons are present, the effects owing to such odd-parity
multipole moments become important [77].

The assumption of the weak anisotropy at the 8 f sites is
justified by analyzing the experimental results. It is reported
that the paramagnetic unit cell contains 3×4 U ions [81,82],
while the magnetic orders proposed so far consist of 3×3 as
in the triforce or toroidal orders. Thus, when the unit cell in
the ordered state is 3×3, a mismatch between the magnetic
and the crystal structure occurs. For example, an identical
magnetic moment is assumed even at the different 8 f (4c)
sites or at the same class of 8 f sites with the different principal
axis. This mismatch leads to a magnetic configuration with a
longer modulation period. However, the magnetic reflection of
such a longer modulation is not reported [79,82], and the pro-
posed magnetic structure has a 3×3 periodicity. In the latest
experiment [82], the magnetic unit cell has 3×6 sites, but the
proposed configuration is 3×3 structure. This indicates that
the anisotropy at the 8 f sites plays a minor role in determining
the magnetic structure.

2. Site-dependent CEF potential

Second, we discuss real-space modulation in the CEF level
schemes. The CEF levels are different at the crystallograph-
ically different sites in general. The CEF excitation gap E4

at the two different 4c (8 f ) sites seem to be similar due to
the above discussion about the small magnitudes of the longer
period modulation. As for the difference in the CEF levels
at the 4c and the 8 f sites, it can be in general noticeable,
although the difference cannot be estimated from the neutron
data. The presence of site-dependent CEF levels can be a
possible reason why the ordering vectors are at k1,2,3, which
are not at the high-symmetry points for the triangular lattice
model. In the presence of site-dependent CEF, the unit cell
contains three U sites if the difference between the two kinds
of 4c (8 f ) sites is ignored: a 4c site and two 8 f sites. See
also Fig. 11(a). The 3×3 orders contain three such unit cells.
This corresponds to the ordering vector at the K point k̃K in
the folded Brillouin zone reflecting the larger paramagnetic
unit cell. In the folded Brillouin zone, k̃K is at one of the
high-symmetry points. Thus, the model parameters do not
necessarily need to be fine tuned when assuming that the CEF
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FIG. 9. Schematic configurations of the ordered structure in the
presence of the CEF difference �E4 = E4(4c) − E4(8 f ) at 4c (sky
blue) and 8 f (green) sites. Toroidal order for (a) �E4 > 0 and
(b) �E4 < 0. Triforce order for (c) �E4 > 0 and (d) �E4 < 0.

and/or the interaction parameters are different at the 4c and
the 8 f sites.

The ordered structure is also affected by the site-dependent
CEF level. The most remarkable effect occurs when the CEF
ground state is different at the 4c and the 8 f sites. For exam-
ple, if the CEF ground state is �4 singlet at the 4c sites, the
toroidal order can be stable at low temperatures, at least from
the viewpoint of the entropy. However, this is inconsistent
with the observed Curie-Weiss softening in the ultrasonic ex-
periments, which suggests that �5 doublet is the CEF ground
state [83].

When the CEF ground state is �5 doublet at both of the
4c and the 8 f sites, the difference in E4 at these sites induces
the modulation in the magnitudes of the magnetic moments.
Although a large �E4 ≡ E4(4c) − E4(8 f ) may stabilize other
orders, we focus on its perturbative effects. Figure 9 shows the
schematic illustrations of the order parameters in the presence
of the CEF modulation. When �E4 > 0 for the toroidal order,
the magnetic moments order at the 8 f sites, as shown in
Fig. 9(a). In the case that �E4 > 0 is much larger than the
exchange interactions, the quadrupole order at the 4c sites is
expected at low temperatures. When �E4 < 0 for the toroidal
order, the magnetic moments order at both of the 4c and the 8 f
sites, and their magnitudes are different, as shown in Fig. 9(b).
This state contains even-parity multipole moments when de-
composed into irreps, and they have a similar symmetry to
that in the triforce order; the even-parity component is B−

2g

octupole, while that in the triforce order is B−
1g octupole. The

relation A−
2u ⊗ B−

2g = B+
1u indicates that B+

1u electric octupole
moments are induced.

The triforce order for �E4 > 0 in Fig. 9(c) and �E4 < 0
in Fig. 9(d) break the C3 rotational symmetry, while preserv-
ing the x-mirror symmetry. We call them a canted triforce
state hereafter. The magnetic moments order at the four 8 f
and two 4c sites for both cases, and their magnitudes at the
8 f sites are larger (smaller) than those at the 4c sites for
�E4>0 (�E4<0). Let us discuss the symmetry of the canted

FIG. 10. Cluster multipole decomposition in the distorted tri-
force order: (a) magnetic dipole part and (b) electric quadrupole
part. The moments at the vertices of the dotted triangles are virtual
ones. Only site-dependent CEF- or distortion-induced components
are shown.

triforce state. For both cases of �E4 > 0 and �E4 < 0, the
order parameter has the same symmetry. Figure 10 shows
the cluster multipole decomposition of the canted triforce
state. We show only the difference from the pure triforce
state with �E4 = 0 for simplicity, i.e., M(r) − M(r)|�E4=0

and Q(r) − Q(r)|�E4=0. The magnetic part in Fig. 10(a) is
decomposed into E−

2u quadrupole and E−
1g dipole. The electric

part consists of E+
1u dipole and E+

2g quadrupole moments as
shown in Fig. 10(b). The presence of E−

1g magnetic dipole
indicates that there is a finite magnetization, which has not
been observed in the experiments. The reason for the absence
or smallness of the magnetization may be explained intuitively
by the cancellation inside the cluster shown in Fig. 10(a).
Although the most natural moment for E−

1g is the magnetic
dipole, the magnetization is almost canceled out in the in-
ner and outer clusters in the right-hand side of Fig. 10(a).
Indeed, we have confirmed that the induced magnetization
is small ∼10−4μB (μB: the Bohr magneton) for �E4 = 5 K
and vanishes when the magnetic interactions are isotropic, i.e.,
KM

1 = 0. In contrast, the other components in Figs. 10(a) and
10(b) do not show such cancellation. We note that the presence
of E+

1u electric dipole is important when we discuss the experi-
ments of the magnetoelectric effects as discussed in Sec. IV C.

3. Macroscopic orthogonal distortion

Lastly, we consider the effect of the macroscopic orthog-
onal distortion. The space group Cmcm does not possess
hexagonal symmetry but orthogonal. The distortion belongs
to E+

2g, and the orthogonal distortion-induced moments in the
ordered states can be understood by the direct products of
the irreps. For the toroidal order, the distortion induces the
E−

2u moments since A−
2u ⊗ E+

2g = E−
2u. When the site-dependent

CEF is present, the modulated toroidal order with the dis-
tortion has the E−

1g and E+
1u components since (B−

2g ⊕ B+
1u) ⊗

E+
2g = E−

1g ⊕ E+
1u, where B−

2g and B+
1u are induced by the site-

dependent CEF. For the triforce order, they are obtained
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by (A−
2u ⊕ B−

1g) ⊗ E+
2g = E−

2u ⊕ E−
1g for the magnetic part and

(B+
2u ⊕ A+

1g) ⊗ E+
2g = E+

1u ⊕ E+
2g for the electric part. Note that

these irreps are exactly the same as those induced by the site-
dependent CEF (Fig. 10). Thus, the macroscopic symmetry in
the triforce order under the orthogonal distortion of the crystal
structure is the same as that under the site-dependent CEF.
In this sense, the orthogonal distortion induces the canted
triforce order even without the site-dependent CEF levels. For
the single-Q state, a multidomain structure is hardly expected,
and the one with the lowest free energy realizes. For example,
the order at k3 with induced E2g,22 moment realizes for the
ε22-type distortion.

We should comment on the degeneracy lifting of the
susceptibility tensor by the orthogonal distortion. The point
group at the ordering vectors is the C2v (D3h) with (without)
the orthogonal distortion. The degeneracies in the eigenmodes
of the susceptibility tensor due to the C3 rotational symmetry
in the D3h are lifted by the orthogonal distortion. In the point
group C2v , the orders with in-plane magnetic moments belong
to one or both of two types of irreps: even under the x mirror
B1 and odd A2. The pure toroidal, triforce, and single-Q orders
are even under the x mirror and belong to the B1 representa-
tion, while the modulated toroidal order spanning the 4c and
8 f sites is not an eigenstate of the x mirror and belongs to a
reducible representation. This means that the phase transition
from the paramagnetic phase to the modulated toroidal phase
can occur only in accidental cases.

We have demonstrated how the orthogonal distortion af-
fects the symmetry of the ordered states. Although the
observed distortion in the lattice constants is tiny [81,82], the
small but finite distortion breaks the C3 rotational symmetry.
This must make the domains related by the C3 symmetry
inequivalent. It is natural to consider that the component of
the two-dimensional E+

2g irreps is fixed by the orthogonal
distortion.

4. Brief summary of Secs. IV A and IV B

We now briefly summarize Secs. IV A and IV B, focusing
on the difference between the triforce and toroidal orders.
First, the triforce and toroidal orders agree equally with the
neutron data. When the realistic crystal structure is consid-
ered, the symmetry of the ordered phases is lowered. The
symmetry depends on the sign of the site-dependent CEF �E4

for the toroidal order, while not for the triforce order. In the
case that CEF at the 4c sites is large and unfavors the magnetic
orders, the toroidal order can be stable. For the triforce order,
the sign of �E4 does not affect the symmetry or stability of
this phase as long as it is considered perturbative. Finally, the
single-Q order with multiple domain is unlikely in the realistic
orthogonal crystal structure since the orthogonal distortion
selects one domain.

C. Symmetry and magnetoelectric effects

We now carry out symmetry analyses on the current-
induced magnetization (CIM) experiments and compare the
experimental results with each theoretical one: triforce,
toroidal, and single-Q phases. This part is the most important

result in this paper. We describe the CIM response by
the magnetoelectric (ME) coefficient αi j defined by Mi =∑

j αi jE j (i, j = x, y, z), where Mi and Ei are the ith compo-
nent of the magnetization and the electric field, respectively.
Note that αi j is directly related to the symmetry of the order
parameter below TN [65,66]. In UNi4B, Saito et al. reported
that αyx and αyz are both finite below TN [76]. We will discuss
possible order parameters consistent with this result.

First, we summarize the main conclusion. The magnetic
space group under the triforce order is Pm′m2′ (No. 25.59)
and consistent with the observation of the ME effects, and we
consider it as the order parameter of UNi4B. Other orders are
inconsistent with the experiments: the toroidal and single-Q
orders with Pmm′a (No. 51.292). Although the toroidal order
spanning the 8 f and 4c sites with Pm′c2′

1 (No. 26.68) space
group is consistent with the ME effect, we consider it is hardly
realized as will be explained. In the following, we will discuss
general symmetry arguments, focusing on the magnetic point
groups and their representations, rather than the magnetic
space groups, since the point group is sufficient to discuss the
thermodynamic and transport phenomena.

Table II summarizes the irreps and their direct products for
the D6 symmetry. The irreps for the D6h can be constructed
from those in the D6 with the inversion parity label: even
(g) and odd (u) added appropriately. The observed αyx im-
plies that the order parameter possesses components of A2u ∼
xMy − yMx or E2u,xy ∼ xMy + yMx representations, while the
finite αyz responses indicate that there must be components of
E1u,x ∼ zMy representation. Note that the time-reversal parity
of the order parameters can be either even (+) or odd (−)
in the CIM measurements since both electric-field-induced
magnetizations by magnetic multipoles and current-induced
magnetizations by electric multipoles are possible in metals
[65,66]. For the current-induced cases, one can just replace the
coordinate {x, y} by the current { jx, jy}: A2u ∼ jxMy − jyMx,
E2u,xy ∼ jxMy + jyMx, and E1u,x ∼ jzMy. The choice of the
time-reversal parity of the order parameter can be restricted
when the candidate states are fixed from the physical ground
as discussed below.

We here employ an assumption that the magnetic moments
lie on the xy (ab) plane, as reported by the neutron scat-
tering experiments [79,82]. Under this assumption, the E1u

part of the order parameter should be an electric E+
1u, where

+ represents the time-reversal parity even. This is because
the in-plane magnetic moments are odd under the z-mirror
reflection (x, y, z) → (x, y,−z), while E1u is even under the z
mirror. This means that any magnetic configurations confined
on the xy plane are odd under the z-mirror operation. From
this fact, one can conclude that the part of the order parameter
with E+

1u representation is that of a secondary one induced
by the magnetic order parameters. In this case, the primary
order parameter should contain at least one even-parity repre-
sentation and one odd-parity component since their product
includes an odd-parity E+

1u representation. As for the time-
reversal parity, it is natural to assume that the finite αyx arises
from magnetic ones since if it were from nonmagnetic ones,
both even- and odd-parity components of the order parameters
would be nonmagnetic, and we consider this is unphysical
in UNi4B.

104413-14



TRIPLE-Q PARTIAL MAGNETIC ORDERS … PHYSICAL REVIEW B 107, 104413 (2023)

TABLE II. List of irreducible representations (irreps) and their direct product table for D6 symmetry. Xi and Xjk represent the quantity
X = M (magnetic dipole or magnetic field), E (electric dipole or electric field), j (electric current), T (magnetic toroidal dipole), where i =
x, y, z, and X = ε (lattice distortion or electric quadrupole) where jk = 20, 22, and xy with the symmetry of z2, x2 − y2, and xy, respectively.
Composite fields constructed by direct products of multiple irreps are also shown. For highlighting which products generate magnetizations
(Mz : A−

2g and Mx,y : E−
1g) A2’s and E1’s are boxed in the table.

irreps Fields, multipoles A1 A2 B1 B2 E1 E2 Composite fields, orders

A1 ε20 A1 A2 B1 B2

�

�

�

�
E1 E2 xMx + yMy, ε22ε

′
22 + εxyε

′
xy

A2 Mz, Ez, jz, Tz A2 A1 B2 B1

�

�

�

�
E1 E2 xMy − yMx , ε22ε

′
xy − εxyε

′
22

B1 B1 B2 A1 A2 E2

�

�

�

�
E1 ε22Mx − εxyMy, xε22 − yεxy

B2 B2 A2 A1 E2

�

�

�

�
E1 E2 ε22My + εxyMx , xεxy + yε22

E1 {Mx, My}, {Tx, Ty},
�

�

�

�
E1

�

�

�

�
E1 E2 E2 (A1, A2 , E2) (B1, B2, E2) {ε22Mx + εxyMy, ε22My − εxyMx},

{ jx, jy}, {Ex, Ey} {xε22 + yεxy, xεxy − yε22}
E2 {ε22, εxy} E2 E2

�

�

�

�
E1

�

�

�

�
E1 (B1, B2, E2) (A1, A2 , E2) {xMx − yMy, xMy + yMx},

{ε22ε
′
22 − εxyε

′
xy, ε22ε

′
xy + εxyε

′
22}

Let us now examine possible irreps of the primary order
parameters satisfying the above conditions. Remember that,
for realizing finite αyx, the order parameters must be A2u or
E2u. First, consider a magnetic A−

2u irrep. In Table II, in the
horizontal row of A2, there is only one E1 irrep indicated by
the single-line box, which represents A−

2u ⊗ E−
1g = E+

1u (sec-
ondary order parameter). This means the order parameter must
consist both of A−

2u and E−
1g. For the other choice, E−

2u, one can
see that there are two candidates B−

1g or B−
2g as indicated by the

single-line boxes in the E2 row in Table II.
Interestingly, in-plane uniform magnetic moments should

emerge in both cases. For the first case with {A−
2u, E−

1g}, the
part E−

1g is classified as the same irreps as the in-plane uniform
magnetic moment Mx,y as listed in Table II. Thus, it directly
couples with Mx,y, and Mx,y is induced in general. For the
other case with {E−

2u, B−
1(2)g}, the in-plane uniform magnetic

moments are induced by the orthogonal distortion ε22 with
E+

2g irreps: B−
1(2)g ⊗ E+

2g = E−
1g. Although the in-plane uniform

magnetic moment Mx,y has not been observed, it must be
present from the viewpoint of the symmetry for any in-plane
magnetic order parameter with orthogonal distortion. It might
be tiny due to weak couplings with the order parameters or
the small distortions. In principle, it is possible to consider
that order parameters with finite magnetic moments along the
z direction or those not uniformly stacked in the z direction.
However, as discussed in this section, their realization is not
physically sound by observing the experimental data so far.

Bearing the above symmetry argument in mind, we dis-
cuss possible candidates in our theoretical results. The canted
triforce order, which is induced by the site-dependent CEF
or the orthogonal distortion, is the only candidate that is
qualitatively consistent with both the neutron and the CIM
results. The triforce order contains A−

2u, B−
1g, and B+

2u irreps
and additionally E−

2u, E−
1g, and E+

1u ones under the canting
due to the site-dependent CEF or the orthogonal distortion,
as discussed in Sec. III B 1. The presence of the A−

2u and E+
1u

irreps agrees with the observed a- and c-axis CIMs, respec-
tively. The absence or smallness of the magnetization can be
explained as a result of the cancellation shown in Fig. 10(a)

with keeping the consistency with the ME effects. The triforce
order includes several irreps in D6h for the highest-symmetry
point at the U sites. This is because the highest-symmetry
point in the triforce phase is not at the U site but at the center
of the nearest-neighbor triangle with D3h symmetry. In the
reduction D6h ↓ D3h, B+

2u → A′+
1 and A−

2u, B−
1g → A′′−

2 , where
A′+

1 is the totally symmetric representation. Thus, the triforce
order has a single irrep A′′−

2 other than the totally symmetric
A′+

1 in D3h. When the orthogonal distortion is considered, the
local symmetry at the center of the nearest-neighbor triangle
is C2v . In the reduction D6h ↓ C2v , B+

2u, E+
2g,22, E+

1u,y → A+
1

and A−
2u, B−

1g, E−
2u,xy, E−

1g,x → B−
1 , where A+

1 is the totally
symmetric representation. Again, the canted triforce order
consists of a single irrep B−

1 in addition to the trivial A+
1 in

C2v . In this sense, the canted triforce order is the simplest state
consistent with the observed CIM.

Here, we discuss the detail of the two-dimensional E+
1u

representation, which corresponds to electric polarizations
{E+

1u,x, E+
1u,y} ∼ {x, y}. As shown in Fig. 10, the induced com-

ponent of E+
1u representation in the canted triforce order is that

of E+
1u,y ∼ y. This is because the B+

2u ∼ xεxy + yε22 octupole
moment in the triforce order couples to the distortion ε22 with
the coefficient proportional to y. And we take a domain in
which ε22 ∼ x2 − y2 is finite with εxy = 0. Although the C3

rotated domains ∼ ± √
3x/2 − y/2 can realize without the

orthogonal distortion, polarization parallel or antiparallel to
y is realized in the presence of the distortion ε22. The E+

1u,y
representation has the same symmetry as jzMx and jxMz

corresponding to αxz and αzx. One may consider that this is
inconsistent with the experimental results with αyz = 0. We
emphasize that this actually agrees with the canted triforce
order. In Ref. [76], the analysis is based on the hexagonal
structure. Thus, three conventions of the axes in the ab plane
(xy plane) exist. Here, a trivial inversion a, b → −a,−b has
not been counted. In a single crystal with in-plane orthog-
onal distortions, there is one unique set of axes in the ab
plane. Our results are consistent with the finite αyz if the axes
taken in Ref. [76] coincide with those rotated by ±60◦ from
ours.
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For the other symmetry-broken phases in our results, the
toroidal or the single-Q phases are magnetic and occupy
a wide region of the parameter space as the triforce phase
does, as shown in the phase diagram in Fig. 4. However, the
symmetry of the two phases is inconsistent with the observed
CIM. First, the toroidal order contains A−

2u part in its magnetic
structure. The presence of the A−

2u irreps is consistent with
αyx = 0 but cannot explain αyz = 0. Even when the orthogonal
distortion ε22 is taken into account, the induced moments are
A−

2u ⊗ E+
2g = E−

2u and are inconsistent with the experiment.
Second, the single-Q order contains A−

2u, E−
2u,xy, and E+

2g,22
irreps. Again, it is impossible to construct E1u irreps from
these irreps and the distortion ε22 with E+

2g,22 irreps.
We note that the modulated toroidal order on the 4c and

8 f sites [Fig. 9(b)] has B−
2g and B+

1u components, when the
realistic crystal structure is considered. This leads to E+

1u,x

with the orthogonal distortion by B+
1u ⊗ E+

2g,22 = E+
1u,x, and

is consistent with the ME experiments, which has not been
recognized in the previous studies [81,82]. However, there are
two reasons why the canted triforce order [Fig. 9(c) or 9(d)]
is more favorable than the modulated toroidal order. First, the
toroidal order on the 4c and 8 f is hardly stable as lowering T .
Second, the modulated toroidal order has a finite E+

1u moment
only when the orthogonal distortion is present, but this state is
not an eigenmode of the susceptibility tensor in the presence
of the orthogonal distortion and can be realized only in acci-
dental cases, as discussed in Sec. IV B. In contrast, the canted
triforce order in the realistic crystal structure can be stable
both at high and low temperatures. Thus, the toroidal order on
the 4c and the 8 f sites does not seem to be a major candidate
for UNi4B even if it were stable at lower temperatures by an
unknown mechanism.

Lastly, we discuss the magnitudes of the ME coefficients.
The observed αyx and αyz are in the same order [76]. We note
that this does not mean that the magnitudes of the A−

2u and
E+

1u moments are similar. The two ME coefficients αyx and αyz

are qualitatively different; αyx is induced by the electric field,
while αyz is induced by the electric current. The field-induced
one is owing to interband effects, while the current-induced
one is owing to intraband effects. Although the quantitative
estimation of the ME coefficients is beyond the scope of this
study, we note that the magnitudes of the A−

2u and the E+
1u

moments do not need to be in the same order. Thus, the
magnitude of �E4, which induces the E+

1u moment for the
triforce order, cannot be estimated from the ME experiments.

D. Comparison in other experiments

In this section, we compare our numerical data and the
experimental results. Since the calculation in this paper is
based on the mean-field theory and the model is rather simple
to reproduce all the aspects of UNi4B, we restrict ourselves to
the qualitative discussions.

1. Thermodynamic properties

We first discuss the T dependence of the order parame-
ters and the thermodynamic quantities. Several experiments
in UNi4B have clarified that there is a clear anomaly in
the specific-heat coefficient C/T , the susceptibility, and the

resistivity at TN = 20 K [79]. It is also noted that there is
a weak anomaly at T ∗ = 0.3 K in the T dependence of the
specific heat [84] and the ultrasound velocity [83]. So far,
whether the latter is a phase transition or not is unclear. In
our results, the triforce and the single-Q orders are possibly
consistent with these aspects. This is because they show a
single phase transition at TN as shown in Fig. 4, while the
toroidal order with disordered sites is followed by several
phase transitions below TN. As a possible explanation for the
weak anomaly at T ∗, we note that for the triforce state, there is
shoulderlike T dependence at T = T � ∼ 5 K in Fig. 6(d). This
is related to the T dependence of the quadrupole moment and
quadrupole susceptibility, both of which are saturated at ∼5 K.
This characteristic temperature T � is much higher than the
observed one T ∗ ∼ 0.3 K. When the quadrupole interactions
are small, the value of T � can be lower and it also leads to
the low Curie-Weiss temperature θ

Q
CW ∼ −1 K observed [83].

However, the quadrupole interaction is essential for stabilizing
the triforce order at zero temperature. See the discussion in
Sec. II D and also Appendixes E 2 and E 3. Thus, it is difficult
to reproduce both the stability of the triforce order and an
increase in the quadrupole susceptibility at low temperatures.
This might be realized by considering the effects not consid-
ered here, which suppress the magnetic orders even for small
quadrupole interactions. Such suppression of the magnetic
orders may be caused by magnetic fluctuations due to the frus-
trated interactions or the Kondo effects. Within the mean-field
approximation, additional O20 quadrupole interactions can
suppress the magnetic orders. Interactions of O20 quadrupole
with A1g representation act as a temperature-dependent CEF
and can suppress the magnetic orders (see Appendix E 3).
However, the validity of such parametrization is not based
on the microscopic information about UNi4B, and we show
the results as an example among several possibilities in Ap-
pendix E 3. The complete understanding about T ∗ ∼ 0.3 K
needs a more sophisticated model construction and analysis,
and this is one of the future problems.

For the magnetic susceptibility, the consistency with the
experiments is more subtle. In the experiments, the suscep-
tibility increases as T decreases in the ordered state for
10 K � T < TN [76,79], which is consistent with the results
in Fig. 6(d). However, it decreases for T � 10 K [76]. The
decrease in the magnetic susceptibility at low temperatures is
not realized in this study. This inconsistency will be resolved
when the CEF with an orthogonal distortion is taken into
account [83].

2. Ultrasound experiments

Let us discuss the quadrupole interactions, focusing on
the ultrasound experiments. We emphasize that the T de-
pendence of quadrupole interactions is key to identifying the
order parameters. In Ref. [83], the sound velocity softening
is observed both above and below TN. The softening is the
consequence of the enhanced quadrupole susceptibility, and
it has been analyzed by the Curie-Weiss fitting. Interestingly,
the Curie-Weiss temperature for the quadrupole sector θ

Q
CW

is positive (θQ
CW = 11 K) in the paramagnetic phase T > TN,

while it is negative (θQ
CW = −1.2 K) in the ordered phase

0.3 K < T < 10 K. In the following, we will show that the
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change in θ
Q
CW can be explained qualitatively if the ordered

state is assumed to be the triforce phase, while it turns out
that the quantitative agreement with the experiments at low
temperatures is not achieved in our simple model.

The T dependence of the quadrupole susceptibility χQ is
shown in Fig. 6(d). The high-temperature Curie-Weiss tem-
perature θ

Q
CW is automatically satisfied by the constraint (11).

χQ shows a jump at T = TN, which might be an artifact of
the mean-field theory. Below TN, it decreases once and turns
to increase. The increase at low temperatures is qualitatively
consistent, but the actual T dependence is quantitatively dif-
ferent from the observed T dependence of the elastic constant.
Similarly to the case of the specific heat discussed before,
χQ in Fig. 6(d) is saturated to ∼0.6 below T = T � ∼ 5 K.
To obtain the lower T � within the mean-field approximation,
we need additional parameters as discussed in Appendix E 3.
For some parameter sets, the Curie-Weiss T dependence with
θ

Q
CW < 0 can be reproduced, but it leads to some drawbacks

such as the increasing magnetic susceptibility at low temper-
atures.

Despite the quantitative discrepancy between the data in
Fig. 6(d) and the experiment, the triforce order gives a phe-
nomenological explanation about the negative θ

Q
CW in the

ordered phase below TN. In the triforce configuration, the
magnetically disordered sites are connected by the nearest-
and the third-nearest-neighbor bonds. Suppose the quadrupole
moments at these sites are nearly free while those at the
magnetically ordered sites are frozen owing to the large
dipole-quadrupole coupling, only the nearest-neighbor inter-
action appears in the Curie-Weiss form of the quadrupole
susceptibility. In Table I, the eigenvalues of the magnetic
exchange eigenvalues are listed for k = k0, kK, and kn.
These eigenvalues are also correct for the quadrupole ones
by replacing JM

i with JQ
i . The Curie-Weiss factor T − T Q

CW =
T + JQ

� = T + 6(JQ
1 + JQ

2 ) → T + 6JQ
1 by discarding JQ

2 in
the above picture. The triforce order appears for JQ

1 > 0 as
shown in Fig. 4, which is also consistent with the Landau
analysis in Sec. II D 2, and this indeed leads to the nega-
tive θ

Q
CW = −6JQ

1 < 0. Such consistency is not expected for
other phases. For the single-Q order, the interaction will
be ferroic since JQ

� < JQ
K is needed to realize the single-Q

order (Fig. 4) and leads to −6(JQ
1 + JQ

2 ) → −6JQ
1 > 0. For

the toroidal order, the quadrupole interactions at the disor-
dered sites JQ

2 can be weak antiferroic. However, it is hardly
stable at low temperatures since the magnetic interactions
between the disordered sites are dominant for the ordering
vector at k1,2,3. The validity of the above phenomenologi-
cal argument strongly depends on how free the quadrupole
moments are at the magnetically disordered sites. In the
mean-field data in Fig. 6(d), the situation is applicable above
T � ∼ 5 K, below which the quadrupole moments are sat-
urated. Thus, if the T � can be lowered by fine tuning of
the parameters and/or by the higher-order many-body cor-
rections, the observed softening in the ordered phase would
be explained. See one example in Appendix E 3 of such fine
tuning within the mean-field approximation. We consider that
clarifying this is one of the important problems for our future
studies.

E. Important future experiments

In Secs. IV B, IV C, and IV D, we have proposed that the
canted triforce order qualitatively explains the experimental
data available so far. Let us comment on the future experi-
ments to check the triforce order scenario.

The first one is 11B NQR and/or NMR experiments at
low temperatures. The NQR and NMR can be powerful tools
for clarifying local environments. We here note that there
is characteristic symmetry lowering in the B sites in the
triforce order. Figure 11(a) illustrates the triforce states on
the triangular plane together with B and Ni atoms in the
Cmcm structure. One can see that there exist B sites where
the local magnetic and quadrupole fields vanish. For the
canted triforce state with the small canting, the local fields
at the B sites with the approximate C3 rotational symmetry
are finite but small. Remarkably, such high-symmetry B sites
do not exist for the toroidal order [Fig. 11(b)]. This can be
useful for identifying the order parameter in the NMR/NQR
experiments.

The next is the detection of the secondary quadrupole
moments in resonant x-ray scattering experiments. The tri-
force order has the quadrupole moments at p = kK, while the
toroidal order does not [see Eqs. (41) and (43)]. The presence
of the quadrupole moments at p = kK can be the semidirect
evidence of the triforce orders. Note that the K point com-
ponent itself should be present in the paramagnetic phase
since the crystallographically inequivalent sites form the tri-
angular lattice in UNi4B [81,82]. The contribution owing to
this is O20 ∼ 2z2 − x2 − y2 type quadrupole with A+

1g irreps,
while that arising from the order parameter is O22 ∼ x2 − y2

and Oxy ∼ xy types with E+
2g irreps. Thus, the contribution

owing to the crystal structure and the order parameter can
be distinguished by the polarization or the azimuth angle
dependence. In addition to this, the O20-type quadrupole mo-
ments or charge density wave at k1,2,3 are expected for the
triforce order, but not for the toroidal one. See also the dis-
cussion in Appendix E 3. Detection of them can be another
smoking gun of the order parameter. The resonant x-ray scat-
tering or neutron scattering measurements can detect this A1g

contribution.
Next, nonreciprocal transport experiments are important to

understand the order parameter of UNi4B. The time-reversal
parity of the E1u (A2u) part of the order parameters, which
causes the ME coefficient αyz (αyx), can be detectable by
the nonreciprocal transport experiments. The magnetic E−

1u
(A−

2u) contains the in-plane (out-of-plane) component of the
magnetic toroidal moment (Table II), and it causes the nonre-
ciprocal conductivity with the current parallel to the toroidal
moment at zero magnetic field [67,91]. In contrast, the elec-
tric E+

1u (A+
2u), which has the same symmetry as the in-plane

(out-of-plane) electric polarization, cannot cause the nonre-
ciprocal conductivity since it is forbidden by the Onsager
relation [92–95]. Thus, the nonreciprocal conductivity can
be direct evidence of the toroidal moments. In the triforce
order scenario, the nonreciprocal conductivity for the c-axis
current is expected, while not for the ab-plane currents. When
the latter is present, the magnetic moments have components
along the c axis or are nonuniformly stacked along the c axis,
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FIG. 11. Crystal and magnetic structure for the (a) triforce and (b) toroidal orders. At U sites forming the triangular lattice sites, arrows
representing the magnetic dipole moment are drawn. Note that sites without an arrow represent the magnetically disordered U sites. At the
center of each triangle, there are B (small, green) or Ni (large, sky blue) atoms on the same triangular plane. The blue triangle frame in
(a) represents the paramagnetic unit cell when the difference between 8 f (1) and 8 f (2) [4c(1) and 4c(2)] are neglected. Sites where local fields
vanish are enclosed by red circles. In (a), solid (dashed) circles are B (Ni) sites, while in (b), dashed circles enclose the magnetically disordered
U sites.

both of which have not been detected. The determination of
the time-reversal parity of E1u component is of significant
importance, as well as the direct evidence of A−

2u toroidal
moment. Indeed, the nonreciprocal transport measurement has
broader information beyond checking particular scenarios and
is highly desired.

Finally, we comment on detections of even-parity multi-
pole moments that can examine the triforce scenario. The
triforce state contains the B−

1g ∼ (x2 − y2)Mx − 2xyMy oc-
tupole moment, and this can be detected by magnetostriction
experiments [96]. The anisotropies in the magnetostriction
can distinguish the canted triforce order from the modulated
toroidal order on the 4c and 8 f sites [Fig. 9(b)]. The latter
contains the B−

2g ∼ (x2 − y2)My + 2xyMx octupole moments.
For example, magnetic fields H ‖ x induce the strain ε22 in
the canted triforce order, while εxy for the modulated toroidal
order. In addition to the octupole moments, small but finite
uniform magnetizations are expected in any in-plane magnetic
orders consistent with the ME effects. The finite magnetiza-
tion can be checked directly and indirectly by, e.g., the anoma-
lous Hall effect. The presence of these even-parity magnetic
multipole moments implies that the odd-parity E+

1u moments
are induced by the magnetic orders and cause finite αyz.

F. Theoretical perspective

To close Sec. IV, we discuss the mechanism of multiple-Q
partial orders in this study and its possible extensions. We note
that the multiple-Q order mechanism owing to the cooperation
among multipole degrees of freedom can be applicable to
more general systems.

1. Partial magnetic order in UNi4B

First, we discuss the mechanism of partial orders, focusing
on UNi4B with the ordering vector k1,2,3. In this study, the
partial magnetic orders are realized by the competing inter-

actions of magnetic dipole and electric quadrupole moments.
Such partial magnetic order with the quadrupole moments at
magnetically disordered sites was also reported in Ref. [97],
where the K point version of the single-Q order is realized
in an anisotropic S = 1 model with a biquadratic interaction.
The crucial point is the presence of the quadrupole degrees of
freedom, whose importance is recently clarified by the ultra-
sonic experiments [83]. In contrast, the previously proposed
mechanism based on the partial Kondo screening [85,98–100]
has difficulty when directly applied to UNi4B. In Ref. [85],
the in-plane anisotropy of the magnetic moments is impor-
tant to realize the partial orders. However, the proposed CEF
scheme in the recent ultrasound experiments suggests that the
pseudotriplet CEF ground state has no in-plane anisotropy.
In Refs. [98–100] as well as in Ref. [85], partial orders are
realized by the cooperation of Kondo singlet formation and
magnetic orderings. With one-third of the moments Kondo
screened, the remaining unscreened magnetic moments lie
on the honeycomb structure without frustration, and a simple
Néel order is realized. Thus, the partial screening relaxes the
magnetic frustration of the triangular lattice, and the partial
order is realized as a cooperative effect between the Kondo
screening and the magnetic interactions. One may consider
this mechanism is applicable to UNi4B since the ordered sites
in the presumed toroidal order in UNi4B also form the honey-
comb structure. However, there is a crucial difference between
the Néel order on the honeycomb structure and the toroidal
order in UNi4B. The former is a collinear order at the K point,
while the latter is a noncollinear order at k1,2,3. The K point or-
der is favored when the nearest-neighbor antiferrointeraction
is dominant. The disordered sites in the partially ordered state
are connected by the next-nearest-neighbor bonds, and the
interactions between the disordered sites are not necessarily
large. Thus, the energy cost in the magnetic interactions is
small, and the Kondo singlet is favored at the disordered sites.

In contrast, the magnetic interactions and the positions
of the disordered sites in the toroidal order are mismatched.
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The ordering vector k1,2,3 implies the next-nearest-neighbor
antiferrointeraction is dominant. In this case, the Kondo
screening and the magnetic interaction compete since the
disordered sites are connected by the next-nearest-neighbor
bonds. Furthermore, the next-nearest bonds connecting the
ordered moments form the 120◦ structure. This implies that
the frustration is not relaxed by the partial screening. Thus,
the mechanism based on the cooperation between the Kondo
screening and the magnetic order is not directly applicable to
UNi4B.

Interestingly, the partial screening mechanism can be ap-
plied to the triforce and single-Q orders. Both orders can
be seen as the Néel order when focused on the next-nearest-
neighbor bonds between the magnetic sites. Furthermore, the
interactions between the disordered sites are of the nearest-
and the third-nearest-neighbor ones, which are not necessar-
ily large for realizing the ordering vector k1,2,3. Thus, the
partial screening mechanism is applicable to the two orders.
A similar discussion is possible for the case that the partial
order is owing to thermal or quantum fluctuation instead of
the Kondo singlet formation. Although we have shown that
the triforce and the single-Q orders can be stable at zero
temperature due to the quadrupole interaction, investigation of
these orders in models without quadrupole degrees of freedom
is an interesting future issue.

2. Multiple-Q ordering mechanism

Next, we discuss the mechanism of multiple-Q orders. The
triple-Q ordering mechanism in this study can be applied to
other systems with secondary order parameters, such as the
quadrupole moments in this study. In this study, we have
clarified that the triple-Q orders become stable owing to the
quadrupole interactions through the local couplings between
the dipole and the quadrupole moments. The coefficients of
the intermode couplings between the magnetic dipoles for
p1 and p2 are affected by the quadrupole interactions for the
higher harmonic wave vectors p1 ± p2, and it plays a role in
determining the phase factors in the triple-Q superposition.

The significance of the higher harmonic modes and
the phase degrees of freedom in magnetic configura-
tions is also investigated for topological magnets such as
skyrmion and hedgehog lattices, particularly in itinerant mag-
nets, where biquadratic interactions play an important role
[15,32–35,101,102]. Since the biquadratic interactions for
spins and the quadrupole interactions are essentially the same,
the mechanism of multiple-Q orders assisted by the intermode
couplings is common to these studies and the present study.
However, there is a difference between these studies for the
itinerant magnets and our study: the CEF effect. Note that
the CEF excitation gap plays an important role in the partial
magnetic disorder at T = 0. In this study, the triforce and
the single-Q phases are such partial magnetic orders with
the quadrupole order at the nonmagnetic sites, even when the
quadrupole interactions are weaker than the magnetic ones.
This is because the quadrupole orders gain the CEF energy.
Remember that the E+

2g quadrupole moments Q have the ma-
trix elements within the CEF ground state, while those of the
E−

1g magnetic dipole moments M span between the ground
doublet and excited singlet [see Eqs. (1) and (2)]. Such partial

magnetic orders are hardly stable without the CEF effect.
Extending this CEF mechanism for partial magnetic orders
to more general situations can also lead to further exotic or-
ders. For example, an incommensurate coplanar vortex lattice
formed by magnetic moments can be realized even at zero
temperature, which is forbidden for usual spin systems since
the entropy is not released at the vortex cores. The topological
feature of such magnetic vortex lattices can be affected by the
quadrupole interactions since they influence the phase factors
of multiple-Q superpositions. Investigation of such states is
one of our future problems.

We now point out possible examples that a triple-Q order is
realized by a similar mechanism to that in this study. In UPd3,
a triple-Q order of E1g electric quadrupole moments, with
one-fourth of sites disordered, is considered to be realized
[42–44]. The ordering wave vectors are at M points kM1 =
−g1/2 − g2/2, kM2 = g1/2, and kM3 = g2/2. The triple-Q or-
der was theoretically analyzed by means of Landau theory
[103]. In Ref. [103], the fourth-order mode-mode couplings
in the Landau free energy are important to realize the triple-Q
state. The microscopic origin of such fourth-order mode-mode
coupling is possibly similar to that in this study. The CEF
scheme of UPd3 is a pseudotriplet with the ground-state dou-
blet and the excited singlet [104], similar to ours. The primary
order parameter is staggered along the c axis, which couples
to the c-axis uniform secondary order parameters. When the
quadrupole interactions favor orders at the M points with uni-
form stacking, the triple-Q order is realized, while single-Q
orders occur when the interactions prefer the orders at the �

point with uniform stacking. The main difference from this
study is that the single-Q order at the M point has no disor-
dered site. More detailed analysis is needed for quantitative
discussions, and this is one of our future issues.

As another example, the kagome compounds AV3Sb5

(A = K, Rb, Cs) [105–108] show triple-Q charge-density-
wave (CDW) orders, which have attracted considerable
attention as well as their properties of superconductivity
[108,109]. In the triple-Q CDW states, cubic couplings in
their free energy play a key role [110,111]. In AV3Sb5,
whether the time-reversal symmetry is broken or preserved
in the CDW ordered phase is under debate [112,113]. The
time-reversal broken imaginary parts of the CDW, in the chiral
flux state, couple to the nonmagnetic real parts via the cubic
term [110,111], as in the same manner as the magnetic dipole
to the electric quadrupole in this study. Such cubic coupling is
also present for purely nonchiral electric terms and seems to
play a key role in the triple-Q order. Further material search
for the triple-Q orders induced by cubic couplings between
the primary and secondary order parameters is an interesting
topic in the future.

V. SUMMARY

We have introduced a doublet-singlet (�5-�4) localized
moment model for UNi4B with active magnetic dipole and
electric quadrupole moments, which is motivated by recent
ultrasonic experiments [83]. Deriving the realistic model pa-
rameters based on the various experimental data, we have
carried out the mean-field calculations. The results clearly
show that the presumed toroidal order is not stable at low
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temperature in the localized model and that another triple-Q
triforce order is a promising candidate for the order
parameter of UNi4B. The two states possess a common mag-
netic structure factor consisting of triple-Q configurations
but with different phase factors. We find that the quadrupole
moments play a crucial role in determining which is real-
ized. The phenomenological Landau analysis also leads to the
two triple-Q states as its solutions. Thus, it is quite natural
to obtain the triforce order in the microscopic mean-field
calculations. Symmetry arguments reveal that the triforce or-
der is consistent with the ME effects, where site-dependent
crystalline-electric field levels or orthogonal distortion in the
realistic crystal structure is crucial for explaining the ME
effects. The point is that the highest symmetry point in the
ordered state is not at the U site. This is crucial to explain
the observed magnetoelectric effects. We have also proposed
several future experiments for checking the validity of the
triforce order scenario. The resonant x-ray experiment with
the wave number at the K and k1,2,3 points, the NMR and/or
NQR for 11B sites, and nonreciprocal transport properties
can be powerful tools for identifying the order parameter in
UNi4B.

Since after the proposal of the toroidal magnetic order in
the neutron scattering experiment in 1994 [79], the toroidal
order has been recognized as the order parameter of UNi4B.
The recent experiment on the ME effect offers reexamina-
tion of the validity of the presumption [76]. The observed
anisotropies in the ME effects suggest that the order parameter
has not only the out-of-plane A−

2u toroidal moments, but also
an in-plane E+

1u component. It leads to a remarkable fact that
the order parameter with in-plane magnetic moments has both
even- and odd-parity components. Such cases with mixed
parity are naturally realized when the highest-symmetry point
is at the center of the nearest-neighbor triangles, as in the
120◦ structure. We note that the triforce order is such an
example for the triangular systems with the ordering vectors
at k1,2,3, as shown in Figs. 10(a) and 11(a). The triforce order
scenario proposed in this paper can explain both the neutron
data [79,82] and the ME effects. The quantitative discrepancy
between the triforce order scenario and the experimental data
still remains: the energy scale of the quadrupole sector. For
analyzing the quantitative aspect of UNi4B, more elaborated
calculations and microscopic information are needed in the
future studies.

We consider that our results stimulate future experimen-
tal investigations to clarify the physics of UNi4B and shed
light on analyses of ME effects and nonreciprocal transport
in anisotropic correlated systems and their potential in order-
parameter detection. Furthermore, the multiple-Q ordering
mechanism induced by the quadrupole interactions can be
applied to other systems, and it will stimulate further studies
in multipole physics for d- and f -electron systems.
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APPENDIX A: DETAIL EXPRESSIONS
OF EXCHANGE INTERACTIONS

We show the explicit formula of the exchange interaction
matrix ĴX

p (X = M, Q). The matrix elements are decomposed
into the irreducible representations and expressed in Eqs. (6)
and (7). The p-dependent coefficient J

X,A1g
p , J

X,E2g,22
p , and

J
X,E2g,xy
p belong to the A1g, E2g,22, and E2g,xy representations in

D6h, respectively. Their explicit forms are given by

J
X,A1g
p = 2JX

1

(
cp1 + cp2 + cp2−p1

)
+ 2JX

2

(
cp1+p2 + c2p2−p1 + cp2−2p1

)
, (A1)

J
X,E2g,22
p = KX

1

(
2cp1 − cp2 − cp2−p1

)
, (A2)

J
X,E2g,xy
p =

√
3KX

1

(
cp2 − cp2−p1

)
, (A3)

where cpi ≡ cos pi and pi = p · ai (i = 1, 2) with the prim-
itive translation vectors a1 = (1, 0) and a2 = (1/2,

√
3/2).

Note that we have assumed KQ
1 = 0 in Eqs. (4) and (5).

It is useful to write the matrix form of the exchange inter-
actions ĴX

k1,2,3
, where k1,2,3 is defined in Sec. II A. For n = 1

and 2,

ĴX
kn

=
⎡
⎣−3JX

2 − 3
2 KX

1 (−1)n 3
√

3
2 KX

1

(−1)n 3
√

3
2 KX

1 −3JX
2 + 3

2 KX
1

⎤
⎦, (A4)

and for n = 3,

ĴX
k3

=
[
−3JX

2 + 3KX
1 0

0 −3JX
2 − 3KX

1

]
. (A5)

The eigenvectors are easily calculated and given by Eq. (8).
For KX

1 < 0, vn⊥ corresponds to the eigenvector for the
smaller eigenvalue, while vn‖ for KX

1 > 0.
For the interactions at other important wave vectors: � and

K points, Jp’s are given by

J
X,A1g

k0
= 6
(
JX

1 + JX
2

)
, J

X,E2g,22,xy

k0
= 0, (A6)

J
X,A1g

kK
= −3

(
JX

1 − 2JX
2

)
, J

X,E2g,22,xy

kK
= 0. (A7)

Equations (A6) and (A7) show that the eigenmodes are de-
generate since the exchange interaction matrices at these wave
vectors are proportional to the identity matrix.

APPENDIX B: LOCAL LANDAU FREE ENERGY

In this Appendix, we discuss the Landau free energy
for a single-site crystalline-electric-field model with �5-�4

[Fig. 2(a)]. Let the conjugate field to the dipole (quadrupole)
moment be h (h̃). The expectation values of the dipole and
quadrupole are represented by m and q, respectively. The free
energy under these conjugate fields is given by

F (h, h̃) = −β−1 ln Z (h, h̃), (B1)

where β is the inverse temperature 1/T and Z (h, h̃) is the
partition function. The expectation values are calculated in a
standard form by

m = −∂F

∂h
=
(

mx

my

)
, q = −∂F

∂h̃
=
(

q22

−qxy

)
. (B2)
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Note that q is the expectation value of (O22,−Oxy)T. To derive
the Landau free energy, we expand Z (h, h̃) up to the fourth
order in terms of the conjugate fields h = h(cos �, sin �)T

and h̃ = h̃(cos �, sin �)T as

Z = Z0 + dm
2 h2 + dq

2 h̃2 + d3h2h̃ cos(2� + �)

+ dm
4 h4 + dq

4 h̃4 + dmq
4 h2h̃2. (B3)

Here, the coefficients in Eq. (B3) are

Z0 = 2 + e−βE4 ,
dm

2

β2
= 1 − e−βE4

βE4
,

dq
2

β2
= 1, (B4)

d3

β3
= − 1

(βE4)2

(
e−βE4 − 1 + βE4

)
,

dq
4

β4
= 1

12
, (B5)

dm
4

β4
= 1

(βE4)3

[
(e−βE4 − 1) + βE4

2
(1 + e−βE4 )

]
, (B6)

dmq
4

β4
= 1

(βE4)3

[
(1 − e−βE4 ) − βE4 + (βE4)2

2

]
. (B7)

Note that d3 < 0, while dm,q
2 , dm,q

4 , and dmq
4 are all positive.

Now, substituting Eq. (B3) into Eq. (B1), and retaining up
to the fourth-order terms, one finds

F = F̃0 + ãm

2
h2 + ãq

2
h̃2 + c̃

3
h2h̃ cos(2� + �)

+ b̃m

4
h4 + b̃q

4
h̃4 + b̃mq

4
h2h̃2, (B8)

F̃0 = −β−1 ln Z0, βãm = −2dm
2

Z0
, βãq = −2dq

2

Z0
, (B9)

β c̃ = −3d3

Z0
, βb̃m = −2dm2

2 − 4Z0dm
4

Z2
0

, (B10)

βb̃q = −2dq2
2 − 4Z0dq

4

Z2
0

, βb̃mq = −4
dm

2 dq
2 − Z0dmq

4

Z2
0

.

(B11)

Note ãm < 0 and ãq < 0, while others are positive. Using the
relation (B2), we obtain

mx = − ãmhx − b̃mh2hx − 1
2 b̃mqh̃2hx

− 2
3 c̃(hxh̃22 + hyh̃xy), (B12)

my = − ãmhy − b̃mh2hy − 1
2 b̃mqh̃2hy

− 2
3 c̃(hxh̃xy − hyh̃22), (B13)

q22 = − ãqh̃22 − b̃qh̃2h̃22 − 1
2 b̃mqh2h̃22

− 1
3 c̃
(
h2

x − h2
y

)
, (B14)

qxy = − ãqh̃xy − b̃qh̃2h̃xy − 1
2 b̃mqh2h̃xy − 2

3 c̃hxhy. (B15)

One can solve Eqs. (B12)–(B15) in terms of h and h̃ iteratively
and obtains

hx = 1

ãm

[
− mx + 1

ã3
m

(
b̃m + 2c̃2

9ãq

)
m2mx

+ b̃mq

2ã2
qãm

q2mx + 2c̃

3ãmãq
(mxq22 + myqxy)

]
, (B16)

hy = 1

ãm

[
− my + 1

ã3
m

(
b̃m + 2c̃2

9ãq

)
m2my

+ b̃mq

2ã2
qãm

q2my + 2c̃

3ãmãq
(mxqxy − myq22)

]
, (B17)

h̃22 = 1

ãq

[
−q22+ b̃q

ã3
q

q2q22+ b̃mq

2ã2
mãq

m2q22+ c̃

3ã2
m

(
m2

x − m2
y

)]
,

(B18)

h̃xy = 1

ãq

[
−qxy + b̃q

ã3
q

q2qxy + b̃mq

2ã2
mãq

m2qxy + 2c̃

3ã2
m

mxmy

]
,

(B19)

with m ≡ m(cos θ, sin θ )T and q ≡ q(cos φ, sin φ)T.
We have succeeded in expressing the conjugate fields h and

h̃ in terms of the expectation values m and q. Then, we carry
out the Legendre transformation and obtain the Landau free
energy FL(m, q) defined as

FL(m, q) = F (h(m, q), h̃(m, q)) + h(m, q) · m + h̃(m, q) · q.

(B20)

Using Eqs. (B16)–(B19), we find

h · m + h̃ · q

= −ã−1
m m2 − ã−1

q q2 + 1

ã4
m

(
b̃m + 2c̃2

9ãq

)
m4 + b̃q

ã4
q

q4

+ b̃mq

ã2
mã2

q

m2q2 + c̃

ã2
mãq

m2q cos(2θ + φ), (B21)

ãm

2
h2 + ãq

2
h̃2

= 1

2

(
1

ãm
m2 + 1

ãq
q2

)
− ã−4

m

(
b̃m + 2

9

c̃2

ãq

)
m4 − b̃m

ã4
q

q4

− c̃

ã2
mãq

m2q cos(2θ + φ) − b̃mq

ã2
mã2

q

m2q2, (B22)

b̃m

4
h4 + b̃m

4
h̃4 = 1

4

(
b̃m

ã4
m

m4 + b̃q

ã4
q

q4

)
, (B23)

b̃mq

4
h2h̃2 = b̃mq

4ã2
mã2

q

m2q2, (B24)

c̃

3
h2h̃ cos(2θ + φ) = − c̃

3ã2
mãq

m2q cos(2θ + φ)

− c̃2

9ã4
mãq

m4 − 4c̃2

9ã3
mã2

q

m2q2. (B25)
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Finally, FL(m, q) is given as

FL(m, q) = F0 + am

2
m2 + aq

2
q2 − c

3
m2q cos(2θ + φ)

+ bm

4
m4 + bq

4
q4 + bmq

4
m2q2, (B26)

F0 = −β−1 ln Z0, am = −1

ãm
, aq = −1

ãq
, (B27)

c = c̃

ã2
mãq

, bm = 1

ã4
m

(
b̃m − 4c̃2

9ãq

)
, (B28)

bq = b̃q

ã4
q

, bmq = 1

ã2
mã2

q

(
b̃mq − 16c̃2

9ãm

)
. (B29)

Note that am, aq, c, bm, bq, bmq are all positive. In the main
text, we do not use the terms proportional to q4 and m2q2

in Sec. II D since the quadrupole moment is not the primary
order parameter. However, in the microscopic mean-field
analysis in Sec. III, such terms are implicitly included and
play a role in determining the stable phases e.g., for low
temperatures.

APPENDIX C: MINIMIZATION OF F loc
4m + δF4

We discuss F tot
4m = F loc

4m + δF4m, where the two terms are
defined in Eqs. (37) and (29). First, we minimize F tot

4m in terms
of the phase degrees of freedom δn (n = 1, 2, 3). The terms
including δn are represented as F4δ:

F4δ (x, y) = −4c2

9

(
1

aQ
− 1

aQ
K

)
m1m2m3g(x, y), (C1)

where x ≡ 2δ3 − δ1 − δ2, y = 2δ2 − δ3 − δ1, and

g(x, y) ≡ m3 cos x + m2 cos y + m1 cos(x + y). (C2)

Note that δn dependence of F4δ arises from the two variables
x and y through g(x, y). Differentiating g(x, y) by x and y, we
obtain the following stationary conditions:

sin x + m1

m3
sin(x + y) = 0, (C3)

m2

m3
sin y + m1

m3
sin(x + y) = 0. (C4)

From the above two equations, one also finds

m2

m3
sin y = sin x. (C5)

1. aQ < aQ
K

First, we consider the case for aQ < aQ
K. There are triv-

ial solutions: x, y = 2�π with � = 0,±1, which leads to
g(x, y) = m1 + m2 + m3. We have checked numerically that
the symmetric solution with m1 = m2 = m3 has the lowest
free energy for aQ

K < aQ
0 . Remember that for aQ < aQ

K < aQ
0

the single-Q is stable as demonstrated in Fig. 3. The above
results are valid only near the highest second-order transi-
tion temperature from the paramagnetic state. It is generally
possible that other configurations are stabilized at low tem-
peratures.

The δn’s for the symmetric solution are (δ1, δ2, δ3) =
(δ, δ, δ), (δ + ω1, δ + ω2, δ + ω3), where δ is arbitrary and
ωn = 2nπ/3. Note that any permutations δi ↔ δ j and simulta-
neous sign changes of all the δi lead to different domains with
the same class of phase. These properties are also the case for
other configurations.

2. aQ > aQ
K

When aQ > aQ
K, we need to search stationary solutions with

g(x, y) < 0. Since the analysis for general mn are complicated,
we restrict ourselves on the limiting cases. When m2 = m3,
one can find a simple solution with x = y, which is sufficient
for our discussion in Sec. II D. Equation (C3) readily reads as

cos x = − m3

2m1
→ x = ±2π

3
for m1 = m3. (C6)

When m1 = m2 = m3, x, y = 2π/3 and this leads to
(δ1, δ2, δ3) = (δ, δ, δ + 2π/3), (δ, δ + 2π/3, δ), and (δ +
2π/3, δ, δ).

For checking the stability of the symmetric solution with
m1 = m2 = m3, we relax the condition m1 = m2. We find
g(x, y) = −m2

2/(2m1) − m1, and

F loc
4m + δF4m = 3b

2
R4 − c2

9

(
2

aQ
0

+ 1

aQ

)
R4

+ 2c2

3

(
1

aQ
0

− 1

aQ
K

)(
2m2

1m2
2 + m4

2

)
, (C7)

where R2 ≡ m2
1 + 2m2

2. It is trivial to find that the stationary
solution is that with m1 = m2 = m3. Again, this analysis is
valid near the second-order transition temperature between
paramagnetic and symmetry-broken phases.

3. C3 symmetric states

Here, we briefly show that the above two symmetric triple-
Q states preserve C3 rotational symmetry along the c axis. Let
us consider the real-space magnetic configuration consisting
of mn (n = 1, 2, 3):

m(r) =
∑

n=1,2,3

mn cos(kn · r + δn). (C8)

Denoting a space-group operation consisting of the C3 rotation
and translation T in the Seitz symbol as {C3|T }, we obtain

{C3|T }mn cos(kn · r + δn) = mn+1 cos(kn+1 · r+kn · T + δn).

(C9)

For Eq. (C8) being preserved under {C3|T }, δn+1 − δn =
kn · T must be satisfied. For simplicity, we restrict our-
selves within 3×3 sublattice orders. There are two such
classes of the translation vectors T = n1a1 + n2a2: (n1, n2) =
(0, 0), ±(0, 1), ±(1, 0), ±(1, 1), and ±(1,−1) within the
3×3 sublattice orders.
Case 1:

(n1, n2) =
{

(0, 0): δ = {δ, δ, δ},
(1, 1): δ = {δ + ω1, δ + ω2, δ + ω3}.

(C10)
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Case 2:

(n1, n2) =

⎧⎪⎨
⎪⎩

(1,−1): δ = {δ + 2π/3, δ, δ},
(1, 0): δ = {δ, δ + 2π/3, δ},
(0, 1): δ = {δ, δ, δ + 2π/3}.

(C11)

Here, we have defined δ ≡ {δ1, δ2, δ3}. For (−n1,−n2), one
simply replaces δ → −δ for the corresponding (n1, n2). Case
1 corresponds to the symmetric triple Q for aQ < aQ

K dis-
cussed in Appendix C 1 and case 2 is for aQ > aQ

K discussed
in Appendix C 2.

APPENDIX D: PHASE FIXING BY F loc
6m

Here, we show that the local sixth-order term F loc
6m deter-

mines the phase degree of freedom for the triple-(2) state and
the single-Q state, which have remained arbitrary in the free
energy up to the fourth order F tot

4m in Eqs. (C11) and (39). F loc
6m

is given by

F loc
6m = d

6N

∑
r

⎡
⎣∑

μ

mμ(r)mμ(r)

⎤
⎦

3

, (D1)

where d > 0 is a coefficient. For the triple-(2) state, substitut-
ing Eqs. (C8) and (C11) into Eq. (D1), we obtain

F triple(2)
6m = d

6

[
8 sin6 δ − 12 sin4 δ + 9

2
sin2 δ + 9

4

]
m6. (D2)

The minima of Eq. (D2) are at δ = nπ/3 (n = 0,±1,±2, 3).
Similarly, F single

6m for the single-Q order is obtained

F single
6m = d

6

[
8 cos6 δ − 12 cos4 δ + 9

2
cos2 δ + 9

4

]
m6, (D3)

with its minima at δ = π/6 + nπ/3 (n = 0,±1,±2, 3). Fi-
nally, the phase factor for the triple-(1) state [Eq. (C10)] is
not fixed by F loc

6m and even by the higher-order terms in the
local free energy. This is obvious since any choice of δ gives
the same magnitudes of mμ(r) for the six of nine sites in the
magnetic unit cell, and the other three remain disordered. This
is an accidental degeneracy and lifted by effects beyond our
model, e.g., the sixth-order anisotropic term due to the local
anisotropy absent here.

APPENDIX E: RESULTS FOR OTHER
INTERACTION PARAMETERS

In the main text, we have shown the results for JM
1 = 0,

and this is because JM
1 is not important for the orders at

kn. In this Appendix, we will briefly show the results for
finite JM

1 in Appendix E 1 and for parameter sets without the
experimental constraints in JQ

1 and JQ
2 in Appendix E 2. The

effects of the anisotropic interaction KM
1 are also examined. In

Appendix E 3, as an example of various possible fine tuning
of the microscopic parameters for the low-T Curie-Weiss
behavior observed in Ref. [83], we will examine the effect
of A1g quadrupole (O20) interactions. This Appendix can help
readers understand the more global situation/phase diagram
than that for the parameters suitable to UNi4B used in the
main text.

FIG. 12. JM
1 -JQ

1 phase diagram with the constraint (11) at T = 0.
The other parameters are the same as those in Fig. 4. All the phase
transitions are of the first order. For each phase, schematic config-
urations of magnetic dipole and electric quadrupole moments are
illustrated.

1. Effect of finite JM
1

Here, we show the mean-field results for finite JM
1 in order

to check the phases discussed in the main text exist for finite
JM

1 as far as JM
1 does not alter the leading instability.

Figure 12 shows the JM
1 -JQ

1 phase diagram at T = 0. Other
interaction parameters are the same as those in Fig. 4. Since
the eigenvalue of ĴM

p has minima at the M points kM =
(1/2, 0) and the equivalent ones for JM

1 > 4 K, there appear
magnetic orders with the ordering vector at kM. This is clearly
seen in Fig. 12 as a stripe phase for positive JM

1 � 2.5 K.
Other differences from Fig. 4 include an up-up-down (UUD)
phase that appears as an alternative of the single-Q phase for
negative JM

1 � −3 K. The UUD phase has a finite magneti-
zation and is stabilized for negatively large JM

1 . The triforce,
120◦ AFQ, and canted AFM(cT+AFM2) orders are more
stable than the single-Q order. For larger JM

1 and −JQ
1 , a

low-symmetry AFM order with 6×6 magnetic unit cell is
stabilized. From these results, one can understand that the sim-
plified parametrization in the main text with JM

1 = 0 contains
the essential aspects of the triple-Q orders at kn for small JM

1 .

2. Results without experimental constraints on JQ
1 and JQ

2

We have considered five interaction parameters JM
1 , JM

2 ,
JQ

1 , JQ
2 , and KM

1 , with JM
1 = 0 in the main text. We have

applied the experimental constraints (9)–(11) and discussed
possible orders with the ordering vector kn and which one
can explain the observed ME effect in UNi4B. Although the
detailed analysis for more general parameter space is not our
primary purpose in this paper, it is important to understand the
stability of various phases discussed in the main text against
variation in our parameters without the constraints.

Figure 13 shows the results when the condition (11) about
θ

Q
CW is not imposed and either JQ

1 or JQ
2 is finite. Figures 13(a)

and 13(b) show the result for KM
1 = −1.5 K, the same as the

main text, while Figs. 13(c) and 13(d) show the results for
KM

1 = 0 and JM
2 = 12.5 K.

104413-23



TAKAYUKI ISHITOBI AND KAZUMASA HATTORI PHYSICAL REVIEW B 107, 104413 (2023)

FIG. 13. T -JQ
1(2) phase diagrams without the θ

Q
CW constraint (11). (a) T -JQ

1 phase diagram for KM
1 = −1.5, JQ

2 = 0, and JM
2 = 11 K. (b) T -JQ

2

phase diagram for KM
1 = −1.5, JQ

1 = 0, and J2 = 11 K. (c) T -JQ
1 phase diagram for KM

1 = 0, JQ
2 = 0, and JM

2 = 12.5 K. (d) T -JQ
2 phase diagram

for KM
1 = 0, JQ

1 = 0, and JM
2 = 12.5 K. The phase boundaries drawn by the filled circles represent second-order transitions, while the open

circles mean first-order ones. For each phase, schematic configurations of magnetic dipole and electric quadrupole moments are illustrated.
States in (c) and (d) are isotropic and can be rotated globally. As a representative state, the order parameters corresponding to the infinitesimal
KM

1 < 0 are shown.

In either case, the triforce and single-Q orders are stable
at low temperatures when the quadrupole interactions are
sufficiently large. The degeneracy of the triforce and single-Q
orders for JQ

2 < 0 and JQ
1 = 0 is an accidental one, which is

lifted by infinitesimal JQ
1 ; triforce (single-Q) order is favored

for JQ
1 > 0 (JQ

1 < 0). See also the free-energy expressions
(38) and (42), and Table I.

Let us focus on the regions where the quadrupole inter-
actions are small in Fig. 13. For KM

1 = −1.5 K, a partial
disordered phase with one-ninth of sites remaining disordered
( 1

9 disorder) is realized at high temperatures. In the quite nar-
row range shown in Fig. 13(b), this is stable down to T = 0.
This phase has C2 rotational symmetry but no C3 symmetry.
Thus, quadrupole moments are induced at the magnetically
disordered sites. For KM

1 = 0, a fully magnetically ordered
state (denoted simply as AFM) is stable from high to low
temperatures.

We note that (i) the presence or absence of KM
1 generates

only the detail difference both for JQ
1 and JQ

2 variations as
shown in Fig. 13. This is clear by the observation of similar
shapes of the phases between Figs. 13(a) and 13(c), and 13(b)
and 13(d). (ii) The triforce or single-Q orders appear for a
wide range of parameter space for relatively large JQ

1,2. This
is also consistent with the fact that the quadrupole degrees
of freedom are important for their realization, as discussed in
Sec. II D.

3. An example of fine tuning about the low-T quadrupolar
Curie-Weiss temperature: O20 quadrupole interactions

We now examine the effects of quadrupole interaction
on the quadrupole saturation scale T � (or T ∗ as denoted
for the experimental data). As discussed in Sec. IV D 1, the
characteristic temperature scale T � ∼ 5 K in the numerical
results in the main text is much higher than T ∗ ∼ 0.3 K [83].
In the mean-field approximation of the localized model, it
is necessary to tune the quadrupole exchange interaction at
the � point JQ

� small for decreasing T �. However, for the
smaller quadrupole interactions, the more fragile the triforce
or single-Q phases are. In Appendix E 3 a, we will show
the JQ

� dependence of the phase diagram by controlling JQ
2

with fixed JQ
1 for the similar parameter set used in the main

text. Then, in Appendix E 3 b, we will introduce additional
O20 quadrupole interactions and try to search parameter sets
satisfying both the small T � and the stable triforce phase.

a. JQ
� dependence

First, we discuss the variation of JQ
� . Figure 14(a)

shows T -JQ
� phase diagram for (JM

1 , JM
2 , JQ

1 , JQ
2 , KM

1 ) =
(0, 11, 0.15, JQ

� /6 − 0.15,−1.5) K, which are the same as
those in Fig. 6 except for JQ

2 . The triforce order is stable
at T = 0 for JQ

� � −5 K. The other phases at T = 0 are
magnetic without magnetically disordered sites. Figure 14(b)
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FIG. 14. Phase diagrams and temperature dependencies of or-
der parameters and thermodynamical quantities. (a) T -JQ

� phase
diagram. The interaction parameters are (JM

1 , JM
2 , JQ

1 , JQ
2 , KM

1 ) =
(0, 11, 0.15, JQ

� /6 − 0.15, −1.5) K. (b) Temperature dependence of
the magnetic M1/3,2/3 and quadrupole Q1/3,2/3 moment in the real
space. See the definition in the caption in Fig. 6. (c) Temperature de-
pendence of magnetic (quadrupole) susceptibilities χM (χQ) and spe-
cific heat C divided by T , C/T . The interaction parameters in (b) and
(c) are (JM

1 , JM
2 , JQ

1 , JQ
2 , KM

1 ) = (0, 11, 0.15, −1.15, −1.5) K, which
correspond to JQ

� = −6 K as indicated by the horizontal line in (a).

shows the temperature dependence of the magnitudes of the
order parameters in the real space for JQ

� = −6 K. In compar-
ison with that in Fig. 6(b) where JQ

� = −11 K, the downward
convex T dependence behavior of Q1/3 is more prominent.
Meanwhile, the quadrupole susceptibility χQ increases down
to T � ∼ 3 K, and C/T has a peak at ∼3 K as shown in
Fig. 14(c). However, the complete Curie-Weiss fitting of χQ in
the ordered phase is not successful since χQ saturate at ∼3 K.
This is because the mean fields acting on the quadrupole
moments at the magnetically disordered sites from the mag-
netically ordered sites cannot be ignored.

b. O20 quadrupole interaction

So far, we have considered the interactions of in-plane
magnetic dipole and electric quadrupole moments. Here, we
discuss O20 quadrupole moments, which affect the order
parameters since the O20 belongs to the totally symmetric
representation and couples to any components of the or-
der parameters. In particular, O20 interactions behave as a
temperature-dependent CEF energy E4. They affect the rela-
tive stability between the magnetic orders and the quadrupole
ones. For other quadrupole moments, such as the two-
dimensional Oyz,zx is expected to be irrelevant since they are
not coupled with the primary in-plane magnetic moments.

We should comment that this parameter choice is not based
on the microscopic information, such as the spin-wave fitting
of the inelastic neutron scattering data or the first-principle
calculations. The results shown below are aimed to demon-
strate a possible example to describe the quantitative aspect
of the quadrupole susceptibility in UNi4B, and we do not rule
out other unknown quantitative explanations.

The quadrupole O20 is defined in Eq. (3). We consider up to
the next-nearest-neighbor interactions JQ′

1 and JQ′
2 . To simplify

the discussion, we take a constraint. The interaction at the �

point JQ′
� is fixed to zero since finite JQ′

� modifies the tran-
sition temperature TN. Thus, the parameter that we can vary

FIG. 15. (a) JQ′
2 -JQ

� phase diagram for (JM
1 , JM

2 , JQ
1 , JQ

2 , KM
1 ) =

(0, 11, 0.15, JQ
� /6 − 0.15, −1.5) K, and JQ′

1 = −JQ′
2 . The vertical

line is a guide for JQ′
2 = 15 K, and the horizontal line is for JQ

� =
−1 K. (b) Temperature dependencies of order parameters for JQ′

1 =
−JQ′

2 = −15 and JQ
� = −1 K [the crossing point of the two guided

lines in (a)]. (c) Thermodynamical quantities: magnetic (quadrupole)
susceptibilities χM (χQ) and specific heat C divided by T , C/T for
the same parameter set in (b). In (b), M1/3,2/3 and Q1/3,2/3 represent
the magnetic (quadrupole) moment in the real space. See the def-
inition in the caption in Fig. 6. The dashed line in (c) shows the
Curie-Weiss fitting in 0.3 K < T < 10 K.

is JQ′
2 = −JQ′

1 . Note that the triforce and the single-Q orders
induce the O20 moments at k1,2,3 and will be stabilized by
the positive JQ′

2 leading to JQ′
k1,2,3

< 0, while the toroidal order
induces the O20 moment at the K point, which is stabilized
by the negative JQ′

2 leading to JQ′
kK

< 0. The wave vectors of
induced O20 moments are straightforwardly obtained by the
coupling q20

q1
mq2

· mq3
, where q20 is the O20-type quadrupole

field and q1 + q2 + q3 is a reciprocal lattice vector. We will
focus on the triforce order and set JQ′

2 > 0. The impact of
the O20 interactions on the stability of the single-Q order
is considered to be similar to that of the triforce order. For
the toroidal order, it cannot be realized at T = 0 since it has
disordered sites. We have discussed the stability of the toroidal
order under a more realistic situation reflecting the crystal
structure in Sec. IV B

Figure 15(a) shows JQ′
2 -JQ

� phase diagram at T =
0. The interaction parameters are (JM

1 , JM
2 , JQ

1 , JQ
2 , KM

1 ) =
(0, 11, 0.15, JQ

� /6 − 0.15,−1.5) K, and JQ′
1 = −JQ′

2 . The tri-

force order is stable even at JQ
� = 0 for JQ′

2 ∼ 20 K. The

triforce′ phase in large JQ
� and JQ′

2 is similar to the triforce
order but with a different quadrupole configuration at the mag-
netically disordered sites. The other phases are magnetic ones,
with all the sites magnetically ordered. Figure 15(b) shows
the temperature dependence of the magnitudes of the order
parameters in the real space for JQ′

2 = 15 K and JQ
� = −1 K.

As a consequence of the small in-plane quadrupole inter-
actions, the downward convex behavior is more prominent.
Interestingly, the quadrupole susceptibility increases down to
T � ∼ 0.3 K, and C/T has a peak also at ∼0.3 K as shown in
Fig. 15(c). The quadrupole susceptibility is well fitted by the
Curie-Weiss low in 0.3 K < T < 10 K with a weak antiferro-
quadrupole interaction ∼0.5 K.

The above parameter tuning leads to the small quadrupole
energy scale T �. However, the drawback of the small JQ

� is
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that the Curie-Weiss constraint (11) is not satisfied, and the
value of JQ′

2 is rather large. Such large O20 coupling is not
impossible but seems to be difficult to naively expect. The
examination of such a possibility and also explorations of
other mechanisms to lower T ∗ are important future problems
for the triforce scenario. The issue about the Curie-Weiss

temperature θ
Q
CW of the quadrupole susceptibility χQ at the

paramagnetic phase includes some ambiguity since there is
a jump at TN in χQ in the mean-field approximation, which
might influence the estimation of θ

Q
CW. To clarify this, one

needs more elaborate calculations beyond the mean-field
theory.
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