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Enhanced spin-orbit coupling and orbital moment in ferromagnets by electron correlations
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In atomic physics, the Hund’s rule states that the largest spin and orbital state is realized due to the interplay
of spin-orbit coupling (SOC) and Coulomb interactions. Here, we show that in ferromagnetic solids the effective
SOC and the orbital magnetic moment can be dramatically enhanced by a factor of 1/[1 − (2U ′ − U − JH )ρ0],
where U and U ′ are the on-site Coulomb interaction within the same orbitals and between different orbitals,
respectively, JH is the Hund’s coupling, and ρ0 is the average density of states. This factor is obtained by
using the two-orbital as well as five-orbital Hubbard models with SOC. We also find that the spin polarization
is more favorable than the orbital polarization, being consistent with experimental observations. The theory
is also extended to study the spin fluctuations and long-range Coulomb interactions, and can be applied to
understand the enhanced orbital magnetic moment and giant Faraday effect in ferromagnetic nanogranules in
recent experiments. This present paper provides a fundamental basis for understanding the enhancements of
SOC and orbital moment by Coulomb interactions in ferromagnets, which would have wide applications in
spintronics.
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I. INTRODUCTION

The Hund’s rule in atomic physics says that the state with
both the largest spin moment and the largest orbital moment is
realized in an atom, required by the minimum of the Coulomb
repulsive energy. A similar picture was obtained in magnetic
impurity systems. In the Anderson impurity model, the spin
magnetic moment of impurities is developed due to a large
on-site Coulomb interaction U [1]. In 1964, the extended An-
derson impurity model with degenerate orbitals was studied,
where the role of U and the Hund’s coupling JH was ad-
dressed [2,3]. Forty years ago, Yafet also studied the Anderson
impurity model within the Hartree-Fock approximation and
found that the on-site Coulomb interaction of impurities can
enhance the effective spin-orbit coupling (SOC) in the spin-
flip cross section [4]. Later, Fert and Jaoul applied this result
to study the anomalous Hall effect due to magnetic impuri-
ties [5]. The relation between the on-site Coulomb interaction
U and the effective SOC in magnetic impurity systems has
also been discussed by density functional theory (DFT) cal-
culations [6] and quantum Monte Carlo simulations [7]. The
multiorbital Hubbard models have been extensively addressed
by some advanced numerical calculations, such as quantum
Monte Carlo simulations [8,9], and dynamical mean-field
theory calculations [10–22]. The long-range Coulomb inter-
actions in Hubbard models have also been studied [23–27].
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In these years, one of the fast developing areas in con-
densed matter physics is spintronics [28,29]. It aims to
manipulate the spin rather than the charge degree of free-
dom of electrons to design next-generation electronic devices
of small size, with a faster calculating ability and lower
energy consumption. SOC, as one of the key ingredients
in spintronics, is related to many significant physical phe-
nomena and novel matter [30]. In addition to the magnetic
anisotropy [28,31], SOC plays an important role in phenom-
ena such as the anomalous Hall effect [32,33], the spin Hall
effect associated with the spin-charge conversion [34–37],
topological insulators [38–42], skymions [43–45], and so on.
To design better spintronic devices, a large SOC is usually re-
quired. As SOC is a relativistic effect in quantum mechanics,
it is often small in many materials. A key issue is what factors
can affect the magnitude of the SOC in solids.

On the other hand, the orbital moment in FeCo nanogran-
ules was experimentally shown to be about three times larger
than that in bulk FeCo, as a result of the enhanced Coulomb
interaction in the FeCo/insulator interface [46], because the
Coulomb interaction in the FeCo/insulator interface is ex-
pected to be larger than that in the ferromagnetic FeCo bulk.
In addition, a large Coulomb interaction up to 10 eV was
discussed in Fe thin films in the experiment [47]. The spin
polarization in the Hubbard model with Rashba SOC can
also be enhanced by the on-site Coulomb interaction U [48].
Recently, in the two-dimensional magnetic topological insu-
lators PdBr3 and PtBr3, DFT calculations show that the band
gap and the SOC can be strongly enhanced by the Coulomb
interaction [49]. The interplay of the Coulomb interaction and
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spin-orbit coupling has been discussed by numerical calcula-
tions [50–55].

Inspired by recent experimental and numerical results on
the enhanced SOC due to the Coulomb interaction in strongly
correlated electronic systems, here we develop a theory on
the relation between the SOC and Coulomb interaction in
ferromagnets. By a two-orbital Hubbard model with SOC, we
find that the effective SOC and orbital magnetic moment in
ferromagnets can be enhanced by a factor of 1/[1 − (2U ′ −
U − JH )ρ0], where U and U ′ are the on-site Coulomb inter-
action within the same orbitals and between different orbitals,
respectively, JH is the Hund’s coupling, and ρ0 is the average
density of states. The same factor has also been obtained
for a five-orbital Hubbard model with degenerate bands. Our
theory can be viewed as the realization of Hund’s rule in
ferromagnets.

II. TWO-ORBITAL HUBBARD MODEL WITH SOC

Let us consider a two-orbital Hubbard model, where only
a pair of orbitals with opposite orbital magnetic quantum
numbers m (−1 and 1, or −2 and 2) are considered. Thus,
the Hamiltonian can be written as

H =
∑

k,m,σ

εkmσ nkmσ + U
∑

i,m

nim↑nim↓

+ U ′ ∑

i,σ,σ ′
nimσ nim̄σ ′ − JH

∑

i,σ

nimσ nim̄σ , (1)

where εkmσ is the energy of an electron with wave vector k,
orbital m, and spin σ (↑,↓) [56], U and U ′ are the on-site
Cuolomb repulsion within the orbital m and between different
orbitals m and m′, respectively, JH is the Hund’s coupling, and
nkmσ (nimσ ) represents the particle number with wave vector
k (site index i), orbital m, and spin σ . For simplicity, we
consider four degenerate energy bands, which are lifted by an
external magnetic field h and the Ising-type SOC [5],

εkmσ = εk − σμBh − 1
2σλsom, (2)

where λso is the SOC constant, and εk is the elec-
tron energy without an external magnetic field and
SOC. Using the Hartree-Fock approximation, we have
nimσ nim′σ ′ ≈ 〈nimσ 〉nim′σ ′ + 〈nim′σ ′ 〉nimσ − 〈nimσ 〉〈nim′σ ′ 〉. As-
suming the system is homogeneous, the occupation number
nimσ is independent of lattice site i, 〈nimσ 〉 ≈ 〈nmσ 〉, and
through a Fourier transformation

∑
i nimσ = ∑

k nkmσ , the
Hamiltonian in Eq. (1) can be diagonalized as

H ≈
∑

k,m,σ

ε̃kmσ nkmσ , (3)

with ε̃kmσ = εk − σμBh − 1
2σλsom + U 〈nmσ̄ 〉 + U ′(〈nm̄σ 〉 +

〈nm̄σ̄ 〉) − JH 〈nm̄σ 〉. We define the spin polarization per site
as sz = μB(〈nm↑〉 − 〈nm↓〉 + 〈nm̄↑〉 − 〈nm̄↓〉), and the orbital
polarization per site as lz = mμB(〈nm↑〉 − 〈nm̄↑〉 + 〈nm↓〉 −
〈nm̄↓〉). Here, we should remark that the so-defined orbital
polarization from itinerant electrons on different orbitals with
SOC differs from the conventional orbital moments of atoms
that are usually quenched owing to the presence of crys-
tal fields in transition metal ferromagnets. We introduce the
particle numbers of the parallel (np) and antiparallel (nap)

states of the spin σ and orbital m: np = 〈nm↑〉 + 〈nm̄↓〉, nap =
〈nm̄↑〉 + 〈nm↓〉. Then the energy ε̃kmσ can be written as ε̃kmσ =
ε̄ − σμB(h + U+JH

4μ2
B

sz ) − 1
2 m(σλso − U−2U ′+JH

2μBm2 lz ).

A. Spin polarization

It is noted that without an external magnetic field h
and SOC λso, the four energy bands with spin σ (↑ and
↓) and orbital m (for example, 1 and −1) are degen-
erate, and the occupation numbers nap = np. In terms of
the translational symmetry of the lattice system, 〈nmσ 〉 =
1
N

∑
i〈nimσ 〉 = 1

N

∑
k〈nkmσ 〉 = 1

N

∑
k f (ε̃kmσ ), where f is the

Fermi distribution function. For a system with a paramag-
netic (PM) state (h = 0), f (ε̃kmσ ) can be expanded according
to h, which is a small value compared to the Fermi en-
ergy, and nap = np, sz = μB

∑
k[ f (ε̃PM,km↑) − f (ε̃PM,km↓) +

f (ε̃PM,km̄↑) − f (ε̃PM,km̄↓)] = 0. Up to the linear order of h, the
spin polarization becomes

sz = 4μ2
Bρ0

1 − (U + JH )ρ0
h, (4)

where ρ0 = 1
4

∫ ∞
0 [− ∂ f (E )

∂E ][ρm↑(E ) + ρm̄↑(E ) + ρm↓(E ) +
ρm̄↓(E )]dE is the average density of states of the four energy
bands. The instability condition of the spin polarization is

(U + JH )ρ0 > 1. (5)

This condition can be taken as an extension of the Stoner
criterion in the presence of SOC in itinerant ferromagnets.

B. Orbital polarization

Similarly, the orbital polarization can be expressed as lz =
μBm(〈nm↑〉 − 〈nm̄↑〉 + 〈nm↓〉 − 〈nm̄↓〉) = μBm

N

∑
k[ f (ε̃km↑) −

f (ε̃km̄↑) + f (ε̃km↓) − f (ε̃km̄↓)]. For the ferromagnetic (FM)
state, the SOC can be regarded as a small value [5], so
f (ε̃kmσ ) can be expanded according to λso, and when λso = 0,
nap = np, the zero-order term is zero. To the linear order of
λso, the orbital polarization gives

lz = m2μBρs

1 − (2U ′ − U − JH )ρ0
λso, (6)

where ρs = 1
2

∫ ∞
0 [− ∂ f (E )

∂E ][ρm↑(E ) + ρm̄↑(E ) − ρm↓(E ) −
ρm̄↓(E )]dE is the average spin-polarized density of states.
Then Eq. (6) can be rewritten as lz = μBm2ρsλ

eff
so , where the

effective SOC λeff
so is

λeff
so = λso

1 − (2U ′ − U − JH )ρ0
. (7)

One may note that the orbital polarization discussed here
[Eq. (6)] is totally induced by the SOC, which can be en-
hanced by increasing U ′ or decreasing U and JH ; we will
discuss this in detail. In the absence of SOC, such an orbital
polarization is absent according to Eq. (6). The instability
condition of orbital polarization would be

(2U ′ − U − JH )ρ0 > 1. (8)

The detailed derivation is given in the Supplemental
Material [57].
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TABLE I. Comparison of the theoretical results among the Anderson impurity model, the one-orbital Hubbard model (Stoner model), and
our two- and five-orbital Hubbard models with spin-orbit coupling (SOC). sz and lz are the spin and orbital polarization, respectively. The
instability conditions (ICs) of sz and lz in these models are listed. λeff

so is the effective SOC affected by atomic SOC λso, the electron correlations
U , U ′, and JH , and the electron density of states ρ. The equations of the five-orbital Hubbard model can be found in the Supplemental
Material [57].

One-orbital Hubbard Two-orbital Hubbard Five-orbital Hubbard model with
Anderson impurity model model (Stoner) SOC (m = ±1 or m = ±2) SOC (m = 0, ±1, ±2)

sz
2μ2

Bρ(EF )
1−Uρ(EF ) h [58]

4μ2
Bρ0

1−(U+JH )ρ0
h [Eq. (4)]

10μ2
Bρ0

1−(U+4JH )ρ0
h [Eq. (63)]

lz
m2μBρs

1−(2U ′−U−JH )ρ0
λso [Eq. (6)] μB (ρ1s+4ρ2s )

1−(2U ′−U−JH )ρ0
λso [Eq. (78)]

IC of sz (U + 4JH )ρ(EF ) > 1 [2,3] Uρ(EF ) > 1 [58] (U + JH )ρ0 > 1 [Eq. (5)] (U + 4JH )ρ0 > 1 [Eq. (65)]

IC of lz (2U ′ − U − JH )ρ0 > 1 [Eq. (8)]

λeff
so

λat
1−(U−JH )ρ(EF ) [4] λso

1−(2U ′−U−JH )ρ0
[Eq. (7)]

III. FIVE-ORBITAL HUBBARD MODEL WITH SOC

Our theory can be easily extended to the five-orbital Hub-
bard model with degenerate bands, and a detailed derivation
is given in the Supplemental Material [57]. For the five-orbital
case, the instability condition of the spin polarization becomes
(U + 4JH )ρ0 > 1. The same expression has been obtained
for the presence of a localized spin moment in the Anderson
impurity model with degenerate orbitals [2,3]. The obtained
instability condition of the orbital polarization is (2U ′ − U −
JH )ρ0 > 1, which is the same as Eq. (8) for the two-orbital
case. In the five-orbital case, the effective SOC and the or-
bital magnetic moment can also be enhanced by a factor of
1/[(2U ′ − U − JH )ρ0], that is, the same enhancement factor
as in the two-orbital case.

IV. DISCUSSION

The comparison between our theory, the Stoner model,
and the Anderson impurity model is shown in Table I. It is
interesting to note that the instability conditions of sz between
our five-orbital Hubbard model with SOC and the Anderson
impurity model are the same, while the obtained effective
SOC λeff

so between the two models are different. Comparing
Eqs. (5) and (8), which are the spin and orbital instability
conditions of the two-orbital model in Table I, one may note
that the condition of spontaneous orbital polarization is more
stringent than that of spontaneous spin polarization. The phase
diagram of the spontaneous spin and orbital polarizations as a
function of the inverse of average density of states 1/ρ0 and
the Coulomb interaction U obtained with Eqs. (5) and (8) is
depicted in Fig. 1. Considering the relation U = U ′ + 2JH and
the reasonable values of U = 4–7 eV in the 3d transitional
metal oxides [59], for 3d electrons, JH = 1, U ′ = 5, U =
7 eV are a set of reasonable values, so for simplicity we keep
the ratio U : U ′ : JH = 7 : 5 : 1 in Eq. (7), and the shaded
area with blue (red) solid lines indicates the spontaneous spin
(orbital) polarization. The Stoner criterion of the spontaneous
spin polarization based on the single-orbital Hubbard model is
also plotted in Fig. 1 for comparison. The results show that the
area of spontaneous orbital polarization is enclosed in an area
of spontaneous spin polarization. In other words, it is more
stringent to have spontaneous orbital polarization, which is

consistent with the fact that spontaneous orbital polarization
is rarely observed in experiments.

In Stoner’s theory, a single-orbital Hubbard model was
studied with a mean-field approximation, and it is shown that
the spin magnetic moment can be enhanced by a factor of
1/(1 − Uρ), the so-called Stoner enhancement factor. In our
work, multiorbital Hubbard models are studied with a similar
mean-field approximation, and it is shown that the orbital
magnetic moments and the effective SOC can be enhanced by
a factor of 1/[1 − (2U ′ − U − JH )]ρ0. In both Stoner’s theory
and our work, the parameters of U , U ′, and JH are not so large,
not in the large U values to induce the Mott metal-insulator
transition.

V. EXTENSION OF OUR THEORY

We can extend our theory with the following three ap-
proaches. First, let us discuss the spin fluctuations in static

FIG. 1. The phase diagram of spontaneous spin and orbital po-
larizations as a function of the inverse average density of states and
the Coulomb interaction U . The shaded area with blue solid lines
represents the spontaneous spin polarization determined by Eq. (5).
The shaded area with red solid lines represents the spontaneous
orbital polarization determined by Eq. (8). The black dotted line
indicates the Stoner criterion of the spontaneous spin polarization,
which is obtained by the single-orbital Hubbard model.
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magnetic susceptibility. In 1964, Hubbard had discussed the
scattering correction and the resonance broadening correction
in the single-orbital Hubbard model based on the higher-order
Green’s function [60]. Following Hubbard’s paper, it is shown
that there are three spin fluctuation terms appearing in the
equation of motion. These spin fluctuation terms exactly can-
cel out each other, and do not appear in the final expression of
the higher-order Green’s function [60]. Although spin fluctua-
tion terms can appear in even higher-order Green’s functions,
we note that the spin fluctuation in static magnetic suscepti-
bility is a kind of higher-order effect, and could have small
impacts on SOC. The details of the discussion are given in
Sec. III of the Supplemental Material [57].

Second, we study the spin fluctuation and electron correla-
tions in transverse dynamical susceptibility. By the random
phase approximation, we calculated the transverse dynami-
cal spin and orbital susceptibilities in a two-orbital Hubbard
model. It is shown that transverse dynamic spin susceptibility
can be enhanced by a factor of

1

1 − U�−+
spin,m (q, ω)

, (9)

and the transverse dynamical orbital susceptibility can be en-
hanced by a factor of

1

1 − (U ′ − JH )�−+
orb,σ (q, ω)

, (10)

where �−+
spin,m (q, ω) and �−+

orb,σ (q, ω) are the transverse dy-
namic spin and orbital susceptibilities, respectively, without
the Coulomb interactions. Our results show that the Coulomb
interactions can enhance the transverse dynamical spin and
orbital susceptibilities. The details are given in Sec. IV of the
Supplemental Material [57].

Third, we consider the long-range Coulomb interactions
and static magnetic susceptibility. With the Hartree-Fock ap-
proximation, we studied the effect of long-range Coulomb
interactions in a five-orbital Hubbard model. We showed that
the static spin susceptibility can be enhanced by a factor of

1

1 − [U + 4JH + (V − V ′′)Z]ρ0
, (11)

and the static orbital susceptibility and the effective SOC can
be enhanced by a factor of

1

1 − [2U ′ − U − JH + (2V ′ − V − V ′′)Z]ρ0
. (12)

The long-range Coulomb interactions between the nearest-
neighboring sites are considered: V between the same orbitals
and different spins, V ′ between different orbitals and any
spins, and V ′′ between the same orbitals and the same spins. Z
is the number of nearest-neighboring sites. Our results reveal
that the long-range Coulomb interactions can enhance the
static magnetic susceptibility, the static orbital susceptibility,
and the effective SOC. The details are given in Sec. V of the
Supplemental Material [57].

VI. APPLICATIONS

Our theory can be applicable in the following two experi-
ments: first, the large orbital magnetic moment in FeCo-MgF2

FeCo bulk (Exp; Ref.46)
FeCo nanogranules (Exp; Ref.46)

FeCo (Eq. 13)
DFT: ρ� = 0.07 (1/eV)

U (eV)

R
en

or
m

al
iz

ed
 l�

FIG. 2. The enhancement of orbital magnetic moment lz in the
FeCo nanogranules due to the Coulomb interaction U . The renor-
malized orbital moments of FeCo bulk and FeCo nanogranules in
the experiment [46] are noted by the solid black pentagon and solid
black star, respectively. The orange solid line is the result by Eq. (13),
where ρ0 is the density of states at the Fermi energy of the FeCo
interface calculated by the DFT.

nanogranules in a recent experiment [46]. In the experiment,
the orbital magnetic moment in FeCo nanogranules is ob-
served to be three times larger than that of FeCo bulk. The
orbital magnetic moment can be calculated by Eq. (6). The
ratio of the orbital magnetic moment lz2 with the Coulomb
interaction to the orbital magnetic moment lz2 without the
Coulomb interaction can be approximately written as

lz2

lz1
= 1

1 − (2U ′ − U − JH )ρ0
. (13)

As shown in Fig. 2, substituting ρ0 of the FeCo interface
with ρ0 ∼ 0.07 (1/eV) obtained by DFT calculations and the
ratio of lz2/lz1 = 3 between the orbital magnetic moments
of FeCo nanogranules and FeCo bulk in the experiment into
Eq. (13), U can be estimated to be about 9.5 eV for the FeCo
interface, which is somehow larger than the value of U =
4–7 eV used in the 3d transition metal compound [59]. Thus,
Eq. (13) can be used to qualitatively explain the enhancement
of orbital magnetic moment for the FeCo nanogranules in
the experiment. The FeCo nanogranules can lead to enhanced
Coulomb interactions due to the decreased screening effect at
the FeCo/MgF2 interface, and the enhanced Coulomb inter-
actions at the interfaces can induce a large orbital magnetic
moment.

The second is the giant Faraday effect in FeCo-(Al-
fluoride) nanogranular films in a recent experiment [61]. In
the experiment, the FeCo-(Al-fluoride) nanogranular films
exhibiting Faraday rotation 40 times larger than that of Bi-
YIG at the wavelength of the optical communication band.
The effective SOC can be calculated by Eq. (7). The FeCo
nanogranules can lead to the enhanced Coulomb interactions
due to the decreased screening effect at the FeCo/Al-fluoride
interface, where the enhanced Coulomb interactions at the
interfaces can lead to the enhanced effective SOC, and the
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PdBr� (Eq. 14)
Aλso  = 11.48 (meV)
ρ� = 0.36 (1/eV)

PtBr� (Eq. 14)
Aλso  = 16.75 (meV)
ρ� = 0.66 (1/eV)

PtBr� (DFT; Ref.49) PdBr� (DFT; Ref.49)

FIG. 3. The enhanced energy gap due to Coulomb interaction U .
The blue solid triangles and purple solid circles give the band gap
of PtBr3 and PdBr3, respectively, obtained by the density functional
theory (DFT) calculations with different parameter U [49]. The blue
and purple solid lines are fitted results by Eqs. (7) and (14), where
the Aλso and ρ0 are the fitting parameters.

latter can induce the enhanced Faraday effect. Similarly, the
enhanced magneto-optical Kerr effect at the Fe/insulator in-
terface was also predicted by numerical calculations [62].

Equation (7) shows that Coulomb interactions can enhance
the effective SOC. Recently, for magnetic topological insula-
tors PdBr3 and PtBr3, it is found that the energy gap increases
with an increase of the Coulomb interaction U [49]. The
enhancement of SOC by the Coulomb interaction U can be
naturally obtained with Eq. (7). In these topological materials,
the energy gap is opened due to the SOC, whereas the energy
gap 	g can be approximately proportional to λeff

so ,

	g = Aλeff
so , (14)

where A is the coefficient. As shown in Fig. 3, the blue solid
triangles and purple solid circles represent the band gaps of
PtBr3 and PdBr3, respectively, which are obtained by the DFT
calculations with different U values [49]. The blue and purple
solid lines are fitted by Eqs. (7) and (14), where Aλso and the
density of state ρ0 are the fitting parameters. For simplicity
we use the approximation in the DFT calculation, to keep the
JH = 0 eV, U = U ′ in Eq. (7), and study the effect of U in
the 4d and 5d transition metal compounds. From Eqs. (7)
and (14), it can be seen that the Coulomb interaction U can en-
hance the effective SOC parameter λeff

so , and thereby increase

the energy gap. Compared with numerical method such as
DFT+U , our paper gives the analytical equations that clearly
show that electronic correlations can enhance the orbital mo-
ment and effective spin-orbital coupling in ferromagnets.

VII. CONCLUSION

Using a two-orbital Hubbard model with SOC, we show
that the orbital polarization and the effective SOC in fer-
romagnets are enhanced by a factor of 1/[1 − (2U ′ − U −
JH )ρ0], where U and U ′ are the on-site Coulomb interac-
tion within the same orbitals and between different orbitals,
respectively, JH is the Hund’s coupling, and ρ0 is the av-
erage density of states. The same factor is obtained for
the five-orbital Hubbard model with degenerate bands. Our
theory can be viewed as the realization of Hund’s rule in
ferromagnets. The theory is also extended to study the spin
fluctuation and long-range Coulomb interactions, and can be
applied to understand the enhanced orbital magnetic moment
and giant Faraday effect in ferromagnetic nanogranules in
recent experiments. In addition, our results reveal that it is
more stringent to have spontaneous orbital polarization than
spontaneous spin polarization, which is consistent with ex-
perimental observations. As the electronic interaction in some
two-dimensional (2D) systems can be controlled experimen-
tally [63], according to our theory, the enhanced SOC, spin,
and orbital magnetic moments are highly expected to be
observed in these 2D systems. This present work not only
provides a fundamental basis for understanding the enhance-
ments of SOC in some magnetic materials, but also sheds
light on how to get a large SOC through hybrid spintronic
structures.
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