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Anyonic interferometry probes the braiding phases of excitations in topologically ordered matter. This tech-
nique is well established for charged quasiparticles in the fractional quantum Hall effect. We propose to extend
it to neutral anyons, such as Ising anyons in Kitaev magnets and quasiparticles in other neutral spin liquids. We
find that the thermal current through an interferometer is sensitive to the statistics of tunneling quasiparticles.
We present a systematic investigation of signatures of various Abelian and non-Abelian topological orders in
Fabry-Pérot and Mach-Zehnder interferometers. The heat current through a Fabry-Pérot device is different for
different topological orders and depends on the topological charge inside the interferometer. A Mach-Zehnder
device shows interference in topologically trivial systems only. For a nontrivial statistics, the heat current reduces
to the sum of the contributions from two constrictions in the interferometer. Furthermore, we identify another
probe of topological order that involves the scaling of the thermal current through a single tunneling contact at
low temperatures. The current shows a universal temperature dependence, sensitive to the topological order in
the system.
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I. INTRODUCTION

A key feature of topological order is the existence of
anyons obeying fractional statistics [1]. The statistics of
Abelian anyons manifests itself in braiding phases, accu-
mulated by particles traveling around each other. To define
the statistics of non-Abelian anyons one also needs to know
how different particles fuse into composite anyons. Fractional
statistics has been discussed for decades in the context of the
fractional quantum Hall effect (QHE), and multiple probes of
anyons in the quantum Hall effect have been proposed [1].
Several of them have recently been implemented [1].

The bulk-edge correspondence hypothesis connects the
statistics of anyons in the bulk of a 2D system with the struc-
ture of a 1D gapless edge theory [2]. The latter determines
the quantized thermal conductance at the temperatures much
below the bulk energy gap [3–5]. Thus, the experimentally
measured thermal conductance [6–8] gives an evidence of
fractional statistics. In particular, fractional quantization of
thermal conductance has brought experimental evidence of
non-Abelian statistics in the QHE at ν = 5/2 in GaAs [7].
Thermal conductance yields, however, a rather indirect ev-
idence of statistics. A more direct approach involves anyon
collision experiments [9]. Arguably, the most direct approach
is anyonic interferometry [10–19].

The idea of anyonic interferometry naturally follows from
the definition of the braiding phase. The schematics of the
setup is illustrated in Fig. 1. Two QHE edges are brought
close to each other at two constrictions. Charge tunnels be-
tween the edges at the constrictions and hence two paths
emerge, which connect source S1 and drain D2 via one of
the two constrictions. The electric current in D2 depends
on the phase difference of the two trajectories. The phase
difference includes a sample-dependent contribution from the

constrictions, the Aharonov-Bohm phase, proportional to the
device area, and the statistical phase, which depends on the
number of anyons localized in the device. Only the sum of
the three phases is observed, but they can be disentangled by
changing the magnetic field. Indeed, the nonuniversal phase
shows a weak field dependence, the Aharonov-Bohm phase
changes continuously, and the statistical phase jumps every
time a new anyon enters the device. This has been observed
[19] at ν = 1/3, and interesting interferometry data exist at
other filling factors [1].

Quantum Hall anyons carry charge. What about neutral
systems such as Kitaev magnets [20]? The Aharonov-Bohm
technique is no longer applicable in the absence of an electric
current. We propose to employ thermal currents instead. In
contrast to an electric, spin, or any other current, an energy
current can flow in any system. This idea was introduced for
one particular anyon type, Ising anyons in Kitaev magnets,
in our earlier Letter [21] and in a rather different form in
Ref. [22]. In this article we systematically address signatures
of various possible Abelian and non-Abelian fractional statis-
tics in thermal interferometry experiments. The idea applies to
both charged and neutral anyons, but has to be implemented
in somewhat different ways in those two cases. Indeed, the
magnetic field may not be a useful knob in chargeless systems,
and hence a different knob is needed. As we show, useful
information comes instead from the comparison of different
interferometer topologies.

A possibility [23] that α-RuCl3 hosts a neutral Kitaev
liquid with non-Abelian Ising statistics has attracted much
interest recently. The existing experimental results are con-
troversial [24], and one of our motivations consists in the
development of a probe of anyonic statistics, suitable to a
Kitaev spin liquid.
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FIG. 1. Schematics of an electronic interferometer. Constrictions
bring the QHE edges closer. This facilitates the tunneling of charge
from one edge to the other. Interference between the two paths that
connect source S1 to drain D2 gives information about a localized
anyon indicated with a × symbol.

Thermal interferometry of fermions has been previously
investigated for heterostructures based on topological super-
conductors [25]. We demonstrate that heat transport changes
dramatically for anyons in comparison with fermions and
bosons.

We introduce two interferometer topologies: Fabry-Pérot
and Mach-Zehnder in Sec. II. We also briefly review Ising
topological liquids [20] in that section, since the Ising
topological order is particularly important for us. An inter-
ferometer is made of two constrictions. As a starting point
it is hence essential to analyze a single constriction. We do
that in Sec. III A in the simplest problem of tunneling between
two separate topological liquids. In that case, only bosons can
tunnel through a point contact. We consider a single tunneling
contact in an Ising liquid in Sec. IV A and address a general
statistics in Sec.V B. In the low-energy limit, the heat current
through a constriction exhibits scaling as a function of the
temperature at a fixed ratio of the temperatures on the two
sides of the device. It is easy to identify the scaling exponent
for an arbitrary anyon statistics. The exponent is different for
different anyon types and hence can be used as a probe of
topological order. In the most interesting case of a Kitaev spin
liquid, we go beyond scaling analysis and derive a general
expression for the heat current as a function of the two tem-
peratures.

A single-constriction probe of statistics is indirect. The
bulk of the paper focuses on double-constriction geometries,
which allow probes of anyon braiding. Section III B consid-
ers the Fabry-Pérot and Mach-Zehnder interferometers made
of two separate topological liquids so that only bosons can
tunnel through the vacuum between the two liquids. After
that warming-up exercise, Sec. IV contains a detailed study of
the two interferometer geometries for Ising anyons in Kitaev
liquids. We discover that the heat current depends on the
topological charge localized inside a Fabry-Pérot interferom-
eter. This can be used to probe statistics provided that we
can control the trapped topological charge. If such control
is unavailable, a dramatically different behavior of the heat
current in a Mach-Zehnder interferometer can be combined
with Fabry-Pérot data to identify fractional statistics.

Section V investigates interferometry for an arbitrary topo-
logical order. The case of Abelian statistics is straightforward
in both interferometer geometries. For non-Abelian statistics
we have to separately consider the tunneling of anyons, which
are identical and different from their antiparticles. Section VI

addresses another signature of topological order: telegraph
noise of heat current in Fabry-Pérot devices with a hole. We
discuss experimental realizations and summarize in Sec. VII.

Several Appendices contain technical details. Appendix A
addresses a toy model of fermion tunneling in interferom-
eters for Kitaev spin liquids. Appendix B contains detailed
calculations for an interferometer made of two separate Kitaev
magnets. Appendix C deals with correlation functions of Ising
anyon operators in Kitaev systems. Appendix D goes through
the tedious calculations of the heat current in a Fabry-Pérot
interferometer made of a single piece of a Kitaev material.
Appendix E discusses subtleties of Mach-Zehnder interfer-
ometry. Appendix F considers an exotic topological order
that defies naive expectations of how interference of anyons
works in a Fabry-Pérot device. Appendix G contains detailed
calculations of telegraph noise. Appendix H addresses the
dependence of the heat current on the interferometer size for
systems with a single edge mode.

II. MODELS

In this section we introduce the three basic models we
consider below: a single constriction between two edges of a
topological liquid, a Fabry-Pérot interferometer, and a Mach-
Zehnder interferometer.

We focus on systems with a bulk energy gap and gapless
edge states [1,26]. The fractional quantum Hall effect gives
rise to many such systems. Another relevant situation involves
some spin liquids, a Kalmeyer-Laughlin liquid [27] being the
simplest example. Non-Abelian statistics in Kitaev magnets
has recently attracted much interest, and we will pay particular
attention to Kitaev magnets [20]. Their edge theory contains a
single chiral Majorana mode. The low-energy Hamiltonian of
one right(left)-moving edge is [20,26]

H = ∓ iv

4π

∫
dx ψ∂xψ, (1)

where v is the edge velocity. The Majorana fermion ψ satisfies
the anticommutation relation,

{ψ (x), ψ (y)} = 2πδ(x − y). (2)

Kitaev magnets contain three types of anyons: trivial
bosons 1, Majorana fermions ψ , and Ising anyons σ . These
quasiparticles obey the following fusion rules:

ψ × ψ = 1; ψ × σ = σ ; σ × σ = 1 + ψ, (3)

where the final equality represents two possible fusion out-
comes. The topological spin θx of these quasiparticles is given
by θ1 = 1, θψ = −1, and θσ = eiπ/8. The topological spin
determines the phase φc

ab accumulated when a quasiparticle of
type a encircles a quasiparticle of type b in counterclockwise
sense under the assumption that they fuse to a quasiparticle
of type c, exp(iφc

ab) = θc/(θaθb). Another important piece of
information is the quantum dimension of anyons. It is 1 for 1
and ψ , and

√
2 for σ . More details and a discussion of other

topological orders can be found in Refs. [1,28].
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FIG. 2. A single quantum point contact (QPC) is shown, where
the two counter-propagating edges of the spin liquid come close and
the tunneling between the edge modes takes place as indicated with
a dashed line.

A. Single-point contact

To discuss the tunneling behavior in the presence of point
contacts between two different edges, we consider the model
depicted in Fig. 2. The two edges host counterpropagating
edge modes, and could either be edges of the same spin liquid,
or different spin liquids. The lower and upper edges have two
different temperatures, T1 and T2. This is achieved by bringing
either of them in thermal equilibrium with its source S1 or S2,
maintained at the temperature T1 or T2.

The Hamiltonian of this single-point-contact tunneling
model is of the form

H = H1 + H2 + HT , (4)

where H1,2 are the free Hamiltonians for the two chiral edges,
and HT is the tunneling Hamiltonian describing the tunneling
of quasiparticles through the quantum point contact.

In general, the tunneling Hamiltonian can be written in the
following form:

HT = �T̂ + �∗T̂ †, (5)

where T̂ is a tunneling operator responsible for transporting
one quasiparticle from the lower edge to the upper edge. When
the tunneling quasiparticle is its own antiparticle, T̂ and T̂ † are
equivalent, hence,

HT = �T̂ , (6)

where � is a real tunneling amplitude that ensures Hermiticity
of the tunneling Hamiltonian HT . The Hamiltonians (5,6)
include only one most relevant tunneling process. This is
justified at low energies for many topological orders.

In the presence of a tunneling point contact, the heat cur-
rent flowing along the edges can tunnel across the contact,
thus introducing a tunneling heat current IT . Here we treat the
contact Hamiltonian HT as a perturbation and assume a small
�. We can find the operator ÎT for the heat current using the
Heisenberg equation of motion,

ÎT = ∂H1

∂t
= −i[H1, H1 + H2 + HT ] = −i[H1, HT ]. (7)

Strictly speaking, the above expression gives the energy cur-
rent. It is the same as the heat current provided that the electric
current is zero. Otherwise, a correction, proportional to the
square of the electric current, is conventionally subtracted
[29]. We will ignore this complication, that is, we will assume
a zero electric current. In the most interesting case of spin liq-
uids, the electric current is constrained to be zero. In quantum

FIG. 3. Schematics of (a) Fabry-Pérot and (b) Mach-Zehnder
interferometers. Heat travels from sources S1 and S2 to drains D1
and D2 along chiral edges and tunnels between the edges at the two
point contacts shown with dashed lines. A localized anyon is marked
with a × symbol.

Hall systems with a nonzero electric current, the energy and
heat currents can be related to each other via known results
for the electric current.

To the lowest order in perturbation theory, the expectation
value of the heat current is

〈IT (t )〉 = −i
∫ t

−∞
dt ′〈[ÎT (t ), HT (t ′)]〉. (8)

The tunneling heat current should be proportional to |�|2,
IT = r(T1, T2)|�|2, where the factor r(T1, T2) depends on the
details of the edge theory and the nature of tunneling quasi-
particles. Typically, the tunneling of one quasiparticle type
dominates in the low-energy regime of interest for this paper.
The dominant tunneling operator is the most relevant tun-
neling operator in the renormalization group sense. We will
assume below that only one quasiparticle type together with
its antiparticle can tunnel.

B. Fabry-Pérot interferometer

Following the discussion of the single-point-contact tun-
neling, we are in a position to consider thermal interfer-
ometers. Electronic Fabry-Pérot interferometers have been
introduced to study the Aharonov-Bohm effect and fractional
statistics in the quantum Hall regime [1]. This paper considers
a thermal Fabry-Pérot interferometer shown in Fig. 3(a). The
device is similar to its electronic counterpart. It contains two
point contacts, QPC1 and QPC2, located at coordinates x1

and x2. When a heat-carrying quasiparticle tunnels through the
interferometer from the lower edge to the upper edge, it could
take either of the two paths S1-QPC1-D2 or S1-QPC2-D2.
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This results in quantum interference, whose phase depends
on the quasiparticle excitations in the central region between
QPC1 and QPC2 as well as the device’s size and the tunnel-
ing contacts’ details. For electronic interferometers in QHE
systems, the interference phase contains a sample-dependent
contribution from QPCs, an Aharonov-Bohm phase, propor-
tional to the magnetic flux through the interferometer, and
a statistical phase due to quasiparticle excitations inside the
interference loop. On the other hand, for a thermal interferom-
eter probing charge-neutral excitations, the Aharonov-Bohm
phase is absent.

The tunneling Hamiltonian in a Fabry-Pérot interferometer
is

HT = �1T̂1 + �2T̂2 + H.c., (9)

where �1,2 are two generally complex tunneling amplitudes,
T̂1 is the tunneling operator that corresponds to the transfer of
a quasiparticle from the lower to upper edge through QPC1,
and T̂2 corresponds to the transfer through QPC2. In the ab-
sence of localized quasiparticles in the interference loop, the
tunneling thermal current takes the general form

IT = (|�1|2 + |�2|2)r(T1, T2)

+ 2 Re [�1�
∗
2 r̃(T1, T2, L1 + L2)], (10)

where Re stands for the real part, Li denotes the distance
between the two point contacts along edge i = 1, 2, and
r̃(T1, T2, L1 + L2) describes the interference term in the ther-
mal current. In the presence of bulk quasiparticles, this term
depends additionally on the statistical phase induced by these
localized quasiparticles. The sum of the two distances enters
the coefficient r̃, if only one edge mode exists and the edge
velocities are identical on the two edges of the device. Oth-
erwise, the length dependence of r̃ is more complicated. See
Appendix H for the derivation of the length dependence and a
detailed discussion of the relevant assumptions.

In an Abelian quantum Hall liquid with the filling fac-
tor ν = 1/(2m + 1), the statistical phase accumulated by an
anyon of charge νe around n localized anyons of the same
charge is equal to φ = 2πνn. However, for the tunneling of
non-Abelian quasiparticles, we need to take the anyon fusion
rule into consideration since it is possible for two non-Abelian
anyons to fuse in more than one fusion channel. A detailed
discussion can be found in Sec. V.

C. Mach-Zehnder interferometer

A Mach-Zehnder interferometer [1,30,31] shown in
Fig. 3(b) is superficially similar to a Fabry-Pérot interferome-
ter. It also has two tunneling contacts and two interfering paths
from S1 to D2. Yet, it has an important topological difference
from the Fabry-Pérot setup: Drain D2 is inside the interference
loop. Hence, in contrast to Fabry-Pérot interferometry, each
tunneling event changes the localized topological charge in
the central region. As a result, the statistical phase φ, accumu-
lated by an anyon on the interference loop, changes after each
quasiparticle tunneling event. Also, as seen from Fig. 3(b), the
two edges in a Mach-Zehnder interferometer have the same
propagation direction, thus, the thermal current depends on
the difference of the distances between the point contacts on
the two edges and not the sum, see Appendix H and Ref. [14].

The state of a Mach-Zehnder interferometer is character-
ized by the localized topological charge in the central region.
Transitions between different states can be analyzed through
a continuous-time Markov chain model.

The situation is particularly interesting if the tunneling
anyon, whose topological charge is denoted as x, is its own
antiparticle. The tunneling Hamiltonian for a single point
contact is given in Eq. (6). The tunneling Hamiltonian in a
Mach-Zehnder interferometer is

HT = �1T̂1 + �2T̂2eiα, (11)

where �1,2 are two real tunneling amplitudes at the two quan-
tum point contacts, and the phase α ensures Hermiticity [21].
We compute the phase α in Appendix E. When the tunneling
of x changes the localized topological charge from a to b, the
tunneling rate can be expressed as [16]

pb
xa = Pb

xa p̃
(
T1, T2, �1, �2, φ

b
xa, |L1 − L2|

)
, (12)

where Pb
xa = Nb

xadb/(dxda) is the fusion probability for x ×
a → b, Nb

xa is the fusion multiplicity, dα is the quantum di-
mension of anyon α, and p̃ incorporates the dependence on
the temperatures T1,2, the tunneling amplitudes �1,2, the sta-
tistical phase φb

xa, and the interferometer size. When the path
of topological charge x encloses localized charge a, accord-
ing to the algebraic theory of anyons, the statistical phase is
exp(iφb

xa) = θb/(θaθx ), where θα are topological spins [1,20].
In what follows we will assume that |L1 − L2| is much

shorter than the thermal length v/T , where v is the edge
velocity. This will allow neglecting the interferometer size.

If we use fa to denote the probability of the localized
topological charge being a, we can write down the following
kinetic equation [16]:

ḟa =
∑

b

fb pa
xb −

∑
c

fa pc
xa. (13)

This equation can also be written in a matrix form, ḟa =
Mab fb, where the matrix entries Mab are the tunneling rates,

Mab = pa
xb − δab

∑
c

pc
xa. (14)

When the system is in dynamical equilibrium, ḟa = 0, one can
solve for fa. The average thermal current is given by

IMZ = �E
∑

ab

fa pb
xa, (15)

where �E is the average heat transferred across the point
contact by a tunneling event. Since we neglected the inter-
ferometer size, the statistical distribution of the transferred
energy in one tunneling event is the same for all combinations
of the topological charges a and b, and the same as for a single
tunneling contact. Indeed, in our limit, the two constrictions
can be fused into one.

As an example, a detailed calculation for interferometers
built for probing the Ising topological order is shown in
Sec. IV.
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III. TUNNELING BETWEEN TOPOLOGICAL LIQUIDS

As a warming-up exercise, we consider tunneling between
two Ising topological liquids through vacuum.

A. Single constriction

In the case of two adjacent spin liquids, some edge excita-
tions may tunnel from one spin liquid to the other. Before we
compute the thermal current in the two-constriction geometry,
consider first the case of a single point contact. In this case,
we will not obtain any interference effects. Nonetheless, we
do obtain some nontrivial thermal transport.

The edge Hamiltonians have the standard form (1). Every
contribution to the Hamiltonian must be topologically trivial.
In particular, any allowed interaction between the two topo-
logical liquids is described by operators, which are products
of two Bose fields acting on each of the liquids. Hence, the
form of the tunneling Hamiltonian is such that only pairs of
Majorana fermions tunnel,

HT = −�ψ1(x0)∂xψ1(x0)ψ2(x0)∂xψ2(x0). (16)

Here x0 is the location of the constriction.
We can now define the thermal current as the time deriva-

tive of the free Hamiltonian of one of the edges and use the
Heisenberg equations of motion as in Eq. (7). One obtains

ÎT = − v�
(
∂xψ1(x0)∂xψ1(x0) + ψ1(x0)∂2

x ψ1(x0)
)

× ψ2(x0)∂xψ2(x0). (17)

Using perturbation theory (8), in Appendix B, we compute the
thermal current between two spin liquids to the lowest order
in the tunneling amplitude � as

〈IT 〉non-int
� = 4π9�2

2835v8

[
41

(
T 8

2 − T 8
1

) + 62T 2
1 T 2

2

(
T 4

2 − T 4
1

)]
.

(18)

This is the contribution to the thermal current due to a single
constriction between two spin liquids. Its nontrivial tempera-
ture dependence is a signature of the Ising topological order.
It is instructive to compare the result with the heat current
in a Luttinger liquid of topologically trivial bosons. The ac-
tion density is Ln ∼ (∂tθn)2 + (∂xθn)2 on edge n = 1, 2. The
tunneling operator T̂ ∼ ∂xθ1∂xθ2. An easy calculation shows
that the thermal current scales as the fourth power of the
temperatures ∼T 4

1 , T 4
2 . For a 1D system of free electrons, the

heat current scales as the square of the temperature. Thus,
the ∼T 8

1 , T 8
2 scaling in the above result is a signature of a

nontrivial topological order. The same is true for the nontrivial
coefficients 41 and 62.

In the two-constriction geometry, as considered in the next
part of the section, the result we just obtained will exactly
be the noninterference contribution from each of the constric-
tions. A detailed derivation of the above expression can be
found as the noninterference part of the full calculation in
Appendix B, where we consider a Fabry-Pérot interferometer.
The calculations rely on some equations from Appendix A,
where we consider a simpler model, in which single Majorana
fermions are allowed to tunnel between the edges. This is only
allowed when the edges surround the same spin liquid. In
such a situation, fermion tunneling is not the most relevant

tunneling process, as discussed in the next section. It can
become the leading contribution to transport near a resonance.

B. Double constriction

We now turn our attention to the double constriction geom-
etry. In this case, interference effects will come into play. The
two-constriction geometry we consider here is the Fabry-Pérot
interferometer made of two spin liquids.

Similar to a single-constriction geometry, the tunneling
Hamiltonian is just the sum of individual tunneling Hamil-
tonians at the two constrictions, x1 and x2,

HT = −
∑
i=1,2

�iψ1(xi )∂xψ1(xi )ψ2(xi )∂xψ2(xi ). (19)

Using this tunneling Hamiltonian, we find the tunneling ther-
mal current operator as defined in Eq. (7),

ÎT = −
∑
i=1,2

[
�i

(
∂xψ1(xi )∂xψ1(xi ) + ψ1(xi )∂

2
x ψ1(xi )

)
× ψ2(xi )∂xψ2(xi )

]
. (20)

Using perturbation theory in Eq. (8), one can now compute the
thermal current between two spin liquids to the lowest order in
the tunneling amplitude. In the T1 = 0 limit and setting �1 =
�2 = �, we find this expression to be

〈IT 〉 = 2〈IT 〉non-int
� + 〈IT 〉int (21)

where

〈IT 〉int = 8π9�2T 8
2

3v8

[
(7 − 80 coth2 X2 + 105 coth4 X2)

× 1

sinh4 X2
− 105

X 8
2

+ 10

X 6
2

]
. (22)

Here we have defined Xi = 2πTix21/v, where x21 is the separa-
tion between the two constrictions. We assume the separation
to be the same on both edges. The noninterference term
〈IT 〉non-int

� is just the thermal current obtained in the single-
constriction geometry (18). The variation of the total thermal
tunneling current with the separation between the two con-
strictions X2 = 2πT2x21/v is shown in Fig. 4. The general
expression for this tunneling thermal current in the case of
T1 �= 0 and when the tunneling amplitudes at the two constric-
tions are not equal, i.e., �1 �= �2, is given in Appendix B.

A curious feature of the above result is a nonmonotonous
dependence of the heat current on the distance between the
tunneling contacts, Fig. 4. Similar behavior would be natural
for charged systems in a magnetic field due to Aharonov-
Bohm oscillations. Significantly, we deal with a neutral spin
liquid. See Ref. [22] for related curious behavior.

The analysis of the Mach-Zehnder geometry is very similar
and does not add much to the Fabry-Pérot case. This is a con-
sequence of the trivial mutual statistics of tunneling bosons
and confined anyons.

IV. ISING ANYON TUNNELING

We now address the tunneling of Ising anyons between the
two edges of a topological liquid. As we will see, different
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FIG. 4. This curve shows how the total thermal current IT =
2〈IT 〉non-int

� + 〈IT 〉int varies with x21 when the limit T1 → 0 is taken.

tunneling currents correspond to different topological charges,
trapped in an interferometer. It is not, however, obvious how to
control the trapped charge. As an alternative approach to prob-
ing anyon statistics, one can compare heat currents through
Fabry-Pérot and Mach-Zehnder interferometers.

A. Single constriction

We start with a single constriction. We discover that at
a fixed ratio of the edge temperatures T1/T2, the tunneling
heat current scales as ∼T 1/4

1 . This is a signature of fractional
statistics.

The most relevant tunneling operator transfers a single
Ising anyon from one edge of the spin liquid to the other.
These two edges, being the edges of the same spin liquid,
can be thought of as parts of a single edge connected by an
infinitely remote section [32,33]. Correlation functions for the
entire system decompose as products of correlation functions
on the upper and lower edges along with a phase factor that
depends on topological order [34]. The decomposition of cor-
relation functions is discussed in Appendix C.

Within the conformal-field-theoretic treatment, the corre-
lation functions of the primary operators are holomorphic
functions of the complex coordinate w = vτ ± ix = i(vt ±
x), where τ is the imaginary time. We may compute the
thermal correlation functions of the primary fields using
the conformal transformation between coordinates w on a
cylinder [35,36] and coordinates z on a plane, given as z =
e2π iw/vβ , where β = 1/T is the reciprocal of the edge tem-
perature; then the two-point correlation functions satisfy the
following relation:

〈σ (w1)σ (w2)〉 =
(

2π iz1

vβ

)h(2π iz2

vβ

)h

〈σ (z1)σ (z2)〉, (23)

where h = 1/16 is the holomorphic conformal dimension of
the Ising anyon field. With this we arrive at the thermal two-
point correlation function of the Ising anyon field as

〈σ (w1)σ (w2)〉 =
(

πT

v

) 1
8 1

sin
1
8 [πT (w1 − w2)/v]

. (24)

FIG. 5. Geometry, in which the two edges of the spin liquid are
treated as spatially separated parts of the same edge. The dashed line
shows a long segment, of length L, connecting the two edges of the
interferometer.

The temperature T appearing in the two-point function cor-
responds to one of the edges. Introducing a regulator ε, the
two-point function for the two edges can be written as

〈σ1(x, t )σ1(0, 0)〉 = (πT1/v)1/8

sin1/8[πT1(ε + i(t − x/v))]
, (25)

〈σ2(x, t )σ2(0, 0)〉 = (πT2/v)1/8

sin1/8[πT2(ε + i(t + x/v))]
. (26)

We may now treat the two opposite edges of the same spin
liquid as different parts of a single edge connected by a long
edge segment of length L (see Fig. 5). This allows us to use the
above result and obtain the four-point correlation function in
the limit of L → ∞. This has been computed in Appendix C.
Once we obtain the thermal four-point correlation functions,
we are in a position to use the perturbation theory, as consid-
ered previously, to compute the thermal tunneling current due
to Ising anyon tunneling. To separate the interference effects
from the rest of the physics of the problem, we first consider
the case of a single point contact and later generalize the
calculation to interferometers.

The tunneling Hamiltonian creates anyons, which fuse to
vacuum, on both sides of the constriction. Since the Ising
anyon is its own antiparticle, the tunneling Hamiltonian cre-
ates anyons of the same type, and thus the form of the
tunneling Hamiltonian can be written as

HT = e−iπ/16�σ2(x0, t )σ1(x0, t ). (27)

The subscripts on the Ising anyon field operators denote the
side, on which the edge lies and are defined in the limit
L → ∞, as σ2(x) ≡ σ (L − x) and σ1(x) ≡ σ (x). The phase
e−iπ/16 is fixed by the Hermiticity condition for the tunneling
Hamiltonian. Indeed, the average of HT must be real. The
form of the tunneling Hamiltonian suggests that the effect of
a single point contact is to allow the tunneling of a single
Ising anyon from one edge to the other. This is then treated
perturbatively to the lowest order. The expectation value of
the tunneling thermal current is given by Eq. (8). The full
calculation can be found as the noninterference part of the
calculation in Appendix D. We find the thermal current to be

〈IT 〉non-int
� = �2(πT1)

1
8 (πT2)

1
8

cos(3π/8)

4
√

2v1/4
Fnon-int(T2/T1),

(28)
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FIG. 6. (a) The behavior of the function Fnon-int(n). (b) The
behavior of the function Fint(n, χ ) for n = 1.5, 2, 3. The dotted hor-
izontal lines in (b) show the values of 2Fnon-int(n) for n = 1.5, 2, 3,
which become equal to Fint(n, χ ) as χ → 0.

where the Fnon-int(n) function in the integral representation is
given as

Fnon-int(n) =
∫ ∞

0
dτ

(
1

τ
5
4 n

1
8

− cosh(τ )

sinh
9
8 (τ )

1

sinh
1
8 (nτ )

)
. (29)

See Fig. 6(a) for the plot of Fnon-int. Note that the calcu-
lation given in Appendix D corresponds to the Fabry-Pérot
geometry, and the single-point-contact case corresponds to
the noninterference part of the full calculation. A nonlinear
temperature dependence of the thermal current comes from
the scaling dimension of the Ising anyon tunneling opera-
tor. Thus, it provides an experimental signature for fractional
quasiparticle tunneling at a single point contact. In particular,
at fixed T2/T1, the tunneling heat current scales as T 1/4.

A universal scaling behavior has been predicted for tun-
neling electrical currents in fractional quantum Hall liquids,
but theory rarely agrees with the data (for a review, see [1]).
This has multiple reasons, at least one of which, specifically,
long-range Coulomb forces [37,38], is absent in a spin liquid.
Thus, there may be a better chance to observe scaling in the
tunneling heat current than for an electric current.

We now generalize our single-contact calculation to a
Fabry-Pérot interferometer geometry, where the fractional
quasiparticle interference effects and anyon braiding effects
become relevant.

B. Fabry-Pérot geometry

The behavior of the tunneling thermal current obtained
in the previous subsection captures the nontrivial topologi-
cal charge of an anyon. Single-point-contact measurements
therefore provide a probe of the topological charge of the
quasiparticles involved in the tunneling process. A more direct
evidence of statistics involves the braiding of two quasipar-
ticles in the two-point-contact geometry. In this section, we
generalize the previous calculation to a Fabry-Pérot interfer-
ometer geometry.

We use the two-point thermal correlation functions given in
Eq. (25). These correlation functions are in turn used to com-
pute the four-point correlation functions (Appendix C). The
calculation relies on the factorization into products of correla-
tions functions on two separate edges [39]. To find the thermal
current operator, we use the Heisenberg equation along with
the tunneling Hamiltonian, which in this geometry takes the
form

HT = e−iπ/16�1σ2(x1, t )σ1(x1, t )

+ e−iπ/16�2σ2(x2, t )σ1(x2, t ), (30)

where xi is the coordinate of the ith constriction, and cor-
respondingly, �i is its tunneling amplitude. We now apply
perturbation theory to compute the lowest-order expectation
value using Eq. (8).

We start with the simplest case of a trivial topological
charge trapped inside the device. We summarize the results
here. Detailed calculations are contained in Appendix D.

In the simplest limit �1 = �2 ≡ �, we arrive at an expres-
sion that has the following form:

〈IT 〉 = 2〈IT 〉non-int
� + 〈IT 〉int, (31)

where 〈IT 〉non-int
� is the contribution of a single point contact

given in Eq. (28), and 〈IT 〉int is the interference term that has
the form (in the limit �1 = �2 ≡ �)

〈IT 〉int = �2(πT1)
1
8 (πT2)

1
8

cos(3π/8)

4
√

2v1/4
Fint(T2/T1, πT1x21),

(32)

where the function Fint(n, χ ) in the integral representation is
given as

Fint(n, χ ) =
∫ ∞

0
dτ

(
1

τ
9
8 sinh

1
8 (2nχ )

− cosh(τ )

sinh
9
8 (τ )

1

sinh
1
8 (nτ + 2nχ )

− cosh(τ + 2χ )

sinh
9
8 (τ + 2χ )

1

sinh
1
8 (nτ )

)
. (33)

The function Fint is plotted in Fig. 6(b). It can be checked
that this function has the property that limχ→0 Fint(n, χ ) =
2Fnon-int(n), where Fnon-int(n) is defined in Eq. (29). Therefore
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in the x21 ≡ x2 − x1 → 0 limit, the two-point-contact case
reduces to that of a single point contact. Note that the ther-
mal current in the general case of �1 �= �2 is computed in
Appendix D. The only difference from the above result is
the substitution of �2 in the noninterference contribution with
(�2

1 + �2
2 )/2 and with �1�2 in the interference contribution.

So far we assumed a trivial trapped topological charge in
the device. The above result is easily extended to the other
possible trapped topological charges ψ and σ . Since σ accu-
mulates the phase π on a circle around ψ , the interference
contribution changes its sign in comparison with the above
equation. For the trapped charge σ , the even-odd effect is
present [11,12]. The tunneling anyon has two equally likely
fusion channels with the trapped anyons: 1 and ψ . The corre-
sponding interference phases φ1

σσ = −i log(θ1/θ
2
σ ) and φψ

σσ =
−i log(θψ/θ2

σ ) differ by π . Hence, only the noninterference
contribution to the heat current survives.

If one can control the trapped topological charge, the ex-
istence of three different heat currents at the three possible
trapped topological charges gives a signature of the Ising
statistics. Presently, it is not clear how to control the trapped
charge. As long as a device with the trapped charge σ or ψ

can be fabricated, it will be possible to also obtain another
trapped topological charge by doubling the size of the device:
for example, connecting two identical devices, each of which
confines σ , yields the total confined charge σ × σ , which can
be either 1 or ψ . It might happen, however, that the trapped
charge is always 1. In that case, the Fabry-Pérot device would
not be able to tell Ising anyons from bosons or fermions. To
overcome this issue we consider a Mach-Zehnder interferom-
eter.

C. Mach-Zehnder geometry

As we already observed, Fabry-Pérot interferometry, in
the case of spin liquids, although sensitive to the enclosed
topological charge, may not be very informative since it re-
quires control over the topological charge enclosed between
the two constrictions. In the case of electronic Fabry-Pérot
interferometry, this issue did not arise since anyonic excita-
tions in the sample carry charge. The number of the trapped
excitations depends on the magnetic flux. Hence, the magnetic
field becomes an external control parameter. Anyonic excita-
tions in a Kitaev spin liquid, however, do not carry charge.
Therefore magnetic field fails to provide such a control. It,
instead, becomes useful to compare thermal transport in the
Fabry-Pérot and Mach-Zehnder interferometers [21].

We thus turn to the double constriction case in the Mach-
Zehnder geometry. In this geometry, one of the drains is
topologically inside the loop, over which the interference
phase is accumulated. Hence, with each tunneling event, the
confined topological charge changes. The effective two-point
tunneling Hamiltonian is given as

HT = �1T̂1 + �2T̂2eiα, (34)

where �i, i = 1, 2 are real tunneling amplitudes, T̂i are two
tunneling operators that transfer Ising anyons from the outer
edge to the inner edge, Fig. 3. The phase α ensures the
Hermiticity of the tunneling Hamiltonian HT . This phase is
computed in Appendix E. For Ising anyons, α = π/8 as a

consequence of the general rule that exp(iα) equals the topo-
logical spin of the tunneling anyon (Appendix E).

As highlighted in Sec. II C, since in the Mach-Zehnder
interferometer the tunneling probability changes with each
tunneling event, the thermal current is defined in terms of the
tunneling rates pc

σb given by Eq. (12). For the case of Ising
anyons, we find the following tunneling rates:

pσ
σψ = [

�2
1 + �2

2 − 2�1�2 cos(π/8)
]
p(T1, T2), (35)

pσ
σ1 = [

�2
1 + �2

2 + 2�1�2 cos(π/8)
]
p(T1, T2), (36)

where p(T1, T2) is computed in the single-point-contact geom-
etry as

p(T1, T2) = 2π
∑
m,n

|〈m|e−iπ/8σ2(x0)σ1(x0)|n〉|2

× δ(Em − En)Pn(T1, T2). (37)

According to Eq. (28),

p(T1, T2) = (πT1)
1
8 (πT2)

1
8

cos(3π/8)

4
√

2v1/4
Fnon-int(T2/T1). (38)

We remind the reader that, to simplify equations, we assume
the temperature low enough for the thermal length v/T to
exceed the interferometer size.

Since the Ising anyon σ is its own antiparticle, i.e., one of
the fusion channels gives vacuum on fusing two σ anyons,
we obtain the following relation from the algebraic theory of
anyons [see Eq. (E15)], in terms of the quantum dimensions,
pb

σa = pa
σb(d2

b /d2
a ). This allows us to compute the remaining

nonzero tunneling rates. Plugging this relation into Eq. (13),
we solve for the probability fa in dynamical equilibrium,

fσ = 1
2 ; f1 = fψ = 1

4 . (39)

Finally, the average heat �E transferred in each tunneling
event can be computed from a setup with a single point contact
as a ratio between r(T1, T2), calculated in Sec. IV A, and
p(T1, T2). Given the tunneling rates pc

σb, the probabilities fa,
and the average transferred heat �E , we can find the thermal
current from Eq. (15),

IT = (
�2

1 + �2
2

)
(πT1)

1
8 (πT2)

1
8

cos(3π/8)

4
√

2v1/4
Fnon-int(T2/T1),

(40)

where the function Fnon-int is defined in Eq. (29). We notice
that the thermal current in the Mach-Zehnder geometry for
Ising anyon tunneling is just the sum of the thermal current
contributions from each of the single constrictions as found
in Sec. IV A, and the interference term is absent. This is a
general feature of nontrivial topological orders as we will see
in the next section where we treat an arbitrary anyon statistics.

The above behavior is quite different from the Fabry-Pérot
geometry with a trivial trapped topological charge. It is also
quite different from the behavior expected from bosons and
fermions in the Mach-Zehnder geometry. Indeed, bosons and
fermions show the same interference pattern in both geome-
tries. Thus, a comparison of the two interferometer geometries
provides a signature of the Ising statistics even if the trapped
topological charge is bound to be trivial in the Fabry-Pérot
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setup. Note that a comparison of theory and experiment re-
quires the knowledge of �1,2. It can be obtained from a
single-point-contact geometry.

V. ARBITRARY ANYON STATISTICS

In addition to the Ising topological order in a Kitaev spin
liquid, we would like to extend our theory of thermal in-
terferometers to the case where anyons tunnel between two
edges of an arbitrary topological phase of matter. We will
use the algebraic theory of anyons in Ref. [20], and adopt
the assumption that the distances L1,2 along the two edges
between the two point contacts in the interferometer are much
less than the thermal length l = v/T . This assumption allows
us to use an effective one-point tunneling amplitude for the
interferometer and simplify the expressions for the tunneling
thermal current.

As in previous sections, we start with a single point con-
tact, then consider the interferometry of Abelian anyons and
the interferometry of non-Abelian anyons. Before addressing
technical details, we list the key results in the next subsection.

A. Summary of interferometry

For a topologically trivial system, the same behavior is
expected in the Fabry-Pérot and Mach-Zehnder geometries.
The interference phase does not depend on what particles
are trapped in the device. Thus, one easily checks that
in an interferometer with two tunneling amplitudes �1,2

at the constrictions, the heat current scales as |�1 + �2|2.
Indeed, this is obvious from applying the results of the
subsection on Abelian statistics to the case of the trivial
topological order.

On the other hand, for nontrivial statistics, the thermal
current through a Fabry-Pérot device depends on the trapped
topological charge. The number of the possible values of
the current reflects the number of possible anyon types. The
current through the interferometer depends on the mutual sta-
tistical phases of the tunneling and trapped anyons. As is clear
from Secs. V D and V E, in the case of non-Abelian statistics,
the current also depends on the fusion rules for the topological
order.

Thus, a Fabry-Pérot device allows the identification of the
topological order provided that one can control the trapped
topological charge. If the trapped topological charge is always
trivial, the Fabry-Pérot approach cannot distinguish nontrivial
orders from the trivial order. We have to rely instead on the
Mach-Zehnder geometry. Its behavior is strikingly simple and
general: For any nontrivial topological order, the heat current
scales as |�1|2 + |�2|2.

B. Single contact

We rely on Eq. (7) for finding the thermal current operator
and Eq. (8) for the average heat current. For the purposes
of this section, the exact forms of the operators and cur-
rents are unimportant. It will suffice to know their scaling
dimensions. The current operator scales as the time deriva-
tive of the tunneling Hamiltonian. The average current scales
as the time integral of the product of that time derivative
and the tunneling Hamiltonian. Thus, the average current

scales as a power of the temperature T 2g, where g is the
scaling dimension of the tunneling operator. The exponent
depends on statistics. For Ising anyons, g = 1/8 in agreement
with the previous results. In the ν = 1/3 Laughlin state [2]
with the edge action 3

4π

∫
dxdt[±∂tφ∂xφ − v(∂xφ)2] and the

charge density e∂xφ/(2π ), the anyon tunneling operator is
� exp(iφ1 + iφ2) + H.c., where the indices 1 and 2 refer to
the two edges. Then g = 1/3.

C. Interferometry of Abelian anyons

In an Abelian topological order, the fusion channel of any
pairs of anyons is unique, therefore there exists the smallest
integer m, such that the fusion result of m anyons of type x
is in the vacuum sector. In the following subsections, we will
discuss the two cases m = 2 and m > 2 separately.

1. Tunneling anyon is its own antiparticle

We first consider the case when m = 2; i.e., x × x = 1,
where 1 denotes vacuum. Obviously, x is its own antiparticle.
One example is the semion topological order [27,40]: it con-
tains only one type of nontrivial topological charge s, and the
only nontrivial fusion rule is s × s = 1; the topological spin
of s is θs = i.

Given the one-point contact Hamiltonian HT = �T̂ , where
� is a real amplitude, the thermal current can be written as
IT = r(T1, T2)�2 as demonstrated in Sec. II. The tunneling
rate is p(T1, T2)�2, where p(T1, T2) can be found with Fermi’s
golden rule,

p(T1, T2) = 2π
∑
mn

|〈m|T̂ |n〉|2δ(Em − En)Pn(T1, T2), (41)

|n〉, |m〉 are eigenstates of the unperturbed edge Hamilto-
nian, En,m are the total energies of the two edges for the
corresponding state, and Pn is the Gibbs distribution. The
average heat transferred in each tunneling event is �E =
r(T1, T2)/p(T1, T2).

For a Fabry-Pérot interferometer, the tunneling Hamilto-
nian is given as

HT = �1T̂1 + �2T̂2, (42)

where �1,2 are real amplitudes. The localized topological
charge has at least two possible values: 1 or x. Below we focus
on these two possibilities only. Depending on the sector, the
tunneling current has two different values,

IFP
1 = (�1 + �2)2r(T1, T2), (43)

IFP
x = |�1 + �2eiφ1

xx |2r(T1, T2), (44)

where exp (iφ1
xx ) = θ1/(θxθx ) is the braiding phase. For

semions, this phase factor is −1. This result actually applies to
any Abelian statistics, as long as x is its own antiparticle and
not a fermion or boson. Indeed, the topological spin of vacuum
should satisfy θ1 = θ4

x = 1, hence θx = ±i or ±1. The second
option describes bosons and fermions and so we are left with
θx = ±i and exp(iφ1

xx ) = −1.
In a Mach-Zehnder interferometer, the tunneling Hamil-

tonian in Eq. (11) contains an additional phase eiα = θx in
front of �2, as discussed in Appendix E. In the two sectors
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1 and x, the effective one-point amplitudes are �1 + �2θx

and �1 + �2 exp (iφ1
xx )θx respectively. We further see that the

tunneling rates are

p1 = |�1 + �2θx|2 p(T1, T2), (45)

px = |�1 − �2θx|2 p(T1, T2). (46)

Since θx = ±i, the two rates are equal, but we will stick to the
same notations as for other statistics. The kinetic equation is
now

ḟx = f1 p1 − fx px = 0. (47)

Applying the requirement that the total probability is unity,
we obtain the following solution:

fk = 1

pk

(
1

p1
+ 1

px

)−1

, k = 1, x. (48)

The thermal current reads

IMZ = �E
∑

k=1,x

fk pk = 2
r(T1, T2)

p(T1, T2)

(
1

p1
+ 1

pa

)−1

= (
�2

1 + �2
2

)
r(T1, T2), (49)

where the final equality only applies for θx = ±i. The com-
parison with the experiment requires the knowledge of �1,2

and r. They can be found from a single-contact setup.

2. Tunneling anyon is not its own antiparticle

Now we consider the case when m > 2, which implies that
x is not the same as its antiparticle x̄. To analyze the tunneling
at a single point contact, we write down the tunneling Hamil-
tonian,

HT = �T̂ + H.c., (50)

where T̂ is the tunneling operator, which creates a particle-
antiparticle pair at the constriction. Similar to Eq. (41), the
thermal current can be expressed as

IT = 2π |�|2
∑
mn

�E [|〈m|T̂ |n〉|2 + |〈m|T̂ †|n〉|2]

× δ(Em − En)Pn(T1, T2), (51)

where �E is the energy change on the upper edge in the
process |n〉 → |m〉. This equation contains two summations
for T̂ and T̂ † respectively. The two sums are equal in the
low-temperature limit. Indeed, we expect that a conformal-
field-theoretic description exists for the edge theory in that
limit. The tunneling operator T̂ for an Abelian topological
order can be represented as an exponent exp(iφ) of a Bose
field φ. The conjugate operator T̂ † = exp(−iφ). The edge
theory is quadratic in Bose fields and hence invariant with
respect to the transformation φ → −φ. This transformation
exchanges T̂ and T̂ †. Hence, the two contributions to IT are
equal. The above argument may fail at a nonzero voltage in a
conducting system if a carriers electric charge. The reason is
that changing the sign of the Bose field will then also require
changing the sign of the voltage. We assume zero voltage and

find that

IT = |�|2r(T1, T2), (52)

where the factor r(T1, T2) can be expressed as

r(T1, T2) = 4π
∑
mn

�E |〈m|T̂ |n〉|2δ(Em − En)Pn(T1, T2).

(53)

A similar argument shows that the tunneling rates of x and
x̄ in the same direction are the same. The tunneling rates are
|�|2 p±(T1, T2) for the tunneling of x (+) and x̄ (−), where, by
an alternative form of Fermi’s golden rule [41],

p+(T1, T2) =
∫ ∞

−∞
dt 〈T̂ †(t )T̂ (0)〉, (54)

p−(T1, T2) =
∫ ∞

−∞
dt 〈T̂ (t )T̂ †(0)〉. (55)

The above expressions change into each other when the sign
of φ is changed. Hence p+(T1, T2) = p−(T1, T2). We will also
use the notation p(T1, T2) = p+(T1, T2) + p−(T1, T2).

The above discussion shows that the tunneling of x̄ trans-
fers the same amount of average heat as the tunneling of x.
The tunneling thermal current can be rewritten as

IT = �E |�|2 p(T1, T2), (56)

where �E = r(T1, T2)/p(T1, T2) is the average heat trans-
ferred.

It is easy to generalize from the single-constriction case to
the Fabry-Pérot geometry with two tunneling contacts with
the tunneling amplitudes �1,2. One just needs to substitute
� → �1 + �2 exp(iθ ) in Eq. (52), where θ is the statistical
phase accumulated by a on a circle around the topological
charge, trapped in the interferometer.

Now we come back to the Mach-Zehnder interferometer.
We assume that the initial localized topological charge is 1
(vacuum) and denote the localized topological charge inside
the device after k tunneling events of x as bk , hence b0 = 1
and bk = kx. Clearly, bk is periodic in k, bk+m = bk . As we
will see below, the same result for the average heat current
obtains for any initial trapped charge of the form nx. If the
initial trapped charge is not nx, our calculations require only
a minor modification, and the final result for the heat current
does not change.

For a Mach-Zehnder interferometer, its tunneling Hamilto-
nian is

HT = �1T̂1 + �2T̂2 + H.c. (57)

When the localized topological charge is bk , the effective
one-point tunneling amplitude is �1 + �2 exp (iφk+1

k ) for the
tunneling of x, and �∗

1 + �∗
2 exp (iφk−1

k )θ2
x for the tunnel-

ing of x̄, where exp (iφk+1
k ) = θbk+1/(θxθbk ) and exp (iφk−1

k ) =
θbk−1/(θx̄θbk ). The origin of the factor θ2

x in the tunneling
amplitude for x̄ can be understood in the spirit of Eqs. (E12)–
(E14) as well as from physical considerations: T †

2 describes
tunneling of x from the inner edge of the interferometer to the
outer edge. As a result, x̄ is created and left behind on the inner
edge. It affects the statistical phase in the tunneling amplitude.
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The two tunneling rates for x and x̄ can be written down
separately,

p+
k = 1

2

∣∣�1 + �2eiφk+1
k

∣∣2
p(T1, T2), (58)

p−
k = 1

2

∣∣�∗
1 + �∗

2eiφk−1
k θ2

x

∣∣2
p(T1, T2). (59)

It is worth noting that the following equations hold in the
algebraic theory of anyons [20,42],

|θx| = 1, θx = θx̄, θbk = (θx )k2
. (60)

Using these relations, we can find the phases in the tunneling
rates to be complex conjugate to each other,

eiφk+1
k = θbk+1

θxθbk

= (θx )2k, (61)

eiφk
k+1 = θbk θ

2
x

θx̄θbk+1

= (θx )−2k = (θ∗
x )2k . (62)

Hence p+
k = p−

k+1, which shows that the tunneling rates for x
and x̄ are the same, regardless of the topological charge of the
localized anyon. The kinetic equation now reads

ḟk = fk−1 p+
k−1 + fk+1 p−

k+1 − fk (p+
k + p−

k ), (63)

with k = 0, 1, . . . , m − 1. After setting ḟk = 0, the equa-
tion becomes

fk+1 p+
k − fk p+

k = fk p+
k−1 − fk−1 p+

k−1, (64)

which means that fk = 1/m is independent of k. Hence, the
heat current is proportional to the average tunneling amplitude

IT = r(T1, T2)
1

m

m−1∑
k=0

∣∣�1 + �2θ
2k
x

∣∣2

= (∣∣�2
1

∣∣ + ∣∣�2

∣∣2)
r(T1, T2). (65)

For comparison, the thermal current in a Fabry-Pérot inter-
ferometer has m distinct values

IFP
k = ∣∣�1 + �2eiφk+1

k
∣∣2

r(T1, T2). (66)

D. Tunneling of non-Abelian anyons, which are their
own antiparticles

Now we study the non-Abelian situation. As in the Abelian
situation, we start with the case where the tunneling anyon is
its own antiparticle. Examples of such anyons include Ising
and Fibonacci anyons. The fusion rule can be written as

x × x = 1 + . . . , (67)

where . . . represents other possible fusion channels. The one-
point tunneling Hamiltonian should be

HT = �T̂ = �e−iπhx x̂2(x1)x̂1(x1), (68)

where � is a real tunneling amplitude, x̂2x̂1 is the operator
that creates a pair of anyons on the opposite edges of the
interferometer, and hx is the scaling dimension of the anyon
field with topological charge x. Note that the topological spin
θx and the scaling dimension hx are related [20] as θx = ei2πhx

for a holomorphic field x. Similar to the Abelian case, we can
find the thermal current in a one-point contact geometry using

Eq. (8), IT = r(T1, T2)�2. The average heat transferred in each
tunneling event is the ratio between r(T1, T2) and p(T1, T2),
where p(T1, T2) is given by Eq. (41).

In a Mach-Zehnder interferometer, the effective two-point
tunneling Hamiltonian is given in Eq. (11), where the addi-
tional phase eiα is equal to θx. In a process where the tunneling
anyon changes the trapped topological charge from a to b, the
corresponding tunneling rate is

pb
xa = Pb

xa p(T1, T2)
∣∣�1 + eiφb

xa+iα�2

∣∣2
, (69)

where Pb
xa = Nb

xadb/(dxda) and exp(iφb
xa) = θb/(θaθx ), as in

Eq. (12).
We can further write down and compare the tunneling rates

for two different, yet related fusion routes for the localized
anyon, x × a → b, and x × b → a,

pb
xa = Nb

xa

db

dxda

∣∣∣∣�1 + �2 · θb

θxθa
· θx

∣∣∣∣
2

p(T1, T2), (70)

pa
xb = Na

xb

da

dxdb

∣∣∣∣�1 + �2 · θa

θxθb
· θx

∣∣∣∣
2

p(T1, T2). (71)

In the algebraic theory of anyons [20], Nb
xa = Na

x̄b = Na
xb and

|θa| = |θb| = 1. Since �1,2 are real amplitudes, by comparing
the two equations we find that pb

xa = (db/da)2 pa
xb. Thus the

kinetic equation (13) can be reduced to

ḟa =
∑

b

pa
xb

[
fb −

(
db

da

)2

fa

]
= 0. (72)

It is easy to read out the solution, fa = d2
a /D2, where D =√∑

a d2
a is known as the global dimension. The tunneling heat

current through a Mach-Zehnder interferometer is

IMZ = I0 + I1 + I∗
1 , (73)

where

I0 = (
�2

1 + �2
2

)
r(T1, T2)

∑
ab

Nb
xa

dadb

dx

1

D2

= (
�2

1 + �2
2

)
r(T1, T2), (74)

and

I1 = �1�2r(T1, T2)
∑

ab

Nb
xa

dadb

dx

1

D2

θb

θa

= �1�2r(T1, T2)
θx

dx

∑
a

sax̄s1a = 0. (75)

Here, we have used the identity dadb = ∑
c Nc

abdc. We also use
the notion of the topological S matrix sab = 1

D

∑
c Nc

ab̄
dc

θc
θaθb

and the orthogonality between sxa/sx1 and s1a/s11 [16,20].
Therefore, IMZ = (�2

1 + �2
2 )r(T1, T2), and the heat current

shows no interference in a Mach-Zehnder interferometer.
For comparison, the Fabry-Pérot current for a localized

anyon of type a is

IFP
a =

∑
b

Nb
xa

db

dxda

∣∣∣∣�1 + �2 · θb

θxθa

∣∣∣∣
2

r(T1, T2). (76)

Now we test our results for the Fibonacci topological order.
The Fibonacci topological order has only one nontrivial fusion
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rule: τ × τ = 1 + τ . The quantum dimension of a Fibonacci
anyon τ is dτ = (1 + √

5)/2 ≡ ϕ, and its topological spin is
θτ = e4π i/5 [26,42]. According to Eq. (69), the tunneling rates
in a Mach-Zehnder device are

pτ
ττ = 1

ϕ
|�1 + �2|2 p(T1, T2), (77)

p1
ττ = 1

ϕ2

∣∣�1 + �2e−4π i/5
∣∣2

p(T1, T2), (78)

pτ
τ1 = ∣∣�1 + �2e4π i/5

∣∣2
p(T1, T2). (79)

The kinetic equations are

ḟτ = f1 pτ
τ1 + fτ pτ

ττ − fτ
(
pτ

ττ + p1
ττ

)
, (80)

ḟ1 = fτ p1
ττ − f1 pτ

τ1. (81)

The solution is

fτ = pτ
τ1

p1
ττ + pτ

τ1

= ϕ2

1 + ϕ2
, (82)

f1 = p1
ττ

p1
ττ + pτ

τ1

= 1

1 + ϕ2
. (83)

After a substitution back into the equation for the thermal
current, one gets

IMZ = (
�2

1 + �2
2

)
�E p(T1, T2) = (

�2
1 + �2

2

)
r(T1, T2). (84)

This confirms that Eqs. (73)–(75) is a general solution for all
kinds of anyons in this category.

In summary, anyons that are their own antiparticles show
no interference in the Mach-Zehnder geometry.

E. Tunneling of non-Abelian anyons, which are not their
own antiparticles

Now let us consider the situation where the tunneling
anyon x is different from its antiparticle x̄. More specifically,
we consider a topological order in which the fusion results
of x × x and a × ā = 1 + . . . share no common topological
charges for all possible a. This condition is satisfied by many
interesting topological orders, including the Z3-parafermions
and the k = 3, M = 1 Read-Rezayi state [28]. This property
is automatically satisfied for charged anyons x since x × x
carriers electric charge and a × ā is neutral.

We will rely on the following statement for such systems:
if x could fuse with a into b, then Na

xb = 0; that is, the avail-
able topological charges from the fusion between x and b
do not include a. The proof of the statement is the follow-
ing. Assume that x × a = b + . . . and x × b = a + . . . , then
x × x × a = x × b + · · · = a + . . . . Hence, x × x × a × ā =
a × ā + · · · = 1 + . . . Hence, x × x contains the antiparticle
for at least one fusion channel in a × ā. Since a × ā contains
each possible fusion outcome together with its antiparticle, we
obtain the desired result.

This result means that the Hermitian conjugate tunneling
operators T̂ and T̂ † that transfer x between the two edges
contribute independently to the tunneling process. This signif-
icantly simplifies our discussion below. For completeness, we
give an example of an topological order that does not satisfy
our condition in Appendix F.

The contributions to the thermal current from T̂ and T̂ † are
denoted as |�|2r±(T1, T2) respectively. Using the perturbation
theory and conformal field theory (CFT), one can show that
r+(T1, T2) = r−(T1, T2). First, we write the two quantities as
integrals in the perturbation theory,

r+(T1, T2) = −i
∫ t

−∞
dt ′〈[T̂ ′†(t ), T̂ (t ′)]〉, (85)

r−(T1, T2) = −i
∫ t

−∞
dt ′〈[T̂ ′(t ), T̂ †(t ′)]〉, (86)

where T̂ = x̂2(x, t ) ˆ̄x1(x, t ) is the tunneling operator, and T̂ ′ =
−x̂2(x1, t )∂t ˆ̄x1(x1, t ). In 2D CFT, four-point correlation func-
tions with two fields on each edge can be decomposed into
products of two-point correlation functions (Appendix C);
furthermore, the correlation function of two fields is fully
determined by their conformal weights, or equivalently their
scaling dimensions [35]. Using these two properties, one can
find that 〈[T̂ ′†(t ), T̂ (t ′)]〉 = 〈[T̂ ′(t ), T̂ †(t ′)]〉, hence r+(T1, T2)
and r−(T1, T2) are equal. By the same argument, the tun-
neling rates given by p±(T1, T2)|�|2, where p+(T1, T2) =∫

dt〈T̂ †(0)T̂ (t )〉 and p−(T1, T2) = ∫
dt〈T̂ (0)T̂ †(t )〉, are also

equal to each other. The average heat transferred in a tunneling
event is

�E = r+(T1, T2)

p+(T1, T2)
= r−(T1, T2)

p−(T1, T2)
. (87)

In Mach-Zehnder interferometers, we consider again the
two-point tunneling Hamiltonian given in Eq. (57). We as-
sume that the temperature is so low that the distance between
the two contacts along the edges is much shorter than the
thermal length. Then it is legitimate to “fuse” the two con-
tacts into one. The effective tunneling amplitude depends on
the statistical phase accumulated by an anyon around the
interferometer. When considering the process, in which the
localized topological charge changes from a to b, we need to
find out whether it’s x or x̄ tunneling that results in this fusion.
Moreover, if x and a can fuse to b, then x̄ and b can fuse to a
since Nb

xa = Na
x̄b. Now we could write the tunneling rates as

pb
xa = Nb

xa

db

dxda
|�1 + �2eiφ+ |2 p+(T1, T2), (88)

pa
x̄b = Na

x̄b

da

dx̄db

∣∣�∗
1 + �∗

2eiφ−
θ2

x

∣∣2
p−(T1, T2), (89)

where eiφ+ = θb/(θxθa), eiφ− = θa/(θx̄θb), and the origin of
the θ2

x factor is the same as in the previous section. We observe
that

pb
xa = d2

b

d2
a

pa
x̄b. (90)

The matrix M in the kinetic equation (13) is of the following
form:

Mab = pa
xb + pa

x̄b − δab

∑
c

(
pc

xb + pc
x̄b

)
, (91)

but note that pa
xb and pa

x̄b cannot be nonzero at the same time.
The same applies to pc

xb and pc
x̄b. Using Eq. (90) we solve the

kinetic equation: fa = d2
a /D. We now repeat the calculations

from Eqs. (74) and (75) with almost no changes. The final
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FIG. 7. Fabry-Pérot interferometer with an inner closed edge
inside the device. Telegraph noise due to weak tunneling between
the bottom edge and the inner edge at x3 gives an alternative way to
probe statistics. As in a Mach-Zehnder device, each tunneling event
changes the enclosed topological charge.

result is

IMZ ∼ |�1|2 + |�2|2. (92)

The Fabry-Pérot current for a localized anyon a in the
fusion channel x × a → b is

Ib
xa =

∣∣∣∣�1 + �2 · θb

θxθa

∣∣∣∣
2

r+(T1, T2). (93)

The total thermal current in the Fabry-Pérot setup is obtained
by averaging over all possible fusion outcomes of x (x̄) and
the trapped anyon a:

IFP
a =

∑
b

(
Nb

xa

db

dxda
Ib
xa + Nb

x̄a

db

dx̄da
Ib
x̄a

)
. (94)

We again emphasize that for a fixed b, it is impossible that
both Nb

xa and Nb
x̄a are nonzero.

VI. NOISE IN FABRY-PÉROT INTERFEROMETERS

We now focus on the Ising statistics again. As we
discussed, a Fabry-Pérot interferometer provides a clear sig-
nature of the Ising statistics as long as the trapped topological
charge is under control. If that is not the case, we should
compare the Fabry-Pérot and Mach-Zehnder geometries. Fab-
ricating a Mach-Zehnder device is more challenging than
making a Fabry-Pérot interferometer. In this section we pro-
pose an alternative approach to probing statistics on the basis
of telegraph noise in a Fabry-Pérot device with a hole.

We consider the case where an inner closed edge is present
in a Fabry-Pérot interferometer, and weak tunneling between
the bottom edge and the inner edge is possible, as depicted in
Fig. 7. The average time between tunneling events at position
x3 is τ . Each tunneling event at x3 changes the topological
charge trapped between QPC1 and QPC2. Because of that,
the thermal current from S1 to D2 is subject to change over
time. We assume that τ is much longer than the average time
between tunneling events at QPC1 and QPC2 (Fig. 7). As
in the previous section, we assume that the interferometer
is shorter than the thermal length. As before, the tunneling
amplitudes at QPC1 and QPC2 are �1 and �2. τ is deter-
mined by the tunneling amplitude at QPC3. We consider
the zero-frequency thermal shot noise given by the following
equation [43]:

S(ω → 0) = lim
ω→0

∫ ∞

−∞
dt S(t )eiωt , (95)

where

S(t ) = 〈{IT (t ), IT (0)}〉 − 2〈IT (t )〉〈IT (0)〉, (96)

the angular brackets denote averaging, the curly brackets stand
for an anticommutator, and IT is the total thermal current
between the upper and lower edges through QPC1 and QPC2.

We will treat the tunneling process at QPC3 as a Poisson
process. We use the following notations: t0 < 0 is the start
time, tk is the time when the kth tunneling event happens,
and the time interval between successive events follows an
exponential distribution, whose rate parameter λ = 1/τ . A
tunneling event results in a change of the topological charge
of the inner edge. The charge changes from σ to 1 or ψ with
equal probability, but the next tunneling event must change it
back to σ .

In this picture, we assume that the initial topological charge
of the inner edge is σ , and the heat current at any time t is

IT (t ) = I0 + �I
∞∑

k=1

skθ (t − tk ), (97)

where I0 = Iσ = r(T1, T2)(�2
1 + �2

2 ) is the current at time
t0, �I = 2r(T1, T2)�1�2, and the random variables sk =
±1 [44]. We treat s2k−1 as independent random variables
with the probabilities P(s2k−1 = −1) = P(s2k−1 = 1) = 1/2,
while the value of s2k completely depends on s2k−1 via the
constraint s2k−1s2k = −1. Note that the heat currents between
the upper and lower edges for the inner-edge topological
charges 1 and ψ are I1 = Iσ + �I and Iψ = Iσ − �I . Thus,
our definition of the current satisfies all the requirements we
set above. The intervals τk = tk − tk−1 are independent and
identically distributed exponential random variables,

P(τk > t ) = e−λt , t � 0. (98)

Let us define N (t ) as the total number of the tunneling events
at QPC3 during the time interval (t0, t],

N (t ) = max{k � 0 : tk � t}. (99)

This is known as a Poisson process, and N (t ) satisfies the
Poisson distribution

P(N (t ) = n) = e−λ(t−t0 ) (λ(t − t0))n

n!
. (100)

After taking the average with respect to the random variables
s2k−1 and τk , we find (see Appendix G)

lim
ω→0

∫ ∞

−∞
dt eiωt S(t ) = 2(�I )2τ (1 − eλt0 ). (101)

In the limit t0 → −∞, the equation above reduces to 2(�I )2τ ,
and we can conclude that

S(ω → 0) = 8τ [r(T1, T2)]2�2
1�

2
2 . (102)

If τ is large, a high noise can be observed.

VII. CONCLUSIONS

We have learned that interferometry can be done with
neutral anyons as long as we focus on thermal current. The
basic idea of a thermal interferometer probe is rather similar to
electronic interferometry. However, details of the setup differ.
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(a) (b)

FIG. 8. (a) The junction between a quantum spin liquid (QSL) and an integer quantum Hall liquid mediated by a superconductor (SC).
The ν = 1 edge state (double arrow), under the influence of a superconductor, gets separated into two copropagating Majorana fermions. Due
to strong interactions with the QSL, one of the Majorana modes and the spin liquid’s edge Majorana mode form a gapped fermion condensate
(faded line under the superconductor without any arrow), which partially “sews” the two subsystems together. An emergent Majorana mode
then continues on the edge of the QSL before recombining again with another Majorana mode on the other edge. Details of this process can be
found in Ref. [45]. (b) Using the process described in (a), one can now consider a QSL interferometer between two superconducting junctions
with two quantum Hall liquids. The whole system is then attached to an electrical source and drain and allows one to electrically probe the
chiral Majorana edge states of the QSL.

Controlling and measuring an electric current is relatively
straightforward even for low currents used in experiments
with the fractional quantum Hall effect. Dealing with tiny
thermal currents is harder.

A breakthrough idea [46] allowed probing thermal currents
in the quantum Hall effect. It turns out that thermal measure-
ments can be reduced to purely electric measurements on the
basis of Joule’s law. This, of course, relies on a finite electrical
conductance in QHE systems. Additional ideas are needed to
deal with neutral systems such as Kitaev magnets. A crucial
challenge is a very low temperature at which the experiment
has to be conducted. Indeed, the constriction size cannot be
smaller than the unit cell size. This means the scale of the
order of at least a ∼ 1 nm in α-RuCl3. The interferometer
size should be at least an order of magnitude bigger, yet it
should be shorter than the thermal length h̄v/T , where the
edge velocity v ∼ a�/h̄, with � being the energy gap, is
estimated at ∼105 cm/s. Besides, the temperature should be
much lower than the energy gap � estimated at a few Kelvin
[23]. Thus, we have to deal with sub-Kelvin temperatures.
Thermal currents ∼T 2/h scale as the square of the temper-
ature and are hard to probe in that temperature range.

One approach was advocated in Ref. [22]. The idea builds
on using edge-phonon interactions for a sufficiently long edge.
Such interactions are highly irrelevant in the renormalization
group sense, and we will not address that approach here.
See Ref. [22] for details. Two other approaches are possi-
ble. Both reduce a thermal measurement to an electric noise
measurement.

One approach requires a junction of a spin liquid and a
quantum Hall systems. It was proposed that such a junction
between a Kitaev magnet and an integer QHE liquid can be
mediated by a superconductor [45]. The edge structure is
illustrated in Fig. 8(a). We can see that the QHE edge splits
into a neutral channel running under a superconductor and a
neutral edge of the Kitaev liquid. The modes recombine on the
other side of the superconducting junction. We now consider
a setup with an interferometer between two superconducting
junctions [Fig. 8(b)]. If the QHE bars on the two sides are
maintained at the same temperature, the noise in the drain
equals the Nyquist noise at the common temperature. In a
nonequilibrium situation, relevant for this paper, the noise is

no longer given by the Nyquist formula and depends on the
tunneling heat current.

In another approach, heat is transferred between the inter-
ferometer edge and a quantum wire. The standard technique
[6,7,46] can then be used to measure the heat current in the
wire by connecting it with a QHE system. The leading inter-
action of the wire and the Kitaev edge in contact, ψ∂xψ∂xφ,
is proportional to the charge density ∼∂xφ in the wire and the
energy density on the Kitaev edge. It is highly irrelevant in
the renormalization group sense at low energies. Thus, a long
region of contact may be needed. Two observations mitigate
this challenge. First, the relevancy of the interaction can be
increased by using the geometry from Fig. 9. Here a hole is
made near the Kitaev edge. The interaction of the wire with
the Kitaev liquid near the point, where the hole approaches
the edge, is σ1σ2∂xφ with σ1,2 denoting anyon operators on the
edge of the hole and the outer edge of the Kitaev liquid. This
interaction is significantly more relevant than the interaction
without the hole, provided that the system is tuned close to
resonance so that the σ1σ2 interaction is suppressed.

It is also important that the interferometry experiment does
not require probing the precise energy current on the edge. It
is enough to compare corrections to the edge thermal current
due to the tunneling contacts at different trapped topological
charges. This can be accomplished even if only a small portion
of the heat current is transferred from the edge of the spin
liquid to the wire. Indeed, the difference of the transferred
heat currents with and without tunneling contacts in the Kitaev

FIG. 9. Interaction between the quantum wire and the spin liquid
is more relevant in the renormalization group sense near the hole.
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liquid is proportional to the tunneling heat current through the
interferometer.

A Mach-Zehnder device cannot be confined in a sin-
gle plane due to its complicated topology (Fig. 3). This is
a fabrication challenge. We would like to emphasize that
this challenge has been overcome for quantum Hall liquids
[30,31]. On the other hand, quantum coherence persists in
Mach-Zehnder interferometers at a longer size than in Fabry-
Pérot devices. Indeed, the current through a Fabry-Pérot
interferometer depends on the sum of the distances between
the tunneling contacts along the two edges. In the Mach-
Zehnder case, only the length difference matters. In particular,
the heat current depends on the combination of the thermal
length and that difference (Appendix H). Thus, interference
can be observed at shorter thermal lengths and higher temper-
atures than in a Fabry-Pérot interferometer of a similar size.

Interferometry is the most direct probe of statistics. A less
direct but simpler probe involves heat current through a single
contact. It scales as a universal power of the temperature at
a fixed ratio of the temperatures on the two edges across the
contact.

In conclusion, Fabry-Pérot interferometry shows distinct
values of the heat current through the interferometer for each
possible topological charge confined in the device. It may
be challenging to control the trapped topological charge, in
which case the heat current through the interferometer might
be the same for anyons as for bosons and fermions. One can
then distinguish anyons from fermions and bosons by using
a Mach-Zehnder setup. A striking feature is the absence of
interference signal in a Mach-Zehnder device for any nontriv-
ial topological order. Besides, anyonic statistic induces a high
telegraph noise of the heat current in a Fabry-Pérot device
with a hole.
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APPENDIX A: ψ TUNNELING

Here we compute, in the leading order, the tunneling ther-
mal current in a two-constriction Fabry-Pérot interferometer
with single-Majorana-fermion tunneling from one edge of the
spin-liquid to the other edge of the same spin-liquid, see also
Ref. [22]. Several equations from this Appendix are used in
the calculations presented in Appendix B. The full Hamilto-
nian for the system is given as

H = v

4π

∫ L/2

−L/2
dx[−i : ψ1∂xψ1 : + i : ψ2∂xψ2 :] + HT .

(A1)

where HT is the single-Majorana fermion tunneling Hamil-
tonian at the quantum point contacts. The geometry of the
Fabry-Pérot interferometer is shown in Fig. 3(a). The sub-
scripts 1 and 2 on the Majorana fermion field ψ denote the
two edges of the spin liquid. We work in the L → ∞ limit and
impose the periodic boundary conditions ψa(x) ≡ ψa(x + L).
The edges have different temperatures T1,2. The free field

Hamiltonian can be diagonalized by working in the Fourier
space, defining

ψ1(x) =
√

2π

L

∑
k

eikxψ1,k, (A2)

ψ2(x) =
√

2π

L

∑
k

e−ikxψ2,k . (A3)

We first compute the Majorana-fermion two-point thermal
correlation function,

〈ψ1(x, t )ψ1(0, 0)〉 = 2π

L

∑
k,q

eik(x−vt )e−kε〈ψkψq〉

= 2π

L

∑
k,q

eik(x−vt )e−kε δk+q

e−βvk + 1
(A4)

L→∞−−−→
∫

dk
eik(x−vt+iε)

e−βvk + 1
= − πT1

v sin[iπT1(x/v − t + iε)]
.

(A5)

The expression for ψ2 is similar with a different temperature.
The tunneling Hamiltonian is given as

HT = −i�1ψ2(x1, t )ψ1(x1, t ) − i�2ψ2(x2, t )ψ1(x2, t ),

(A6)

where xi is the location of the ith constriction [see Fig. 3(a)],
and �i is its real tunneling amplitude. Using the equa-
tion of motion, we can identify the tunneling current operator
as

ÎT (t ) = i�1ψ2(x1, t )∂tψ1(x1, t ) + i�2ψ2(x2, t )∂tψ1(x2, t ),
(A7)

where the time derivatives are computed from the edge theory
without tunneling. An easy derivation consists in computing
the commutator of the tunneling Hamiltonian with one of
the edge Hamiltonians. We now use perturbation theory to
compute the average thermal current to the first nonzero order
in the tunneling amplitudes,

〈IT 〉 = − i
∫ t

−∞
dt ′[�2

1〈[ψ2(x1, t )∂tψ1(x1, t ), ψ2(x1, t ′)ψ1

× (x1, t ′)]〉 + �2
2〈[ψ2(x2, t )∂tψ1(x2, t ), ψ2(x2, t ′)

× ψ1(x2, t ′)]〉
+ �1�2(〈[ψ2(x1, t )∂tψ1(x1, t ), ψ2(x2, t ′)ψ1(x2, t ′)]〉
+ 〈[ψ2(x2, t )∂tψ1(x2, t ), ψ2(x1, t ′)ψ1(x1, t ′)]〉)

]
,

(A8)

where the first two terms correspond to the independent
single-constriction contributions, and the last two terms are
the interference terms between the two constrictions. There-
fore, we can write the total thermal current as comprised of
the noninterference and interference terms,

〈IT 〉 ≡
∑
j=1,2

〈IT 〉non-int
� j

+ 〈IT 〉int. (A9)

In the following two subsections, we individually focus on the
noninterference and interference contributions. Note that the
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FIG. 10. Contours used to compute the integrals in Appendices A, B, and D. Contour (a) is used for the noninterference terms, and contour
(b) is used for the interference terms. χ is proportional to the distance x21 between the constrictions.

noninterference contribution 〈IT 〉non-int
� j

corresponds to the jth
constriction, j = 1, 2 and is exactly what we obtain when we
consider a single-constriction geometry as shown in Fig. 2.
Therefore, the thermal current in the single-constriction case
can be found as the noninterference part, corresponding to one
of the tunneling amplitudes � j , of the full calculation that is
presented in this Appendix.

Our calculations assume that the two edges of the inter-
ferometer remain in equilibrium at the temperatures of the
sources. This assumption is legitimate for weak tunneling
despite the nonequilibrium nature of tunneling transport, if
the average time between two consecutive tunneling events
is much longer then the travel time along the edges between
the two constrictions [14]. See a detailed discussion of the
validity conditions for the perturbation theory in Ref. [14].
Note that the physical situation is different from Ref. [47],
where a strongly nonequilibrium edge state emerges due to
the coexistence of counter-propagating channels of different
temperatures on the same edge. In our case, the temperatures
of the drain and source connected to the same edge are ap-
proximately equal.

Some topological orders allow counterpropagating edge
modes on the same edge. Then equilibration processes on the

edge change slightly the edge temperatures at small �i. This
effect is irrelevant in the lowest-order perturbation theory.

1. Noninterference term

We first compute the noninterference terms. We use the
above derived thermal correlation functions, in which we set
v = 1,

〈ψ1(x1, t1)ψ1(x2, t2)〉 = πT1

sin[πT1(ε + i(t1 − t2 + x2 − x1))]
,

(A10)

〈ψ2(x1, t1)ψ2(x2, t2)〉 = πT2

sin[πT2(ε + i(t1 − t2 + x1 − x2))]
.

(A11)

Plugging these into the noninterference contribution 〈IT 〉non-int
� j

to the thermal current due to the jth constriction, we obtain
the expression

〈IT 〉non-int
� j

= �2
j

∫ t

−∞
dt ′

[
(πT2)(πT1)2 cos[πT1(ε + i(t − t ′))]

sin2[πT1(ε + i(t − t ′))] sin[πT2(ε + i(t − t ′))]
+ (t ↔ t ′)

]
, ( j = 1, 2). (A12)

Defining τ ≡ πT1(t − t ′) and n = T2/T1, we write the above integral as

〈IT 〉non-int
� j

= π2�2
j T1T2

∫ ∞

−∞
dτ

cos(−iτ + ε)

sin2(−iτ + ε) sin[n(−iτ + ε)]
. (A13)

Since the ε → 0 limit is to be taken after evaluating the integral, to evaluate the integral, we deform the integration contour as
shown in Fig. 10(a),

〈IT 〉non-int
� j

= π2�2
j T1T2

[∫ −ε

−∞
dτ

cos(−iτ )

sin2(−iτ ) sin(−inτ )
+

∫
C

dτ
cos(−iτ )

sin2(−iτ ) sin(−inτ )
+

∫ ∞

ε

dτ
cos(−iτ )

sin2(−iτ ) sin(−inτ )

]
. (A14)

Here C is a half-circle near the origin. Pictorially, the integration contour is deformed as shown in Fig. 10(a). Close to the origin,
the integration variable can be defined as τ = εeiθ .

On inspection, it is easy to see that the first and the last integrals cancel out, hence only the integral along the contour C gives
a nonzero contribution, ∫

C
dτ

cos(−iτ )

sin2(−iτ ) sin(−inτ )
=

∫ 0

π

dθ
τ cosh τ

sinh2 τ sinh(nτ )
. (A15)

Since ε is small, we may use the expansion

cosh τ

sinh2 τ sinh(nτ )
= 1

nτ 3
+ 1 − n2

6nτ
+ O(τ ). (A16)
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Using this, we evaluate the integral in the ε → 0 limit,∫ 0

π

dθ
τ cosh τ

sinh2 τ sinh(nτ )
= π (n2 − 1)

6n
= π

(
T 2

2 − T 2
1

)
6T1T2

. (A17)

Putting the result of the integral back into the expression for the noninterference terms in the thermal current we obtain

∑
j=1,2

〈IT 〉non-int
� j

= π3
(
�2

1 + �2
2

)
6

(
T 2

2 − T 2
1

)
. (A18)

This is the contribution to the thermal current from two independent constrictions. Calculation of the thermal current in the
single-constriction geometry would involve only the noninterference contribution 〈IT 〉non-int

� j
due to one of the constrictions.

2. Interference term

In the double constriction Fabry-Pérot geometry, there is an interference contribution as well, which we compute now,

〈IT 〉int =�1�2

∫ t

−∞
dt ′

[
(πT2)(πT1)2 cos[πT1(ε + i(t − t ′ + x21))]

sin2[πT1(ε + i(t − t ′ + x21))] sin[πT2(ε + i(t − t ′ − x21))]

+ (πT2)(πT1)2 cos[πT1(ε + i(t ′ − t − x21))]

sin2[πT1(ε + i(t ′ − t − x21))] sin[πT2(ε + i(t ′ − t + x21))]
+ (x21 ↔ −x21)

]
. (A19)

Like before, for convenience, we define τ ≡ πT1(t − t ′), χ ≡ πT1x21, and n = T2/T1,

〈IT 〉int = π2�1�2T1T2

∫ ∞

0
dτ

[
cos[i(τ + χ ) + ε]

sin2[i(τ + χ ) + ε] sin[n(i(τ − χ ) + ε)]
+ cos[−i(τ + χ ) + ε]

sin2[−i(τ + χ ) + ε] sin[n( − i(τ − χ ) + ε)]

]

+π2�1�2T1T2

∫ ∞

0
dτ

[
cos[i(τ − χ ) + ε]

sin2[i(τ − χ ) + ε] sin[n(i(τ + χ ) + ε)]
+ cos[−i(τ − χ ) + ε]

sin2[−i(τ − χ ) + ε] sin[n( − i(τ + χ ) + ε)]

]
(A20)

= π2�1�2T1T2

∫ ∞

−∞
dτ

[
cos[−i(τ + χ ) + ε]

sin2[−i(τ + χ ) + ε] sin[n( − i(τ − χ ) + ε)]
+ cos[−i(τ − χ ) + ε]

sin2[−i(τ − χ ) + ε] sin[n( − i(τ + χ ) + ε)]

]
.

(A21)

The integral is evaluated using the contour defined in Fig. 10(b). After deforming the contour around τ = ±χ as shown in
Fig. 10(b), we observe that the only surviving terms are

〈IT 〉int = −iπ2�1�2T1T2

∫
C1+C2

dτ

[
cosh(τ + χ )

sinh2(τ + χ ) sinh[n(τ − χ )]
+ cosh(τ − χ )

sinh2(τ − χ ) sinh[n(τ + χ )]

]
, (A22)

The integration variable near −χ is given by η = εeiθ − χ , and the integration variable near χ is given by η = εeiθ + χ . Again,
since ε is small, we use the series expansions to perform the integrals and then take the ε → 0 limit,

cosh τ

sinh2 τ
= 1

τ 2
+ 1

6
+ O(τ 2), (A23)

1

sinh τ
= 1

τ
− τ

3
+ O(τ 3). (A24)

Using these expansions, we arrive at the expression

〈IT 〉int = 2π3�1�2

[
T 2

2
cosh(2πT2x21)

sinh2(2πT2x21)
− T 2

1
cosh(2πT1x21)

sinh2(2πT1x21)

]
. (A25)

Combining the interference and noninterference terms together, we arrive at the expression for the thermal current,

〈IT 〉 = π3
(
�2

1 + �2
2

)
6

(
T 2

2 − T 2
1

) + 2π3�1�2

[
T 2

2
cosh(2πT2x21)

sinh2(2πT2x21)
− T 2

1
cosh(2πT1x21)

sinh2(2πT1x21)

]
. (A26)
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APPENDIX B: ψ∂xψ TUNNELING

In this Appendix, we compute the tunneling thermal current between adjacent spin liquids as discussed in the main text
in Sec. III. Note that the calculation for the single-constriction geometry, as discussed in Sec. III A, corresponds to the
noninterference part 〈IT 〉non-int

� (here �i = �) of the full calculation in the double constriction Fabry-Pérot geometry, which
we present in this Appendix. We set the edge velocity v = 1. Therefore, the final answers should be divided by v8. We rely on
Green’s functions, computed in Appendix A.

From perturbation theory and the expression of the tunneling thermal current operator, Eq. (17), the leading contribution to
the tunneling thermal current is

〈IT (t )〉 = −4
(
�2

1 + �2
2

)
π9T 5

1 T 4
2

∫ ∞

−∞
dτ

cos[iπT1(τ + iε)]

sin5[iπT1(τ + iε)]

1

sin4[iπT2(τ + iε)]

− 4�1�2π
9T 5

1 T 4
2

[ ∫ ∞

−∞
dτ

cos[iπT1(τ + χ + iε)]

sin5[iπT1(τ + χ + iε)]

1

sin4[iπT2(τ − χ + iε)]
+ (χ → −χ )

]
(B1)

= 4i
(
�2

1 + �2
2

)
π9T 5

1 T 4
2

∫ ∞

−∞
dτ

cosh[πT1(τ + iε)]

sinh5[πT1(τ + iε)]

1

sinh4[πT2(τ + iε)]

+ 4i�1�2π
9T 5

1 T 4
2

[ ∫ ∞

−∞
dτ

cosh[πT1(τ + χ + iε)]

sinh5[πT1(τ + χ + iε)]

1

sinh4[πT2(τ − χ + iε)]
+ (χ → −χ )

]
, (B2)

where χ is the distance between the two tunneling contacts divided by v. We assume χ > 0. We redefine the variables for
convenience, η = πT1τ , λ = T2/T1, and χ → πT1χ . This gives

〈IT (t )〉 = 4i
(
�2

1 + �2
2

)
π8T 4

1 T 4
2

∫ ∞

−∞
dη

cosh η

sinh5(η + iε)

1

sinh4(λη + iε)

+ 4i�1�2π
8T 4

1 T 4
2

[ ∫ ∞

−∞
dτ

cosh(η + χ )

sinh5(η + χ + iε)

1

sinh4(λη − λχ + iε)
+ (χ → −χ )

]
. (B3)

This expression consists of the noninterference contributions due to each of the constrictions independently, and the interference
contribution. Therefore, the total tunneling thermal current can be written as 〈IT 〉 = ∑

j=1,2〈IT 〉non-int
� j

+ 〈IT 〉int, where the
noninterference and interference contributions are given as

〈IT 〉non-int
� j

= 4i�2
j π

8T 4
1 T 4

2

∫ ∞

−∞
dη

cosh η

sinh5(η + iε)

1

sinh4(λη + iε)
, j = 1, 2, (B4)

〈IT 〉int = 4i�1�2π
8T 4

1 T 4
2

[ ∫ ∞

−∞
dτ

cosh(η + χ )

sinh5(η + χ + iε)

1

sinh4(λη − λχ + iε)
+ (χ → −χ )

]
. (B5)

In the following two subsections, we focus on the noninterference and interference contributions separately. Note that the
noninterference contribution 〈IT 〉non-int

� j
corresponding to each � j , j = 1, 2, is exactly what we obtain when we consider

single-constriction geometry between two different spin liquids. Therefore, the thermal current in the single-constriction case,
as discussed in Sec. III A, can be found as the noninterference part, corresponding to one of the tunneling amplitudes �i, of the
full calculation presented in this Appendix.

1. Noninterference term

First we consider the noninterference contribution [Eq. (B4)] to the tunneling thermal current. It can be rewritten as

〈IT 〉non-int
� j

= 4i�2
j π

8T 4
1 T 4

2

∫ ∞

−∞
dη

cosh η

sinh5 (η + iε) sinh4(λη + iε)
(B6)

= 4i�2
j π

8T 4
1 T 4

2

[ ∫ −ε

−∞
dη

cosh η

sinh5 (η) sinh4(λη)
+

∫ ∞

ε

dη
cosh η

sinh5 (η) sinh4(λη)
+

∫
C

dη
cosh η

sinh5 (η) sinh4(λη)

]
(B7)

= 4i�2
j π

8T 4
1 T 4

2

∫
C

dη
cosh η

sinh5 (η) sinh4(λη)
, (B8)

where j = 1, 2. Here, the integration contour is deformed as shown in Fig. 10(a). Close to the origin, the integration variable can
be written as η = εeiθ . Since ε � 1, we expand the integrand,

cosh η

sinh5 (η) sinh4(λη)
= · · · + 1

η

[
41(λ8 − 1)

2835 λ4
+ 62(λ4 − 1)

2835 λ2

]
+ O(η0). (B9)
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All the terms in . . . contain negative odd powers of η, and since dη = iεeiθdθ , on integration from π to 0, these terms give zero.
The only nonzero contribution comes from the 1/η term. This allows us to perform the integral and take the ε → 0 limit, and
we thus obtain ∑

j=1,2

〈IT 〉non-int
� j

= 4π9
(
�2

1 + �2
2

) 1

2835

[
41

(
T 8

2 − T 8
1

) + 62T 2
1 T 2

2

(
T 4

2 − T 4
1

)]
. (B10)

This is the noninterference contribution to the thermal current due to two independent constrictions. The results discussed in the
main text in Sec. III A correspond to 〈IT 〉non-int

� j
where � j is set to �.

2. Interference term

We now look at the interference contribution to the tunneling thermal current, Eq. (B5); this is given as

〈IT 〉int = 4i�1�2π
8T 4

1 T 4
2

[ ∫ ∞

−∞
dη

cosh(η + χ )

sinh5(η + χ + iε)

1

sinh4(λη − λχ + iε)
+ (χ → −χ )

]
. (B11)

The contour can be deformed according to Fig. 10(b) and the integral rewritten as

〈IT 〉int = 4i�1�2π
8T 4

1 T 4
2

[ ∫ −χ−ε

−∞
dη

cosh(η + χ )

sinh5(η + χ )

1

sinh4(λη − λχ )
+

∫
C1

dη
cosh(η + χ )

sinh5(η + χ )

1

sinh4(λη − λχ )

+
∫ χ−ε

−χ+ε

dη
cosh(η + χ )

sinh5(η + χ )

1

sinh4(λη − λχ )
+

∫
C2

dη
cosh(η + χ )

sinh5(η + χ )

1

sinh4(λη − λχ )

+
∫ ∞

χ+ε

dη
cosh(η + χ )

sinh5(η + χ )

1

sinh4(λη − λχ )
+ (χ → −χ )

]
, (B12)

where the contours C1 and C2 represent respectively the integration variable going over the upper half-plane near −χ with
η = εeiθ − χ , and similarly the integration variable going over the upper half-plane near χ with η = εeiθ + χ . The integrals are
evaluated using the contour shown in Fig. 10(b). Rearranging these integrals allows the cancellation of a few terms, and we are
left with

〈IT 〉int = 4i�1�2π
8T 4

1 T 4
2

[∫
C1

dη
cosh(η + χ )

sinh5(η + χ )

1

sinh4(λη − λχ )
+

∫
C2

dη
cosh(η + χ )

sinh5(η + χ )

1

sinh4(λη − λχ )
+ (χ → −χ )

]
.

(B13)

We now use the following expansions to compute the above integrals,

1

sinh4(εeiθ + 2χ )
= 1

sinh4(2χ )
− 4εeiθ cosh(2χ )

sinh5(2χ )
+ ε2e2iθ

sinh4(2χ )

[
10 cosh2(2χ )

sinh2(2χ )
− 2

]

− 4ε3e3iθ

3 sinh4(2χ )

[
15 cosh3(2χ )

sinh3(2χ )
− 7 cosh(2χ )

sinh(2χ )

]
+ ε4e4iθ

3 sinh4(2χ )

[
105 cosh4(2χ )

sinh4(2χ )
− 80 cosh2(2χ )

sinh2(2χ )
+ 7

]

+ O(ε5). (B14)

Similarly, we have

cosh(εeiθ + 2χ )

sinh5(εeiθ + 2χ )
= cosh(2χ )

sinh(2χ )
+ εeiθ

[
1

sinh4(2χ )
− 5 cosh2(2χ )

sinh6(2χ )

]
− ε2e2iθ

[
7 cosh(2χ )

sinh5(2χ )
− 15 cosh3(2χ )

sinh7(2χ )

]

+ ε3e3iθ

3

[
80 cosh2(2χ )

sinh6(2χ )
− 105 cosh4(2χ )

sinh8(2χ )
− 7

sinh4(2χ )

]
+ O(ε4). (B15)

Using these, we find the interference contribution to the thermal current,

〈IT 〉int = 4i�1�2π
8T 4

1 T 4
2

[ ∫ 0

π

dθ iεeiθ

[
1

ε5e5iθ
− 1

3ε3e3iθ
+ O(ε)

]
1

sinh4(λεeiθ − 2λχ )

+
∫ 0

π

dθ iεeiθ cosh(εeiθ + 2χ )

sinh5(εeiθ + 2χ )

[
1

ε4λ4e4iθ
− 2

3ε2λ2e2iθ
+ O(ε0)

]
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WEI, BATRA, MITROVIĆ, AND FELDMAN PHYSICAL REVIEW B 107, 104406 (2023)

+
∫ 0

π

dθ iεeiθ cosh(εeiθ − 2χ )

sinh5(εeiθ − 2χ )

[
1

ε4λ4e4iθ
− 2

3ε2λ2e2iθ
+ O(ε0)

]

+
∫ 0

π

dθ iεeiθ

[
1

ε5e5iθ
− 1

3ε3e3iθ
+ O(ε)

]
1

sinh4(λεeiθ + 2λχ )

]
. (B16)

Now we observe that all the terms with negative odd powers of ε give nonzero contributions, since we integrate from π to 0
(even powers of ε come with e2inθ that gives zero on integration unless n = 0). The term of order ε0 will also give a nonzero
contribution. All positive powers of ε vanish since we take the ε → 0 limit at the end of the calculation. We need to make sure
that the remaining ε-dependent terms with odd negative powers cancel out so that in the ε → 0 limit, the integral remains well
behaved. Indeed that happens since in Eq. (B16), we note that in the first and fourth integrals (and similarly the second and third
integrals), the negative odd powers of ε terms come with opposite signs, which is how they cancel. Out of all these, the only
remaining terms that give a nonzero contribution are ε0-order terms,

〈IT 〉int = �

[ ∫ 0

π

dθ i
2λ4

3 sinh4(2λχ )

[
105 cosh4(2λχ )

sinh4(2λχ )
− 80 cosh2(2λχ )

sinh2(2λχ )
+ 7

]
−

∫ 0

π

dθ i
2

3

λ2

sinh4(2λχ )

[
10 cosh2(2λχ )

sinh2(2λχ )
− 2

]

+
∫ 0

π

dθ i
1

3

[
80 cosh2(2χ )

sinh6(2χ )
− 105 cosh4(2χ )

sinh8(2χ )
− 7

sinh4(2χ )

]
2

λ4
−

∫ 0

π

dθ i

[
1

sinh4(2χ )
− 5 cosh2(2χ )

sinh6(2χ )

]
4

3λ2

]
,

(B17)

where we defined � = 4i�1�2π
8T 4

1 T 4
2 for convenience. This integral can now be computed to give

〈IT 〉int = 4�1�2π
9T 4

1 T 4
2

[
2λ4

3 sinh4(2λχ )

[
105 cosh4(2λχ )

sinh4(2λχ )
− 80 cosh2(2λχ )

sinh2(2λχ )
+ 7

]
+ 2λ2

3 sinh4(2λχ )

[
2 − 10 cosh2(2λχ )

sinh2(2λχ )

]

− 2

3λ4 sinh4(2χ )

[
105 cosh4(2χ )

sinh4(2χ )
− 80 cosh2(2χ )

sinh2(2χ )
+ 7

]
− 2

3λ2 sinh4(2χ )

[
2 − 10 cosh2(2χ )

sinh2(2χ )

]]
. (B18)

Plugging back the values of χ and λ gives

〈IT 〉int = 8

3
�1�2π

9

[
T 8

2

sinh4(2πT2x21)

[
105 cosh4(2πT2x21)

sinh4(2πT2x21)
− 80 cosh2(2πT2x21)

sinh2(2πT2x21)
+ 7

]

+ T 2
1 T 6

2

sinh4(2πT2x21)

[
2 − 10 cosh2(2πT2x21)

sinh2(2πT2x21)

]
− T 8

1

sinh4(2πT1x21)

[
105 cosh4(2πT1x21)

sinh4(2πT1x21)
− 80 cosh2(2πT1x21)

sinh2(2πT1x21)
+ 7

]

− T 6
1 T 2

2

sinh4(2πT1x21)

[
2 − 10 cosh2(2πT1x21)

sinh2(2πT1x21)

]]
. (B19)

Finally, combining the interference and noninterference contributions to the thermal current gives the total tunneling thermal
current,

〈IT 〉 = π9
(
�2

1 + �2
2

)
4

2835

[
41

(
T 8

2 − T 8
1

) + 62T 2
1 T 2

2

(
T 4

2 − T 4
1

)] + 8
3�1�2π

9
[
T 2

1 T 6
2 csch4(2πT2x21)[2 − 10 coth2(2πT2x21)]

− T 6
1 T 2

2 csch4(2πT1x21)[2 − 10 coth2(2πT1x21)] + T 8
2 csch4(2πT2x21)[105 coth4(2πT2x21) − 80 coth2(2πT2x21) + 7]

− T 8
1 csch4(2πT1x21)[105 coth4(2πT1x21) − 80 coth2(2πT1x21) + 7]

]
. (B20)

We now analyze this expression by varying X1 ≡ 2πT1x21/v at a fixed ratio n ≡ T2/T1 [Fig. 11(a)], and then by varying the
ratio of the temperatures at a fixed X1 ≡ 2πT1x21/v [Fig. 11(b)]. If the two edges of the spin liquids are maintained at constant
temperatures, the parameter X1 is controlled by the distance between the two constrictions x21. We also see from Fig. 11(a) that
as X1 → 0, at �1 = �2, the tunneling thermal current equals twice the noninterference contribution 〈IT 〉non-int

� indicated by the
broken line in Fig. 11(a).

APPENDIX C: DECOMPOSITION OF CORRELATION FUNCTIONS OF ISING FIELDS

In this Appendix, we demonstrate how the correlation functions of the fields defined on two edges can be decomposed into the
product of two correlation functions of the fields on the same edge. To achieve this, we assume that the two edges are connected
by a long section of length L. We will take this length to be infinite to achieve the decomposition.
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FIG. 11. Thermal current between two spin liquids when �1 = �2 = �. (a) Variation with X1 at a fixed temperature ratio. The broken line
shows the value of 2〈IT 〉non-int

� . (b) Variation with n = T2/T1 shows the expected monotonic behavior.

The tunneling operators create two excitations that fuse to vacuum on both sides of the constriction at x0. Since Ising anyons
are their own antiparticles, the form of the tunneling operator at the times t and t ′ is

T12 ≡ σ2(x0, t )σ1(x0, t ), (C1a)

T34 ≡ σ2(x0, t ′)σ1(x0, t ′), (C1b)

up to a constant factor ∼ exp(−iπ/16). The subscript on the Ising field corresponds to the edge on which it is defined, and since
the two edges are assumed to be connected, the two fields can be written in terms of each other as σ2(x0) = σ1(L − x0). Notice,
however, this is well defined only in the L → ∞ limit. We use the following coordinates:

u1 = t − x0, (C2a)

u2 = t − (−x0 + L), (C2b)

u3 = t ′ − x0, (C2c)

u4 = t ′ − (−x0 + L), (C2d)

and assume that the edge velocity v = 1. In this convention, the four-point functions can then be computed using the relation
[35]

〈T12T34〉2 = 1

2

[(
z13z24

z12z23z34z14

)1/4

+
(

z14z23

z13z24z12z34

)1/4
]
, (C3)

where zi j = sin[πT (ε + iui j )]/πT , and ui j ≡ ui − u j . Notice that when we take the L → ∞ limit, the first term drops out and
we arrive at the expression

〈T12T34〉 ∼ 1√
2

eiπ/8

(z13z24)1/8

(
sinh(πTu14) sinh(πTu32)

sinh(πTu12) sinh(πTu34)

)1/8
L→∞−−−→ eiπ/8

√
2(z13z24)1/8

. (C4)

We now notice that the final expression, after taking the limit, can be written as a product of two-point functions defined on one
of the edges, Eq. (25). Therefore,

〈σ2(x0, t )σ1(x0, t )σ2(x0, t ′)σ1(x0, t ′)〉 = eiπ/8

√
2

〈σ2(x0, t )σ2(x0, t ′)〉〈σ1(x0, t )σ1(x0, t ′)〉. (C5)

The choice of the branch in the above formula is dictated by the Hermiticity of the tunneling operators ∼ exp(−iπ/16)σ2σ1.
Indeed, the average of the square of a tunneling operator must be real and positive.

APPENDIX D: σ TUNNELING

In this Appendix, we compute the thermal tunneling current due to Ising anyon tunneling at two point contacts at x1 and
x2 in the Fabry-Pérot geometry [Fig. 3(a)]. The single-constriction calculation is the noninterference part 〈IT 〉non-int

� j
of the full

calculation presented in this Appendix with contributions from only one of the tunneling amplitudes � j , j = 1, 2. We assume
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identical distances between the tunneling contacts along the two edges and identical edge velocities on the two edges. Since the
result depends only on the sum of the edge lengths (Appendix H), the first assumption can be easily removed.

In the calculation, we assume that the interferometer confines a trivial topological charge. We generalize to an arbitrary
confined charge in the main text.

The full tunneling Hamiltonian is given by

HT = e−iπ/16�1σ2(x1, t )σ1(x1, t ) + e−iπ/16�2σ2(x2, t )σ1(x2, t ). (D1)

We define the current operator using the Heisenberg equation of motion,

I (1)
T = ∂H1

∂t
= −i[H1, H] = −i[H1, HT ], (D2)

where H1 and H2 correspond to the free field Hamiltonian (1) defined on the left- and right-moving edges respectively. From
here, we identify the current operator as

I (1)
T = −e−iπ/16�1σ2(x1, t )∂tσ1(x1, t ) − e−iπ/16�2σ2(x2, t )∂tσ1(x2, t ), (D3)

where all Heisenberg operators are defined in terms of the edge Hamiltonian without tunneling. Using perturbation theory, we
obtain the expectation value of the thermal current due to the tunneling, to the lowest nonzero order,

〈I (1)
T (t )〉 = −i

∫ t

−∞
dt ′〈[I (1)

T (t ), HT (t ′)
]〉
. (D4)

Inserting the operators into the above expression gives

〈
I (1)
T (t )

〉 = ie−iπ/8
∫ t

−∞
dt ′[�2

1〈[σ2(x1, t )∂tσ1(x1, t ), σ2(x1, t ′)σ1(x1, t ′)]〉 + �2
2〈[σ2(x2, t )∂tσ1(x2, t ), σ2(x2, t ′)σ1(x2, t ′)]〉

+ �1�2〈[σ2(x1, t )∂tσ1(x1, t ), σ2(x2, t ′)σ1(x2, t ′)]〉 + �1�2〈[σ2(x2, t )∂tσ1(x2, t ), σ2(x1, t ′)σ1(x1, t ′)]〉]. (D5)

From here we see that the thermal current is composed of noninterference and interference contributions, 〈IT 〉 =∑
j=1,2〈IT 〉non-int

� j
+ 〈IT 〉int. The thermal correlation functions are

〈σ1(x1, t1)σ1(x2, t2)〉 = (πT1)1/8

sin1/8[πT1(ε + i(t1 − t2 + x2 − x1))]
, (D6)

〈σ2(x1, t1)σ2(x2, t2)〉 = (πT2)1/8

sin1/8[πT2(ε + i(t1 − t2 + x1 − x2))]
, (D7)

and, of course, the cross-correlations go to zero in the L → ∞ limit (Appendix C). To simplify notations, we set v = 1. In the
following two subsections, we separately focus on the noninterference and interference contributions.

1. Noninterference term

Using the above correlation functions and the results of Appendix C on the four-point correlation functions, we first compute
the expression for the noninterference contribution ( j = 1, 2).

〈I〉non-int
� j

= �2
j

8
√

2

∫ t

−∞
dt ′

[
(πT2)

1
8 (πT1)

9
8 cos[πT1(ε + i(t − t ′))]

sin
9
8 [πT1(ε + i(t − t ′))] sin

1
8 [πT2(ε + i(t − t ′))]

+ (πT2)
1
8 (πT1)

9
8 cos[πT1(ε + i(t ′ − t ))]

sin
9
8 [πT1(ε + i(t ′ − t ))] sin

1
8 [πT2(ε + i(t ′ − t ))]

]
. (D8)

Defining πT1(t − t ′) ≡ τ and n = T2/T1, we can simplify the above integral,

〈IT 〉non-int
� j

= − �2
j

8
√

2
(πT1)

1
8 (πT2)

1
8

∫ 0

∞
dτ

[
cos(iτ + ε)

sin
9
8 (iτ + ε) sin

1
8 [n(iτ + ε)]

+ cos(−iτ + ε)

sin
9
8 (−iτ + ε) sin

1
8 [n(−iτ + ε)]

]

= �2
j

8
√

2
(πT1)

1
8 (πT2)

1
8

∫ ∞

−∞
dτ

cos(−iτ + ε)

sin
9
8 (−iτ + ε) sin

1
8 [n(−iτ + ε)]

. (D9)

To evaluate the integral, we deform the contour as shown in Fig. 10(a),

〈IT 〉non-int
� j

= �2
j

8
√

2
(πT1)

1
8 (πT2)

1
8

[ ∫ −ε

−∞

dτ cos(−iτ )

sin
9
8 (−iτ ) sin

1
8 (−inτ )

+
∫

C

dτ cos(−iτ )

sin
9
8 (−iτ ) sin

1
8 (−inτ )

+
∫ ∞

ε

dτ cos(−iτ )

sin
9
8 (−iτ ) sin

1
8 (−inτ )

]
.

(D10)
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Near the origin, the integration variable can be written as τ = εeiθ . Carefully taking the ε → 0 limit and writing the integrands
in terms of hyperbolic functions, we get a phase factor depending upon the location on the contour,

〈IT 〉non-int
� j

= �2
j

8
√

2
(πT1)

1
8 (πT2)

1
8

[ ∫ ∞

ε

dτ e−i 5π
8 cosh τ

sinh
9
8 τ sinh

1
8 (nτ )

+
∫

C

dτ cos(−iτ )

sin
9
8 (−iτ ) sin

1
8 (−inτ )

+
∫ ∞

ε

dτ ei 5π
8 cosh τ

sinh
9
8 τ sinh

1
8 (nτ )

]
, (D11)

〈IT 〉non-int
� j

= �2
j

8
√

2
(πT1)

1
8 (πT2)

1
8

[ ∫ ∞

ε

dτ 2 cos(5π/8) cosh τ

sinh
9
8 τ sinh

1
8 (nτ )

+
∫

C

dτ cos(−iτ )

sin
9
8 (−iτ ) sin

1
8 (−inτ )

]
. (D12)

To evaluate the integral over the contour C, we note that τ ∼ ε, so we expand the integrand as

cos(−iτ )

sin
9
8 (−iτ ) sin

1
8 (−inτ )

∣∣∣∣∣
τ=0

= 1

n
1
8 (−iτ )

5
4

+ O
(
τ

3
4
)
. (D13)

Since dτ = iτdθ , in the ε → 0 limit, higher order terms vanish. The only remaining term is∫
C

dτ cos(−iτ )

sin
9
8 (−iτ ) sin

1
8 (−inτ )

=
∫

C
dτ

1

n
1
8 (−iτ )

5
4

= ei 5π
8

∫ 0

π

dθ iεeiθ 1

n
1
8 ε

5
4 ei 5θ

4

= − 4

n
1
8 ε

1
4

2 cos(5π/8). (D14)

We note that the divergence of this term cancels the divergence of the first integral in Eq. (D12). We thus write it in a similar
form,

4

ε
1
4

=
∫ ∞

ε

dτ
1

τ
5
4

. (D15)

Therefore the expression for the noninterference term is

∑
j=1,2

〈IT 〉non-int
� j

=
(
�2

1 + �2
2

)
4
√

2
(πT1)

1
8 (πT2)

1
8 cos(5π/8)

∫ ∞

0
dτ

[
cosh(τ )

sinh
9
8 (τ ) sinh

1
8 (nτ )

− 1

n
1
8 τ

5
4

]

=
(
�2

1 + �2
2

)
4
√

2
(πT1)

1
8 (πT2)

1
8 cos(3π/8) Fnon-int(n), (D16)

where we defined Fnon-int(n) as in Eq. (29). Note that the noninterference contribution, individually for each of � j , j = 1, 2,
is exactly what we obtain when we consider single-constriction geometry. Results discussed in the main text in Sec. IV A
corresponds to 〈IT 〉non-int

� j
where � j is set to � of the single constriction.

2. Interference term

We now look at the interference contribution,

〈IT 〉int = �1�2

8
√

2
(πT1)

9
8 (πT2)

1
8

∫ t

−∞
dt ′

[
cos[πT1(ε + i(t − t ′ + x21))]

sin
9
8 [πT1(ε + i(t − t ′ + x21))] sin

1
8 [πT2(ε + i(t − t ′ − x21))]

+ cos[πT1(ε − i(t − t ′ + x21))]

sin
9
8 [πT1(ε − i(t − t ′ + x21))] sin

1
8 [πT2(ε − i(t − t ′ − x21))]

+ (x21 ↔ −x21)

]
. (D17)

Defining τ ≡ πT1(t − t ′), χ ≡ πT1x21, and n = T2/T1, we may simplify the above integral,

〈IT 〉int = �1�2

8
√

2
(πT1)

1
8 (πT2)

1
8

∫ ∞

−∞
dτ

[
cos[ε − i(τ − χ )]

sin
9
8 [ε − i(τ − χ )] sin

1
8 [n(ε − i(τ + χ ))]

+ cos[ε − i(τ + χ )]

sin
9
8 [ε − i(τ + χ )] sin

1
8 [n(ε − i(τ − χ ))]

]
. (D18)

Like before, we can now deform the contour as shown in Fig. 10(b),

〈IT 〉int = �1�2

8
√

2
(πT1)

1
8 (πT2)

1
8

[ ∫ −χ−ε

−∞
dτ I +

∫
C1

dτ I +
∫ χ−ε

−χ+ε

dτ I +
∫

C2

dτ I +
∫ ∞

χ+ε

dτ I + (χ ↔ −χ )

]
, (D19)

where the integrand I is given as

I = cos[−i(τ − χ )]

sin
9
8 [−i(τ − χ )] sin

1
8 [−in(τ + χ )]

. (D20)
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The integration variable near −χ is given by η = εeiθ − χ , the integration variable near χ is given by η = εeiθ + χ . We now
look at each contribution to (D19) individually. In particular,∫ −χ−ε

−∞
dτ

cos[−i(τ − χ )]

sin
9
8 [−i(τ − χ )] sin

1
8 [−in(τ + χ )]

=
∫ ∞

χ+ε

dτ
e−i 5π

8 cosh(τ + χ )

sinh
9
8 (τ + χ ) sinh

1
8 [n(τ − χ )]

, (D21)

∫ −χ−ε

−∞
dτ

cos[−i(τ + χ )]

sin
9
8 [−i(τ + χ )] sin

1
8 [−in(τ − χ )]

=
∫ ∞

χ+ε

dτ
e−i 5π

8 cosh(τ − χ )

sinh
9
8 (τ − χ ) sinh

1
8 [n(τ + χ )]

. (D22)

Similarly, ∫ ∞

χ+ε

dτ
cos[−i(τ − χ )]

sin
9
8 [−i(τ − χ )] sin

1
8 [−in(τ + χ )]

=
∫ ∞

χ+ε

dτ
ei 5π

8 cosh(τ − χ )

sinh
9
8 (τ − χ ) sinh

1
8 [n(τ + χ )]

, (D23)

∫ ∞

χ+ε

dτ
cos[−i(τ + χ )]

sin
9
8 [−i(τ + χ )] sin

1
8 [−in(τ − χ )]

=
∫ ∞

χ+ε

dτ
ei 5π

8 cosh(τ + χ )

sinh
9
8 (τ + χ ) sinh

1
8 [n(τ − χ )]

. (D24)

Combining Eqs. (D21)–(D24) together gives

I1 ≡
∫ −χ−ε

−∞
dτ [I + (χ ↔ −χ )] +

∫ ∞

χ+ε

dτ [I + (χ ↔ −χ )]

= 2 cos(5π/8)
∫ ∞

χ+ε

dτ

[
cosh(τ − χ )

sinh
9
8 (τ − χ ) sinh

1
8 [n(τ + χ )]

+ (χ ↔ −χ )

]
. (D25)

In the final expression, we make a variable shift τ → τ − χ , giving

I1 = 2 cos(5π/8)
∫ ∞

ε

dτ

[
cosh(τ )

sinh
9
8 (τ ) sinh

1
8 [n(τ + 2χ )]

+ cosh(τ + 2χ )

sinh
9
8 (τ + 2χ ) sinh

1
8 (nτ )

]
. (D26)

We now look at the integrals corresponding to path C1 in Eq. (D19),

∫
C1

dτ
cos[−i(τ − χ )]

sin
9
8 [−i(τ − χ )] sin

1
8 [−in(τ + χ )]

∼
∫ 0

π

dθ iεeiθ e−i 5π
8 cosh(2χ )

sinh
9
8 (2χ )(nεeiθ )

1
8

ε→0−−→ 0, (D27)

∫
C1

dτ
cos[−i(τ + χ )]

sin
9
8 [−i(τ + χ )] sin

1
8 [−in(τ − χ )]

=
∫ 0

π

dθ iεeiθ cos(−iεeiθ )

sin
9
8 (−iεeiθ ) sin

1
8 [in(2χ − εeiθ )]

=
∫ 0

π

dθ iεeiθ 1

(−iεeiθ )
9
8 sin

1
8 (in2χ )

= ei π
2

sinh
1
8 (2nχ )

∫ 0

π

dθ iεeiθ 1

ε
9
8 ei 9θ

8

= −ei π
2
(
1 − e−i π

8
)

sinh
1
8 (2nχ )

∫ ∞

ε

dτ
1

τ 9/8
. (D28)

Similarly, the integrals corresponding to path C2,∫
C2

dτ
cos[−i(τ − χ )]

sin
9
8 [−i(τ − χ )] sin

1
8 [−in(τ + χ )]

=
∫ 0

π

dθ iεeiθ cos(−iεeiθ )

sin
9
8 (−iεeiθ ) sin

1
8 [−in(2χ + εeiθ )]

=
∫ 0

π

dθ iεeiθ 1

(−iεeiθ )
9
8 sin

1
8 (−in2χ )

= ei 5π
8

sinh
1
8 (2nχ )

∫ 0

π

dθ iεeiθ 1

ε
9
8 ei 9θ

8

= −ei 5π
8
(
1 − e−i π

8
)

sinh
1
8 (2nχ )

∫ ∞

ε

dτ
1

τ 9/8
, (D29)

∫
C2

dτ
cos[−i(τ + χ )]

sin
9
8 [−i(τ + χ )] sin

1
8 [−in(τ − χ )]

∼
∫ π

0
dθ iεeiθ ei 5π

8 cosh(2χ )

sinh
9
8 (2χ )(nεeiθ )

1
8

ε→0−−→ 0. (D30)

Combining the nonzero contributions from Eqs. (D27)–(D30),

I2 ≡
∫

C1+C2

dτ [I + (χ ↔ −χ )] = −(
ei π

2 − ei 3π
8 + ei 5π

8 − ei π
2
)

sinh
1
8 (2nχ )

∫ ∞

ε

dτ
1

τ 9/8
= −2 cos(5π/8)

sinh
1
8 (2nχ )

∫ ∞

ε

dτ
1

τ 9/8
. (D31)
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Finally, the integrals over the interval [−χ + ε, χ − ε] in Eq. (D19) are∫ χ−ε

−χ+ε

dτ
cos[−i(τ − χ )]

sin
9
8 [−i(τ − χ )] sin

1
8 [−in(τ + χ )]

= e−iπ/2
∫ χ−ε

−χ+ε

dτ
cosh(χ − τ )

sinh
9
8 (χ − τ ) sinh

1
8 [n(χ + τ )]

, (D32)

∫ χ−ε

−χ+ε

dτ
cos[−i(τ + χ )]

sin
9
8 [−i(τ + χ )] sin

1
8 [−in(τ − χ )]

= eiπ/2
∫ χ−ε

−χ+ε

dτ
cosh(χ + τ )

sinh
9
8 (χ + τ ) sinh

1
8 [n(χ − τ )]

. (D33)

Clearly the sum of these two integrals vanishes. Now we combine all nonzero contributions, specifically Eqs. (D26) and (D31).
Notice that the divergences are canceled out once these integrals are combined to give the interference contribution to the thermal
current as

〈IT 〉int = �1�2

4
√

2
(πT1)

1
8 (πT2)

1
8 cos(5π/8)

∫ ∞

0
dτ

[
cosh(τ + 2χ )

sinh
9
8 (τ + 2χ ) sinh

1
8 (nτ )

+ cosh(τ )

sinh
9
8 (τ ) sinh

1
8 (nτ + 2nχ )

− 1

τ
9
8 sinh

1
8 (2nχ )

]

= �1�2

4
√

2
(πT1)

1
8 (πT2)

1
8 cos(3π/8) Fint(n, χ ), (D34)

where we defined the function Fnon-int(n, χ ) as in Eq. (33). We thus arrive at the expression for the total thermal current due to
anyon tunneling,

〈IT 〉 = (πT1)
1
8 (πT2)

1
8 cos(3π/8)

4
√

2

[(
�2

1 + �2
2

)
Fnon-int(n) + �1�2 Fint(n, χ )

]
. (D35)

The edge velocity was set to 1 above. Therefore the answer should be divided by v1/4.

APPENDIX E: TUNNELING IN MACH-ZEHNDER GEOMETRY

The purpose of this Appendix is to find the additional phase α in the Mach-Zehnder tunneling Hamiltonian, Eq. (34). We
will do this with three different methods, all of which produce the same result. The first approach involves the calculation of a
partition function in conformal field theory (CFT) and will only be used for the Ising statistics. The second and third approaches
will be applied to a general case. The second method builds on the algebraic theory of anyons. The third method uses detailed
balance.

In our first approach we also use the principle of detailed balance, assuming that the temperatures of the edges are equal. For
a stationary distribution, the transition probabilities pb

σa satisfy the detailed balance equations, which state that the probabilities
associated to the process σ × a → b and the reverse process σ × b → a are related. The two probabilities are given as

pb
σa = 2π

h̄

∑
nm

|〈m|HT |n〉|2δ(Em − En)Pa
n (T, T ), (E1a)

pa
σb = 2π

h̄

∑
nm

|〈n|HT |m〉|2δ(En − Em)Pb
m(T, T ). (E1b)

Notice that these two probabilities differ only by the partition functions in the Gibbs factors Pa
n = exp(−En/T )/Za(T ), where

the partition functions are calculated in the superselection sectors defined by the topological charge a. Now the ratio of the two
probabilities in the above equations equals the ratio of the partition functions, which can be computed using conformal field
theory.

We first solve for the energy spectrum of fermions on each of the two edges. This calls for the choice of the boundary
conditions, periodic (Ramond), or antiperiodic (Neveu-Schwarz). The two are related by a twist field operator σ of conformal
dimension hσ = 1/16, which is precisely the Ising field we worked with in Sec. IV A. This then leads to the following spectra
in the two sectors [35]:

HR. = 2π

L

[∑
k>0

kc−kck + 1

24

]
k ∈ Z (Ramond), (E2)

HN.S. = 2π

L

[∑
k>0

kc−kck − 1

48

]
k ∈ (Z + 1/2) (Neveu-Schwarz). (E3)

The energy spectra in the two sectors can now be used to compute the partition functions of the system in the fermionic ψ , and
anyonic σ , topological sectors. Notice that the above equations correspond to only one of the edges. To compute the partition
function of the full system we also take into account the other edge independently of the first. We now calculate the partition
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function of one of the edges for the ψ sector that corresponds to the Ramond boundary case,

Zψ = Tr
(
e−βHR.

) = Tr

⎛
⎝ ∏

k∈Z+
exp(−2πβkn̂k/L) exp(−2πβ/24L)

⎞
⎠ =

∏
k∈Z+

exp(−2πβ/24L)(1 + exp(−2πβk/L)). (E4)

For the σ sector that corresponds to the Neveu-Schwarz boundary case, we get a similar expression except that the sum runs
over (Z + 1/2),

Zσ = Tr
(
e−βHN.S.

) = Tr

⎛
⎝ ∏

k∈Z+∪{0}
exp

(−2πβ(k + 1/2)n̂k+ 1
2
/L

)
exp(2πβ/48L)

⎞
⎠

=
∏

k∈Z+∪{0}
exp(2πβ/48L)(1 + exp(−2πβk/L) exp(−πβ/L)). (E5)

The overall exponential factor in both partition functions is irrelevant since in the thermodynamic limit L → ∞, it gives 1. We
now compute the ratio of the remaining product terms,

P ≡
∏

k∈Z+ (1 + exp(−2πβk/L))∏
k∈Z+∪{0} (1 + exp (−2πβk/L) exp(−πβ/L))

, (E6)

log P = − log(2) +
∞∑

k=0

[log (1 + exp(−2πβk/L)) − log (1 + exp(−2πβk/L) exp(−πβ/L))]. (E7)

Since we are interested in the thermodynamic limit, we take the continuum limit. Substituting 2πβk/L = t , we have
∑

k∈Z∪{0} →
(L/2πβ )

∫ ∞
0 dt . Therefore we have

log(P) = − log(2) − L

2πβ

∫ ∞

0
dt log

(
1 + e−t e−πβ/L

1 + e−t

)

= − log(2) + 1

2

∫ ∞

0
dt

(
e−t

1 + e−t

)
+ O

(
1

L

)
(E8)

= − log(2) + 1

2
log(2) + O

(
1

L

)
L→∞−−−→ log

(
1√
2

)
. (E9)

As mentioned before, a free system is described by the sum
of free Hamiltonians on each edge of the interferometer and
therefore, the total partition function will be the product of the
two partition functions obtained above. Thus

Z total
ψ

Z total
σ

= 1

2
. (E10)

This then gives the detailed balance condition pσ
σψ = 2pψ

σσ ,
and from the comparison with the tunneling probabilities from
Sec. IV C,

pσ
σψ = p(T1, T2)|�1 − �2eiα|2,

pψ
σσ = p(T1, T2)

2
|�1 − �2eiα−iπ/4|2, (E11)

we obtain the phase α = π/8 + nπ . The choice of the inte-
ger n has no effect on physics. As a consistency check, it
can be seen that this choice of α also makes the tunneling
Hamiltonian (34) Hermitian. Indeed this phase can also be
directly computed by demanding Hermiticity condition as we
now demonstrate.

In this discussion we do not specialize to the case of the
Ising statistics and only assume that the tunneling anyon x
is its own antiparticle. We simply demand that the tunneling
Hamiltonian HT = �1T̂1 + �2T̂2eiα be Hermitian, and com-

pare HT and H†
T . Note that this Hamiltonian corresponds to

the case when the tunneling anyon x is its own antiparticle.
The case x �= x̄ is treated in Secs. V C 2 and V E.

We observe that the statistical phase exp(iφc
ab) describes

the phase accumulated by an anyon a on a full counterclock-
wise circle around an anyon b under the assumption that the
two anyons fuse to c. Restricting ourselves to the low-energy
effective model, we see that the two tunneling operators T̂1,2,
transfer anyons between the same points, taking them from
point A on the lower edge to point B on the upper edge, see
Fig. 12. This forms a closed loop, and therefore allows us to
relate the two tunneling operators, restricted to a particular
topological sector, via a statistical phase exp(iφc

ab). However,
since we deal with non-Abelian anyons, we also need to
restrict ourselves to a particular fusion channel. Therefore we
introduce the projectors �a = �†

a that project to the sector
with the trapped topological charge a. Using this we can now
relate the two tunneling operators as

�cT̂2�b = �cT̂1�b exp
(
iφc

xb

)
. (E12)

The Hermiticity of the tunneling Hamiltonian requires
T̂2eiα = T̂ †

2 e−iα . We can now restrict this tunneling operator
to a particular fusion channel,

�cT̂2�beiα = (�bT̂2�c)†e−iα. (E13)
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FIG. 12. In the low-energy effective model of a Mach-Zehnder
interferometer, the two tunneling operators T̂1,2 describe anyon trans-
fer along the two dashed lines between points A and B.

We observe that the operator on the left-hand side transfers
an anyon x from point A on the lower edge to point B on the
upper edge when initially the trapped topological charge is b,
and at the end, x and b fuse to c inside the Mach-Zehnder
interferometer. The operator on the right-hand side, however,
describes the reverse process. We now make use of the relation
in Eq. (E12) and the relation T̂1 = T̂ †

1 to obtain

e2iα�cT̂1�b = θ2
x �cT̂1�b, (E14)

where we used the equation exp(iφc
xb) = θc/(θxθb). This fixes

the phase exp(iα) = ±θx.
We now turn to another method to compute the phase α

again using the principle of detailed balance. The heat cur-
rent goes to zero in the case when the temperatures of the
two edges are equal, however, the tunneling probabilities are
nonzero. For a stationary distribution, the transition probabil-
ities pb

xa satisfy the detailed balance conditions between the
processes x × a → b and x × b → a. The probabilities are
given by Eqs. (E1a) and (E1b) with x in place of σ . Notice
that the probabilities of these processes differ only by their
partition functions calculated in a particular superselection
sector. We computed the ratio of the partition functions in
different superselection sectors explicitly for the Ising anyon
case and found it to be a constant that in turn gives the detailed
balance condition. In fact we see that for a general case,
the ratio of the partition functions, each computed in a par-
ticular superselection sector, is independent of the tunneling
amplitudes �1,2, and therefore the ratio of the probabilities
pb

xa/pa
xb is independent of �1,2. This restriction allows us to

compare the probabilities of the mutually reverse processes
and fix the phase α, provided the tunneling anyon, in this case
anyon x, is other than a fermion or a boson. We may now
compare the probabilities for the two processes x × a → b
and x × b → a,

pb
xa = Nb

xa

db

dxda

∣∣�1 + �2eiα+iφb
xa
∣∣2

p(T, T ), and

pa
xb = Na

xb

da

dxdb

∣∣�1 + �2eiα+iφa
xb
∣∣2

p(T, T ). (E15)

As argued above, their ratio should be independent of �1,2,

which amounts to saying that the ratio λ ≡ |�1+�2 exp(iϕ1 )|2
|�1+�2 exp(iϕ2 )|2 is

independent of �1,2, where we defined ϕ1 = α + φb
xa and ϕ2 =

α + φa
xb. This gives a condition on the angles ϕ1,2,

cos(ϕ1) − λ cos(ϕ2) = (λ − 1)
(
�2

1 + �2
2

)
2�1�2

. (E16)

We want this condition to be independent of �1,2 for arbi-
trary �1,2. This is only possible when λ = 1. This then gives,
cos(ϕ1) = cos(ϕ2), or ϕ1 = 2nπ ± ϕ2, where n ∈ Z. The first
case, ϕ1 = ϕ2 mod 2π , puts no restriction on α, when φb

xa =
φa

xb mod 2π . This, however, implies that φx
x1 = φ1

xx. This is
only possible for θx = ±1, i.e., for tunneling particles, which
are bosons or fermions. Assuming that is not the case, we use
the other condition, ϕ1 = −ϕ2 mod 2π , to obtain a restriction
on α,

eiα = ±e−i
(φb

xa+φa
xb )

2 . (E17)

Upon using exp(iφc
ab) = θc

θaθb
, we get eiα = ±θx consistent

with the Hermiticity condition, as well as the phase found for
the special case of Ising anyons.

APPENDIX F: TOPOLOGICAL ORDER WITH UNUSUAL
FUSION RULES

In Sec. V E, we consider anyon models having the follow-
ing property: if x �= x̄, the fusion results of x × x and a × ā
share no common topological charge for all possible a. It
is not true that all anyon models satisfy this requirement.
As a counterexample, an anyon model is constructed in this
Appendix through the approach used in Ref. [48].

We briefly summarize the approach in this paragraph.
Given a discrete group H̄ , one can extend it to a quasi-

triangular Hopf algebra D(H̄ ) with the basis .
Different representations of the Hopf algebra D(H̄ ) are in-
terpreted as anyons with different topological charges (called
superselection sectors in [48]), and the representations are
labeled in two steps: (1) find the Ath conjugacy class AC of
H , of which Ag1 is an element; (2) find the αth representation
α� of the centralizer AN of Ag1 in H̄ . We use |AC, α�〉 or
�A

α to denote the topological charges or representations. An
explicit construction of a representation of D(H̄ ) is as follows:
(1) Let AC = {Ag1,

Ag2, . . . ,
Agk}; (2) choose representatives

{Ax1,
Ax2, . . . ,

Axk} of the equivalence classes in H̄/AN under
the requirement Agi = Axi

Ag1
Ax−1

i ; (3) denote basis elements
of the irreducible representation α� as αv j ; (4) in the vector
space V A

α spanned by |Agi,
αv j〉, where i = 1, 2, . . . , dim α

and j = 1, 2, . . . , k, a representation of D(H̄ ) is

(F1)
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TABLE I. Character table of the group C3
2 .F8, adapted from

Ref. [49]. This group has 10 conjugacy classes, each of them
corresponds to one column in the table. There are 10 irreducible
representations, whose characters are shown in the rows. ζ7 is used
to denote exp(2π i/7) in this table.

Class 1 2 4A 4B 7A 7B 7C 7D 7E 7F
size 1 7 28 28 64 64 64 64 64 64

ρ1 1 1 1 1 1 1 1 1 1 1
ρ2 1 1 1 1 ζ 4

7 ζ 6
7 ζ 2

7 ζ 5
7 ζ7 ζ 3

7

ρ3 1 1 1 1 ζ 2
7 ζ 3

7 ζ7 ζ 6
7 ζ 4

7 ζ 5
7

ρ4 1 1 1 1 ζ 5
7 ζ 4

7 ζ 6
7 ζ7 ζ 3

7 ζ 2
7

ρ5 1 1 1 1 ζ 3
7 ζ7 ζ 5

7 ζ 2
7 ζ 6

7 ζ 4
7

ρ6 1 1 1 1 ζ7 ζ 5
7 ζ 4

7 ζ 3
7 ζ 2

7 ζ 6
7

ρ7 1 1 1 1 ζ 6
7 ζ 2

7 ζ 3
7 ζ 4

7 ζ 5
7 ζ7

ρ8 7 7 −1 −1 0 0 0 0 0 0
ρ9 14 −2 −2i 2i 0 0 0 0 0 0
ρ10 14 −2 2i −2i 0 0 0 0 0 0

where the index l is chosen by letting Agl = xAgix−1. To
find the fusion rules, we consider the tensor product of two
representations of the algebra D(H̄ ), �A

α ⊗ �B
β . Using co-

multiplication � : D(H̄ ) → D(H̄ ) ⊗ D(H̄ ), one interprets the
product as another representation of D(H̄ ). The decomposi-
tion of the tensor product into irreducible representations,

�A
α ⊗ �B

β = NABC
αβγ �C

γ , (F2)

is known as a fusion rule.
Here we only consider the sector whose conjugacy class

is that of the identity element e of the group H̄ , also known

as the magnetic vacuum sector. The conjugacy class is the set
1C = {e}. The centralizer 1N is thus H̄ , and H̄/1N contains
only one equivalence class, namely H̄ , whose representative
is chosen to be e. For a unitary irreducible representation α�

of 1N = H̄ , we can find the representation �1
α of D(H̄ ) on the

vector space spanned by the basis |e, 1vi〉 as

(F3)

The above representations of D(H̄ ) are equivalent to those
of H̄ . The tensor product of two representations of H̄ can
be decomposed into irreducible representations of H̄ . Hence,
the fusion rule for �1

α , �1
α ⊗ �1

β = N11γ

αβ1�
1
γ , is equivalent to

α� ⊗ β� = N11γ

αβ1
γ �.

Now we provide an example where H̄ = C3
2 .F8 is a group

of order 448. Table I is its character table. Anyons correspond-
ing to the representations in the table are denoted as |e, ρi〉.
Note that this should not be confused with the basis |e, αvi〉
used above.

Observe that ρ9 and ρ10 are conjugate representations
and their tensor product is ρ9 × ρ10 = ρ1 + ρ2 + · · · + ρ7 +
3ρ8 + 6ρ9 + 6ρ10. The tensor product of ρ9 with itself is
ρ9 × ρ9 = 4ρ8 + 6ρ9 + 6ρ10. Identifying |e, ρ1〉 as the vac-
uum, we find that |e, ρ9〉 and |e, ρ10〉 are mutual antiparticles,
and further |e, ρ9〉 × |e, ρ9〉 → |e, ρ8〉, |e, ρ10〉 × |e, ρ9〉 →
|e, ρ8〉. In the tunneling problem we considered, this means
that both |e, ρ9〉 and its antiparticle contribute to the process
where the topological charge on edge 2 changes from |e, ρ9〉 to
|e, ρ8〉. Hence, in general, one cannot separate the operators T
and T † as done in Eq. (51). However, as seen in this example,
anyon models with such a property are complicated, so we
omit the discussion of those models in the main text.

APPENDIX G: CALCULATION OF THE AVERAGE NOISE

This Appendix provides details of the noise calculation from Sec. VI. Specifically, we calculate the expectation value of some
expressions containing the heat current with respect to the random variables s2k−1 and tk . First, consider the expectation value of
the heat current IT (t ), Eq. (97),

〈IT (t )〉 = I0 + �I
∞∑

k=1

〈sk〉θ (t − tk ). (G1)

After averaging over the Bernoulli random variables s2k−1, the �I term vanishes, so we find that 〈IT (t )〉 = I0. Then we consider
the expression IT (0)IT (t ) in the definition of the noise [Eq. (95)],

IT (0)IT (t ) = I2
0 + I0�I

( ∞∑
k=1

skθ (−tk ) +
∞∑

k=1

skθ (t − tk )

)
+ (�I )2

( ∞∑
k=1

skθ (−tk )

)( ∞∑
k=1

skθ (t − tk )

)
. (G2)

To find the average, we choose to average over the Bernoulli random variables s2k−1 first, then we take the average over the
Poisson process tk . First, when averaging over all s2k−1’s, only terms containing s2k−1s2k = −1 or (sk )2 = 1 are nonzero,

〈IT (0)IT (t )〉avg. = I2
0 + (�I )2

( ∞∑
k=1

−θ (−t2k−1)θ (t − t2k ) − θ (−t2k )θ (t − t2k−1) +
∞∑

l=1

θ (−tl )θ (t − tl )

)
. (G3)

Following the definition in Eq. (99), N (0) is used to denote the total number of tunneling events up to the time t = 0, and our
subsequent analysis will depend on the parity of N (0). When N (0) is odd, we have t2n−1 � 0 < t2n. The coefficient of (�I )2 is
found to be

−
n∑

k=1

θ (−t2k−1)θ (t − t2k ) −
n−1∑
k=1

θ (−t2k )θ (t − t2k−1) +
2n−1∑
l=1

θ (−tl )θ (t − tl ) = θ (t − t2n−1) − θ (t − t2n). (G4)
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The following integral appearing in the definition of the zero-frequency noise gives

lim
ω→0

∫
dt eiωt [〈IT (0)IT (t )〉avg. − 〈IT (t )〉〈IT (0)〉] = (�I )2(t2n − t2n−1). (G5)

On the other hand, N (0) being even is equivalent to the condition t2n � 0 < t2n+1. The coefficient of (�I )2 vanishes in such case,

−
n∑

k=1

θ (−t2k−1)θ (t − t2k ) −
n∑

k=1

θ (−t2k )θ (t − t2k−1) +
2n∑

l=1

θ (−tl )θ (t − tl ) = 0. (G6)

Thus, the corresponding integral in the definition of the noise also vanishes.
Finally we can find the average integral under the Poisson process given by the τk’s. Since we know that only odd N (0)

contribute, the expectation value could be written as

(�I )2
∑

odd n,
n>0

P(N (0) = n)
∫ 0

t0

dtn

∫ ∞

0
dtn+1 f (tn+1, tn) (tn+1 − tn), (G7)

where f (tn+1, tn) is the joint conditional probability distribution function for tn and tn+1 under the condition N (0) = n. Poisson
process has the property that it is memoryless: given N (0) = n, tn+1 is exponentially distributed with the parameter λ and
independent of the history up to time 0. Furthermore the distributions of tn+1 and tn are independent, and we know that

E (tn+1|N (0) = n) = τ, E (tn|N (0) = n) = t0
n + 1

. (G8)

So the average coefficient of (�I )2 is

∑
odd n,
n>0

eλt0
(−λt0)n

n!

(
τ − t0

n + 1

)
= eλt0τ sinh(−λt0) + eλt0

1

λ

∑
odd n

(−λt0)n+1

(n + 1)!
(G9)

= eλt0τ sinh(−λt0) + eλt0τ [cosh(−λt0) − 1] (G10)

= τ (1 − eλt0 ). (G11)

It is now straightforward to obtain Eq. (101) in Sec. VI.

APPENDIX H: DEPENDENCE OF THE TUNNELING HEAT CURRENT ON THE SIZE OF THE INTERFEROMETER

In this Appendix, we discuss the dependence of the tunneling heat current on the interferometer size. We consider topological
orders allowing a single edge mode. One of such orders is the Ising order in Kitaev liquids. For simplicity, we assume that the
edge velocity is coordinate-independent and identical on both edges. It is easy to generalize our results to coordinate-dependent
velocities. We also assume that the tunneling operators at the two constrictions have precisely the same structure except for an
overall amplitude multiplying the tunneling operator. The latter assumption is true for many topological orders as long as it is
legitimate to focus on only the most relevant tunneling operator. As claimed in Sec. II B and II C, the tunneling heat current in
a Fabry-Pérot interferometer depends on the sum of the distances between the tunneling contacts along the two edges, L1 + L2.
The heat current in a Mach-Zehnder interferometer depends on the difference of the distances |L1 − L2|.

We consider the tunneling of anyons of type x with an arbitrary statistics: x̂1,2(y, t ) is the operator that creates an anyon
with topological charge x on edge 1 or 2 of the interferometer at position y and time t , and ˆ̄x1,2(y, t ) creates its antiparticle.
The two tunneling operators across one constriction are Hermitian conjugate to each other; we use T̂ ∼ x̂2(y, t ) ˆ̄x1(y, t ) and
T̂ † ∼ x̂1(y, t ) ˆ̄x2(y, t ) to denote them. We adopt the following convention: when considering two separate edges, lower and upper,
the coordinate axes on the two edges are always chosen to be in the same right-moving direction.

For a Fabry-Pérot geometry, on the lower edge (edge 1), the two constrictions are labeled by their coordinates y1 and y2, and
the distance between them is L1 = y2 − y1. We choose the coordinates on the upper edge (edge 2) to be y1 and y2 + �, then
L2 = L1 + �. The tunneling Hamiltonian is given by

HT = �1T̂1 + �2T̂2 + H.c. = �1x̂2(y1, t ) ˆ̄x1(y1, t ) + �2x̂2(y2 + �, t ) ˆ̄x1(y2, t ) + H.c. (H1)

By the same argument as in Appendix D, the operator for the tunneling heat current is

IT = �1T̂ ′
1 + �2T̂ ′

2 + H.c. = −�1x̂2(y1, t )∂t ˆ̄x1(y1, t ) − �2x̂2(y2 + �, t )∂t ˆ̄x1(y2, t ) + H.c., (H2)

where T̂ ′
1,2 = −x̂2(y1, t )∂t ˆ̄x1(y1, t ) contains the time derivative on ˆ̄x1. The derivative should be computed in the theory without

tunneling. One can find the interference terms in the expectation value of the heat current as

−i
∫ t

−∞
dt ′ {�1�

∗
2〈[T̂ ′

1(t ), T̂ †
2 (t ′)]〉 + �1�

∗
2〈[T̂ ′†

2(t ), T̂1(t ′)]〉 − H.c.}. (H3)
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FIG. 13. Topology of a Mach-Zehnder interferometer. Dotted lines show tunneling contacts. The paths through QPC2 in the left panel can
be deformed as in Appendix E. This results in the configuration from the right panel.

Due to the translational symmetry, the two-point correlation functions can be expressed as

〈x̂1(y1, t1) ˆ̄x1(y2, t2)〉 = 〈 ˆ̄x1(y1, t1)x̂1(y2, t2)〉 = G1(t1 − t2 − y1 + y2), (H4)

〈x̂2(y1, t1) ˆ̄x2(y2, t2)〉 = 〈 ˆ̄x2(y1, t1)x̂2(y2, t2)〉 = G2(t1 − t2 + y1 − y2). (H5)

Since the correlation functions of the form 〈x̂2(y1) ˆ̄x1(y2)x̂1(y3) ˆ̄x2(y4)〉 can be decomposed into conformal blocks
〈x̂2(y1) ˆ̄x2(y4)〉〈 ˆ̄x1(y2)x̂1(y3)〉, we find the following relations:

〈T̂ ′
1(t )T̂ †

2 (t ′)〉 − 〈T̂1(t ′)T̂ ′†
2(t )〉 ∝ G′

1(t − t ′ + y21)G2(t − t ′ − y21 − �) + (t ↔ t ′), (H6)

where G′ denotes the derivative of G, and

〈T̂ ′†
2(t )T̂1(t ′)〉 − 〈T̂ †

2 (t ′)T̂ ′
1(t )〉 ∝ G′

1(t − t ′ − y21)G2(t − t ′ + y21 + �) + (t ↔ t ′). (H7)

Hence, the integral in Eq. (H3) can be written as∫ t

−∞
dt ′ {〈[T̂ ′

1(t ), T̂ †
2 (t ′)]〉 + 〈[T̂ ′†

2(t ), T̂1(t ′)]〉} ∝
∫ ∞

−∞
dτ [G′

1(τ )G2(τ − 2y21 − �) + G′
1(τ )G2(τ + 2y21 + �)]. (H8)

Combining this equation with Eq. (H3), we find that the tunneling heat current in a Fabry-Pérot interferometer depends on
L1 + L2 = 2y21 + �.

For the Mach-Zehnder geometry, we make the same choice for the coordinates of the two constrictions on the upper and
lower edges. Naively, the tunneling Hamiltonian can be written as

HT = �1T̂1 + �2T̂2 + H.c. = �1x̂2(y1, t ) ˆ̄x1(y1, t ) + �2x̂2(y2 + �, t ) ˆ̄x1(y2, t ) + H.c. (H9)

This naive Hamiltonian is actually incorrect though it will be useful to us below. The problem is that the above Hamiltonian
violates locality: the two tunneling operators do not commute. The issue can be fixed in a systematic way with the help of Klein
factors. Besides fixing the commutativity problem, the Klein factors keep track of the confined topological charge.

An alternative approach is based on Appendix E. The tunneling paths in the two constrictions run on the two sides of the hole
in the interferometer. This leads to a number of technical challenges. In particular, it becomes impossible to connect the upper
and lower edges as in Appendix C. The problem can be solved by flipping one of the two tunneling paths to the other side of
the hole (Fig. 13) as in Appendix E. Klein factors are no longer needed after that since the topological charge between the
tunneling paths no longer changes after each tunneling event. Also, the tunneling operators no longer have to commute since the
two tunneling paths cross (Fig. 13). Of course, this comes at the price of the model being useful for computing the tunneling
probability only for a given value of the trapped topological charge in a given fusion channel with the tunneling anyon. This is
enough, however, for the purposes of this Appendix and justifies the use of the above nonlocal Hamiltonian.

In contrast to the Fabry-Pérot geometry, the two edges are co-propagating. The correlation function on edge 2 should be of
the form

〈x̂2(y1, t1) ˆ̄x2(y2, t2)〉 = 〈 ˆ̄x2(y1, t1)x̂2(y2, t2)〉 = G2(t1 − t2 − y1 + y2). (H10)

We focus on the interference contribution again,

〈T̂ ′
1(t )T̂ †

2 (t ′)〉 − 〈T̂1(t ′)T̂ ′†
2(t )〉 ∝ G′

1(t − t ′ + y21)G2(t − t ′ + y21 + �) + (t ↔ t ′), (H11)

and

〈T̂ ′†
2(t )T̂1(t ′)〉 − 〈T̂ †

2 (t ′)T̂ ′
1(t )〉 ∝ G′

1(t ′ − t − y21)G2(t ′ − t − y21 − �) + (t ↔ t ′). (H12)

Comparing with the expression for the interference contribution to the tunneling heat current in the Fabry-Pérot geometry, we
can obtain the result for a Mach-Zehnder interferometer by replacing the parameter 2y21 + � with �. We have consequently
shown that the tunneling heat current in Mach-Zehnder interferometers depends on the difference of the distances between the
two point contacts on the two edges, i.e., |L1 − L2|.
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