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Lifetime, collapse, and escape paths for hopfions in bulk magnets with competing
exchange interactions
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The lifetimes of magnetic hopfions on a discrete lattice with competing exchange interactions are calculated
within the framework of the transition state theory for magnetic degrees of freedom. Three sets of discrete model
parameters corresponding to the same continuous micromagnetic model are considered. Minimal energy paths
for hopfion collapses were found on the multidimensional energy surface of the system. The activation energies
of the collapse processes have been calculated. It turned out that the activation energy differs significantly for
the three considered values of the parameters, which indicates the importance of lattice effects, when the hopfion
radius equals several lattice constants. Along with the collapse, the hopfion escape process through the sample
boundary is studied. It is shown that this process does not require an activation energy. The lifetimes of hopfions
are found and it is shown that they can exist only at temperatures of a few kelvins and practically cannot be
generated due to thermal fluctuations.
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I. INTRODUCTION

Recently, much attention has been attracted by topological
structures of small spatial size, the properties of which do not
change under continuous transformations of the correspond-
ing states or external perturbations affecting these states. In
two-dimensional magnets, such topological systems include
skyrmions, which are considered as promising candidates for
elements of a new generation of racetrack magnetic memory
and neuromorphic devices [1–3]. For these systems, one can
introduce an integer topological charge, the geometric mean-
ing of which is the number of times that the unit vectors along
the magnetization at each point, built from one center, cover
the unit sphere. The invariance of the topological charge with
a continuous change in the magnetization implies topologi-
cal stabilization of such systems [4]. However, for magnetic
moments localized at the nodes of a discrete lattice, topo-
logical considerations are strictly speaking inapplicable, and
topological stabilization should manifest itself in the values
of the activation barrier and the pre-exponential factor (PF)
in the Arrhenius law for the lifetime, which can be obtained
within the harmonic approximation of transition state theory
(TST) [5,6].

Three-dimensional (3D) topological structures are even
more diverse and often encountered. Topological defects, such
as Bloch points and lines, localized topological solitons, do-
main walls, skyrmion tubes, can appear both in bulk material
and on its surfaces and interfaces [7–9]. For 3D structures,
new types of topological indices can be introduced. These are
also integers, which do not change with continuous deforma-
tions of the magnetization or the director in liquid crystals.
As in the two-dimensional case for topological solitons on
a discrete lattice, the presence of topological indices should
manifest itself through the large activation energy of collapse
and/or small PF.

We investigate the structure and stability of the 3D topo-
logical Hopf soliton (hopfion) [10–12]. To describe hopfion’s
topological characteristics, one can define the topological
Hopf invariant, which is the number of engagements of rings
corresponding to the constant direction of the moments in the
magnetic structure. This is an integer that cannot be changed
in the bulk material without creating Bloch points, resulting in
an infinite energy density in the continuous case. Therefore,
topological stabilization can also be expected in a sufficiently
dense discrete lattice.

Most studies of Hopf solitons are related to the investiga-
tion of structures formed in a chiral medium. Chirality can be
related to the bulk Dzyaloshinskii-Moriya interaction (DMI)
in ferromagnets or DMI induced at the interface with a heavy
metal. For such structures, depending on the direction of the
DMI vector, Néel and Bloch hopfions can be formed [13].
The dynamics of such topological solitons under the action of
an electric current has been studied. Distinct from 2D ferro-
magnetic skyrmions, hopfions do not show Hall effects under
current. Néel-type hopfions move along the current direction
via both spin-transfer torques (STTs) and spin-Hall torques
(SHTs), while Bloch-type hopfions move either transverse
to the current direction via SHT or parallel to the current
direction via STT [14]. The hopfion’s locally uncompensated
emergent field leads to a topological Hall signature, although
the topological Hall effect vanishes on the global level. This,
however, can be used to detect hopfions [15].

Micromagnetic modeling shows that under the influence of
external magnetic fields, hopfions can transform into torons
[16,17]. The difference between the eigenmodes of the hop-
fions and torons makes it possible to identify and separate
these states [13,16,17].

Chiral hopfions have been experimentally observed in
magnetic materials [18] and liquid crystal systems [12]. In a
chiral medium, the ground state may not be ferromagnetic,
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but helical or conical. Localized hopfion states are also ob-
served against the background of such noncollinear states
[19,20]. Their stability, as in the case of two-dimensional
skyrmions, depends significantly on DMI or chiral interac-
tions in liquid crystals. They can also be stabilized by surface
anisotropy and the geometry of nanostructures [21]. It was
shown that such solitons can be electrically and magneti-
cally switched between states with the same or different Hopf
indices [22].

Thus, most theoretical and experimental studies are related
to the properties of hopfions in materials with chiral interac-
tion. However, they can be obtained even in the absence of
these interactions. Micromagnetic modeling shows that such
structures can appear in toroidal nanoparticles under the ac-
tion of an Oersted magnetic field. This is due to magnetostatic
and exchange competition under the action of an azimuthal
magnetic field [23]. Hopfions can also be stabilized in frus-
trated magnets at a certain ratio of exchange interactions
between magnetic moments. They should exhibit rich dynam-
ics, including longitudinal motion along the current direction,
transverse motion perpendicular to the current direction, rota-
tional motion, and dilation [24]. The effective field generated
by a hopfion, contains magnetic octupole component. This lo-
cally uncompensated emergent field leads to a new topological
Hall peculiarities [25]. For the stability of the hopfions and the
observation of all these effects, the competition of exchange
interactions is sufficient.

Similar stabilization mechanisms exist for skyrmions in
frustrated two-dimensional magnets without taking into ac-
count of DMI and spin-orbit interaction effects [26,27]. In
what follows, we will focus on this case. In the continuous
model, a frustrated magnet is described by an energy density
that contains, in addition to the square of the magnetization
gradient, other contributions with second-order derivatives in
space [11,28].

On a discrete lattice, such a system corresponds to a model
with several exchange parameters depending on the distance
between nodes. At the same time, several discrete models
with different parameter values can correspond to the same
continuous model. Note that this also applies to the choice
of parameters of skyrmion states on a discrete lattice, corre-
sponding to one continuous model or calculations from first
principles [29,30].

To estimate the stability and lifetimes of 3D hopfions,
we will use harmonic TST [5,6]. This approach involves the
construction of the energy surface of the system as function
of parameters that uniquely specify the magnetic state. The
Cartesian coordinates of the magnetic moments are used as
such parameters, and the condition of constant value of mo-
ments within Heisenberg-like theory is taken into account by
introducing the Lagrange multipliers [6,31]. The minimum
energy path (MEP) between the state corresponding to the
hopfion and the homogeneous ferromagnetic state determines
the most probable transition scenario and the activation energy
of hopfion collapse. The collapse inside the sample and escape
through its boundary will be considered. In contrast to the case
of two-dimensional skyrmions [32], the MEP that determines
the activation energy, passes through a state with Bloch points,
[33]. PF is calculated within harmonic TST on the basis of
method developed in Ref. [31].

TABLE I. Three different sets of lattice exchange parameters
(in a.u. “J0”) corresponding to the same micromagnetic model. To
calculate the lifetime of hopfions, we take J0 = 10 meV.

# J1 J2 J3 J4

I 1 0 0 −0.24
II 0.5 0.25 −0.125 −0.24
III 2 −0.5 0.25 −0.24

II. HOPFIONS IN DISCRETE LATTICE MODELS

In the semiclassical model of the Heisenberg type, which
we follow here, magnetic configuration is described by the
vector field of magnetization M(r). The absolute value of the
magnetization for homogeneous medium is assumed to be
constant MS , thus it is convenient to introduce magnetization
direction vector ‖n(r)‖ = 1: M(r) = Msn(r), which totally
determines the magnetic state.

In the discrete model, the exchange interaction is given by
a set of exchange integrals depending on the distance between
the magnetic moments. Taking into account the interaction
beyond the nearest neighbors in two-dimensional systems
can significantly increase the estimates lifetimes of magnetic
skyrmions [34] and even lead to the formation of locally
stable skyrmions in the absence of chiral DMI [26,27]. In
micromagnetic models, the exchange interaction is described
by terms containing derivatives of magnetization. We will use
following advanced functional of micromagnetic energy [11]:

ω(r) = A
(

∂n
∂rα

)2

+ B
(

∂2n
∂r2

α

− ∂2n
∂r2

β

)2

+ C
(

∂2n
∂rα∂rβ

)2

,

Here indices α and β run through x, y, z, and summation
over α and β �= α is assumed. The correspondence between
the parameters of the micromagnetic and discrete models is
ambiguous. One and the same set A,B, C may correspond
to several sets of exchange integrals Jn. For a simple cubic
lattice, taking into account the interaction up to the fourth-
nearest neighbors (n = 4) the micromagnetic parameters and
exchange constants J1, J2, J3, J4 are connected by linear
relations,

aA = J1

2
+ 2(J2 + J3 + J4),

B = −a

(
J1

96
+ J2 + J3

24
+ J4

6

)
,

C = −a

(
J1

48
+ J2

3
+ 7J3

12
+ J4

3

)
,

where a is the lattice constant. Below we consider three sets
of lattice exchange integrals, displayed in Table I, in arbitrary
units (J0) corresponding to the same micromagnetic parame-
ters: aA = 0.02 (J0), B/a = 0.02958(3) (J0), C/a = 2B (J0).
It is convenient to introduce two parameters that affect the
shape and size of hopfions, which will be studied below,

r0 =
√
B + C
A ≈ 2.1, γ0 = B

B + C = 2

3
.
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FIG. 1. Hopfions for three sets of exchange integrals given in Table I, which corresponds to the same micromagnetic parameters. The
equilibrium hopfion radii shown in the figure are slightly different. Values J1 are given in units J0 and radii r in units of lattice constant a.

The first parameter, which has the dimension of length,
isotropically changes the scale of localized structures, the
second is responsible for their anisotropy. An increase in γ0

also reduces the characteristic size of the structure [28].
The hopfion stability criterion [11]

max(C, 6B) � 6.5Aa2

is satisfied for the parameters presented in the Table I; how-
ever, we close to the boundary of the stability region, hence
we work with fairly small hopfions and lattice effects may be
important.

Hopfion simulation in a discrete lattice is performed using
the standard Heisenberg model. Denoting by ni the unit vector
along the magnetic moment on the ith site, the energy of the
system can be written as

E = −
∑
〈i, j〉

Ji jni · n j,

where the summation is over all pairs 〈i, j〉 of magnetic
moments in simple cubic lattice. The exchange constants Ji j

coincide with Js introduced above if j belongs to the s shell
of i, and it is assumed that Js = 0 for s > 4. The simulation
domain consists of 60 × 60 × 60 moments, which is about
twice the size of hopfion under consideration. To reduce the
influence of the boundary of the simulation domain, we pin
all the moments on the faces of the cube, assuming that they
are oriented along the ẑ axis.

The metastable hopfion state is obtained by minimizing the
energy from the corresponding ansatz (see Appendix C.III in
[11]) using the nonlinear conjugate gradient method [31,35].
For all the parameters specified in Table I, the hopfion in the
ferromagnetic (FM) phase is metastable and its symmetry axis
is directed along the (1, 1, 1) crystallographic axis due to
lattice effects.

The hopfion simulation in the bulk of the sample was
carried out using periodic boundary conditions both with and
without spin pinning on the surface of the simulated cell.
Without pinning, the hopfion has quasi-zero modes, which
correspond to the quasi-zero eigenvalues of the hessian of
energy. The pinning at the boundaries removes all zero modes.
Except for this, the simulation results with and without pin-
ning are identical.

Figure 1 shows the surface nz = 0 for hopfions obtained
with the values of the parameters given in Table 1, which
correspond to the same micromagnetic system. Although the
skyrmions are quite similar, their sizes are slightly different,
increasing with the value of J1. The axis of symmetry for all
three hopfions corresponds to the most energetically favorable
direction (1,1,1).

III. MINIMAL ENERGY PATH FOR HOPFION COLLAPSE
AND ESCAPE TROUGH THE BOUNDARY

The lifetime of magnetic states can serve as a quantitative
measure of their stability with respect to thermal fluctuations
and random external perturbations. These lifetimes or rates of
magnetic transitions can be estimated using the transition state
theory for magnetic degrees of freedom [5,6].

Within the framework of this approach the energy surface
is considered as a functional of variables that completely
determine the magnetic configuration. Local minima on this
surface correspond to the ground (FM) and hopfion states.
Knowing these states, one can find the minimum energy path
(MEP) between them. The maximum energy along the path
is reached at a saddle point on the energy surface. Then the
difference between the energies of the saddle point Esp and
the initial equilibrium hopfion state Eh gives the activation en-
ergy of the hopfion collapse �Ec = Esp − Eh. The activation
energy of hopfion nucleation is the difference between Esp and
the energy of the FM state E f , �En = Esp − E f .

There are various methods for finding MEPs [6,36]. By
definition, MEP is a path in phase space, such that it starts and
ends at energy minima, and each path point is a local energy
minimum in a subspace orthogonal to the path at that point.
The path is represented by a set of discrete replicas of the
system n(k), called images, that provide a discrete represen-
tation of the path that initially starts with some interpolation
between initial and final states and then converges to MEP
using some iterative optimization method. Each iteration of
these methods starts by calculating the energy antigradient on
the path images,

g(k) = −∂E [n(k)]

∂n
,

and the projection of the gradient onto the tangent space to
manifold associated with constraints on the value of magnetic
moments,

q(k)
i = g(k)

i − n(k)
i

(
g(k)

i · n(k)
i

)
.

The vector q(k) is equal to zero for all stationary points, and
determines the direction of the fastest decrease in energy at
each image. Then q(k) projects into the space orthogonal to
the path,

p(k) = q(k) − t (k)(t (k) · q(k) ),

where t (k) is the tangent to the path on the image n(k). The
tangent t (k) is estimated by weighted finite difference of the
images, but it is essential to use stable estimate to obtain
convergence [37]. On a MEP, the vector p(k) should be equal
to zero, and moreover a small variation in the position of
the image in the direction orthogonal to t (k) should locally
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FIG. 2. MEP for the decay of hopfions inside the sample and magnetic configurations at selected points. The insets show the paths in the
vicinity of the saddle points. On the lower graphs and on the right axis, the hopfion charge is along the trajectory. Magnetic texture states along
MEP are illustrated by lines of constant orientation of the magnetic moments with vanishing z projection of the moments using the same color
scheme as in Fig. 1.

increase the energy of the images. However, to obtain a good
estimation of the transition state the path should be well re-
solved in a vicinity of the maxima. The condition is commonly
enforced ensuring constant distance between images and use
of the climbing image method [38]. The distance between
images can be controlled introducing an elastic force as done
in nudged elastic band (NEB) method [39]. We adopted an-
other common approach called string method, which does not
introduce arbitrary parameters. In the string method the force
p(k) is not modified and auxiliary images are updated as in
gradient descend method,

ñ(k) = n(k) + ηp(k),

where step size η can in most cases be a constant. After that,
the continuous path is approximated by a spline that goes
via the images ñ(k). Our experience shows that a piecewise
linear approximation is enough. Then images defining new
approximation of MEP are updated in such a way that all n(k)

belongs to the spline and are equidistant. The climbing image
algorithm can be combined with a string method in a similar
way as NEB method [6]. We will use this approach below.

To determine the lifetimes of magnetic states within har-
monic transition state theory, it is important to know the
topography of the energy surface in the vicinity of the
saddle point. In this case, it is not necessary to determine the
entire MEP. This makes it possible to use the truncated MEP
method [40], which allows finding only the part of the path
that includes the saddle point. This method has been used to
search for the MEP for hopfion collapse. Calculations were
performed using string method in Cartesian coordinates [31]
starting optimization from an ansatz.

The ansatz for hopfion annihilation was the geodesic path
between the hopfion and the ferromagnetic state. For Hopfion

escape through the boundary, the initial path consists of copies
of the Hopfion states translated by several lattice constants.
The part of the hopfion that goes beyond the boundary is
discarded, spins coming out of the boundary are set parallel
to the FM state.

Figure 2 shows the MEP for three hopfion states corre-
sponding to the same state in the continuous micromagnetic
model. The initial magnetic configurations represented in
Fig. 1 have slightly different energy. The larger the hopfion,
the greater its energy in the equilibrium state. The axis of
symmetry for all states is (111). In the figure, the energy along
the path is plotted as a function of the reaction coordinate,
which is chosen as total rotation angle of all magnetic mo-
ments along the path. Since the final FM state is the same
for all structures, the reaction coordinate is measured from
this state. The distances to the equilibrium hopfion state along
the MEP are different for the three hopfion structures. The
calculations shown in the figure by solid lines were carried
out for the part of the path, including the saddle point, using
the truncated MEP method. The dashed lines correspond to
transitions to the initial and final states from the ends of the
truncated MEP.

The MEP of hopfion collapse consists of several stages.
First, the hopfion shrinks to the state where its inner radius
is about a few lattice constants. This state corresponds to
the saddle point on the energy surface. In this case, for the
hopfion III (J1 = 2), the symmetry axis at the saddle point
changes to (110), while for I and II it remains directed along
(111). We estimated hopfion charge for all computed images
by a quadrature approximation of Whitehead formula [41].
The hopfion charge begins to decrease as an image approaches
the saddle point, as shown in the lower part of the Fig. 2. At
the next stage, in the vicinity of the transition state, two Bloch
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FIG. 3. Hopfion (left), transition state (middle), and a state halfway after transition state to FM state having two Bloch points (right) for
J1 = 0.5. Top row demonstrates surface of constant angle π/5 between magnetic moments and three vectors (cos α, sin α, 0), α = 0, ±2π/3.
Bottom row shows lines of constant orientation of the magnetic moments with vanishing z projection of the moments.

points are formed in the center of the hopfion, and move in
opposite directions, leading to the formation of a toron-like
structure. Radius of the toron is close to the outer radius of
the hopfion. At the final stage, the toron decays by shrinking,
with both its radius and the distance between the Bloch points
tending to zero.

Figure 3 shows the hopfion equilibrium state, the struc-
ture in the vicinity of the saddle point on the energy
surface and outside the transition region, where the Bloch
points have formed and have already diverged. It is this
sequence of states that occurs when moving along the
MEP.

FIG. 4. The MEP for hopfion escape through the boundary and magnetic configurations at selected points. There is no energy barrier for
this process. The insets show the paths in the vicinity of the saddle points. On the lower graphs and on the right axis, the hopfion charge is
deposited along the trajectory. Magnetic texture states along MEP are illustrated by lines of constant orientation of the magnetic moments with
vanishing z projection of the moments using the same color scheme as in Fig. 1.
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TABLE II. Hopfion collapse activation energy (�Ec), dynamic
(τdyn), entropy (τdyn), and total pre-exponential factors for three dif-
ferent sets of lattice exchange parameters, listed in the Table I. J0 is
taken equal to 10 meV

# �Ec (meV) τdyn (ps) τent τ0 (sec)

I 7.232 1.292 3.148 × 10−08 4.067 × 10−20

II 3.234 3.787 3.544 × 10−08 1.342 × 10−19

III 14.41 0.71 2.795 × 10−09 1.984 × 10−21

Another mechanism for the removal of hopfion from a
sample of finite size is the hopfion escape through the free
boundary. Analogous processes with skyrmions require an
activation energy, since the skyrmion is repelled from the free
boundary [42]. The MEPs for hopfion crossing the boundary
are shown in Fig. 4. None of the considered hopfions has an
energy barrier for crossing the border. The hopfion charge
monotonically decreases in absolute value as more and more
of the noncollinear magnetic structure leaves the sample. To
confine the hopfion inside the sample boundary conditions
should be modified, e.g., orientation of the magnetic moments
can be set constant on the surfaces as for homeotropic bound-
ary conditions common for liquid crystal films. An easy axis
magnetic anisotropy on the boundary that can be considered as
a weak form of such boundary conditions was used for soliton
stabilization in [13,14,16]. Other approaches to stabilization
of hopfion are possible, for example, by embedding in a he-
lical or conical background of chiral magnets [19] instead of
FM phase.

IV. PRE-EXPONENTIAL FACTOR AND LIFETIME
OF HOPFION STATES

Within the framework of harmonic approximation for the
shape of the energy surface near the minima and the saddle

point, one can obtain the Arrhenius law for the hopfion life-
time [5,31],

τ = τ0 exp

(
�Ec

kBT

)
,

The activation energy �Ec is determined from the MEP. The
pre-exponential factor can be written as the product of the
dynamic and entropy parts,

τ0 = 2πτdynτent.

The dynamic prefactor τdyn depends only on dynamics in the
vicinity of the transition state,

τdyn = μ

γ

1√
b · Htsb

, bi = nts
i × ei,

where nts
i is the spin configuration at the saddle point, Hts

is the Hessian of energy in this point, and ei is the unit
eigenvector corresponding to the only negative eigenvalue of
the operator Hts. γ and μ are the gyromagnetic ratio and the
magnetic moment per site, respectively.

The entropy prefactor is the square root of the ratio of
the modulus of the Hessian determinant at the saddle point
Hts and determinant in the minimum corresponding to the
equilibrium hopfion Hmin,

τent =
√

det Hts

| det Hmin| .

Calculating the entropy factor for systems containing hun-
dreds of thousands of atoms is a complex computational
problem. For the system under consideration, this problem can
be solved due to the short-range exchange interaction using
LU decomposition for block band matrices [31].

Table II presents the results of calculations of the dynamic,
entropy, and total pre-exponential factors of hopfion collapse,

FIG. 5. Hopfion lifetimes (solid lines) and hopfion nucleation times from the ferromagnetic state (dashed lines) for three sets of parameters
from Table I. Hopfion decay is many orders of magnitude more probable than its nucleation for all the parameters.
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as well as the activation energy of this process. It differs sig-
nificantly for the considered sets of parameters corresponding
to the same micromagnetic models. The lifetime of hopfions
as a function of temperature is shown in Fig. 5. In the calcula-
tions J0 = 10 meV and μ = 3 μB.

Only the hopfion corresponding to J = 2 is stable at T =
2 K. This is due to its relatively high activation barrier. The
same figure shows the time of generation of hopfions due to
temperature fluctuations as a function of temperature. Such
processes can occur at temperatures of hundreds of K, when
the equilibrium hopfions are unstable. Therefore, hopfions can
only be created artificially, by means of a special external
influence, and observed at ultralow temperatures.

The computed prefactor τ0 for the Hopfion lifetime repre-
sented in Table II is on the order of 10−20 s. The inverse, often
referred to as “attempt frequency” for the collapse rate, is
about 1020 s−1 and differs by 8–10 orders of magnitude from
the typical prefactor for other topological structures, such as
2D magnetic skyrmions. It is worth noting that in the general
case, the attempt frequency is the frequency of the physical
process, that sets the time scale, but it is a quantity depending
on the shape of the energy surface in the vicinity of the saddle
point and initial state. For example, in the case of magneti-
zation reversal of small Fe islands the W(110) surface, the
attempt frequency within the TST turned out to be 1014–1018

[43] and agrees well with scanning tunneling microscopy
measurements [44]. Therefore, in nanomagnetism, such an
order of magnitude of τ0 is not very surprising.

In our calculations, we use the harmonic approximation for
the shape of the energy surface. If the system has zero modes
in the initial and transition states, then the harmonic approxi-
mation can be violated along the corresponding directions on
the energy surface. However, in our calculations zero modes
were removed by pinning of boundary magnetic moments.
Therefore, the result for τ0 is not related to limitations of
harmonic TST, but reflects the actual behavior of the hopfions.

The small value of the prefactor for the hopfion lifetime is
related to the large entropy of the structure in the transition
states compared to the hopfion entropy in the initial state. For
a 2D skyrmion, on the contrary, the skyrmion has a greater
entropy than the transition state structure. This explains the
difference in the pre-exponential factors.

V. CONCLUSIONS

Hopfion states are local energy minima in three-
dimensional magnetic systems with competing exchange

interactions. In a continuous micromagnetic model, the ori-
entation of the hopfion symmetry axis does not affect its
properties. On a discrete lattice, such a dependence arises
due to the appearance of certain, specific directions of the
crystallographic axes. One and the same continuous model
can correspond to several discrete systems with different sets
of exchange parameters. Due to lattice effects, their stability
can vary greatly.

Although the equilibrium shape and size of hopfions are
quite close for all three sets of parameters, the activation
energy and the path leading to hopfion collapse are different.
The pre-exponential factors in the Arrhenius law obtained
in the harmonic approximation of the transition state theory
also differ greatly. Calculations show that hopfions of such
a scale can exist as excitations above the FM phase only
at ultralow temperatures of a few degrees K. With an in-
crease in the hopfion size, lattice effects should disappear,
and one can expect that the hopfion will be more stable
and independent of the specific parameters of the discrete
model, corresponding to specific micromagnetic parame-
ters. Increase of J0 or hopfion size can sufficiently increase
stability.

The energy barriers for hopfion collapse corresponding
to different values of the micromagnetic parameters A,B, C
were calculated by Sallerman et al. [28] based on the analysis
of the energy surface. They showed that the energy barrier
can reach a considerable height and is largely determined by
the hopfion size with respect to the lattice constant. In our
calculations, the chosen parameters correspond to only one
set A,B, C, whose values are close to the stability limit of the
hopfion states, and the size of the hopfion turns out to be quite
small. The pre-exponential factor in the Arrhenius law was
not calculated in [28], but calculations we have carried out
for 2D skyrmions have shown that the pre-exponential factor
can increase by 4–5 orders of magnitude with an increase
in the radius of the skyrmion by 40 times relative to the
lattice constant [29]. Therefore, it is reasonable to expect that
hopfions of larger radius can be stable at higher temperatures,
which agrees with [28].

ACKNOWLEDGMENTS

The authors thank N. S. Kiselev, F. N. Rybakov, S.
Blügel, and H. Jónsson for fruitful discussion. The study
was supported by the Russian Science Foundation Grant No.
22-22-00565.

[1] R. Wiesendanger, Nanoscale magnetic skyrmions in metallic
films and multilayers: A new twist for spintronics, Nat. Rev.
Mater. 1, 16044 (2016).

[2] A. Fert, N. Reyren, and V. Cros, Magnetic skyrmions: Advances
in physics and potential applications, Nat. Rev. Mater. 2, 17031
(2017).

[3] K. M. Song, J. S. Jeong, B. Pan, X. Zhang, J. Xia, S. Cha,
T. E. Park, K. Kim, S. Finizio, J. Raabe et al., Skyrmion-based
artificial synapses for neuromorphic computing, Nat. Electron.
3, 148 (2020).

[4] N. Nagaosa and Y. Tokura, Topological properties and dynam-
ics of magnetic skyrmions, Nat. Nanotechnol. 8, 899 (2013).

[5] P. F. Bessarab, V. M. Uzdin, and H. Jónsson, Harmonic
transition-state theory of thermal spin transitions, Phys. Rev. B
85, 184409 (2012).

[6] I. S. Lobanov, M. N. Potkina, and V. M. Uzdin, Stability and
lifetimes of magnetic states of nano- and microstructures (Brief
review), JETP Lett. 113, 801 (2021).

[7] F. N. Rybakov, A. B. Borisov, S. Blügel, and N. S.
Kiselev, New Type of Stable Particle-like States

104405-7

https://doi.org/10.1038/natrevmats.2016.44
https://doi.org/10.1038/natrevmats.2017.31
https://doi.org/10.1038/s41928-020-0385-0
https://doi.org/10.1038/nnano.2013.243
https://doi.org/10.1103/PhysRevB.85.184409
https://doi.org/10.1134/S0021364021120109


I. S. LOBANOV AND V. M. UZDIN PHYSICAL REVIEW B 107, 104405 (2023)

in Chiral Magnets, Phys. Rev. Lett. 115, 117201
(2015).

[8] P. J. Ackerman and I. I. Smalyukh, Diversity of Knot Solitons in
Liquid Crystals Manifested by Linking of Preimages in Torons
and Hopfions, Phys. Rev. X 7, 011006 (2017).

[9] I. M. Tambovtsev, A. O. Leonov, I. S. Lobanov, A. D. Kiselev,
and V. M. Uzdin, Topological structures in chiral media: Effects
of confined geometry, Phys. Rev. E 105, 034701 (2022).

[10] P. Sutcliffe, Hopfions in chiral magnets, J. Phys. A: Math.
Theor. 51, 375401 (2018).

[11] F. N. Rybakov, N. S. Kiselev, A. B. Borisov, L. Döring, C.
Melcher, and S. Blügel, Magnetic hopfions in solids, APL
Mater. 10, 111113 (2022).

[12] B. G. Chen, P. J. Ackerman, G. P. Alexander, R. D. Kamien,
and I. I. Smalyukh, Generating the Hopf Fibration Experimen-
tally in Nematic Liquid Crystals, Phys. Rev. Lett. 110, 237801
(2013).

[13] Z. Khodzhaev and E. Turgut, Hopfion dynamics in chiral mag-
nets, J. Phys.: Condens. Matter 34, 225805 (2022).

[14] X. S. Wang, A. Qaiumzadeh, and A. Brataas, Current-Driven
Dynamics of Magnetic Hopfions, Phys. Rev. Lett. 123, 147203
(2019).

[15] B. Göbel, C. A. Akosa, G. Tatara, and I. Mertig, Topological
Hall signatures of magnetic hopfions, Phys. Rev. Res. 2, 013315
(2020).

[16] S. Li, J. Xia, L. Shen, X. Zhang, M. Ezawa, and Y. Zhou, Mutual
conversion between a magnetic Néel hopfion and a Néel toron,
Phys. Rev. B 105, 174407 (2022).

[17] D. Raftrey and P. Fischer, Field-Driven Dynamics of Magnetic
Hopfions, Phys. Rev. Lett. 127, 257201 (2021).

[18] N. Kent, N. Reynolds, D. Raftrey, I. T. Campbell, S.
Virasawmy, S. Dhuey, R. V. Chopdekar, A. Hierro-Rodriguez,
A. Sorrentino, E. Pereiro et al., Creation and observation of
hopfions in magnetic multilayer systems, Nat. Commun. 12,
1562 (2021).

[19] R. Voinescu, J.-S. B. Tai, and I. I. Smalyukh, Hopf Solitons in
Helical and Conical Backgrounds of Chiral Magnetic Solids,
Phys. Rev. Lett. 125, 057201 (2020).

[20] J.-S. B. Tai, J.-S. Wu, and I. I. Smalyukh, Geometric transfor-
mation and three-dimensional hopping of Hopf solitons, Nat.
Commun. 13, 2986 (2022).

[21] J.-S. B. Tai and I. I. Smalyukh, Static Hopf Solitons and Knotted
Emergent Fields in Solid-State Noncentrosymmetric Magnetic
Nanostructures, Phys. Rev. Lett. 121, 187201 (2018).

[22] J.-S. B. Tai, P. J. Ackerman, and I. I. Smalyukh, Topological
transformations of Hopf solitons in chiral ferromagnets and
liquid crystals, Proc. Natl. Acad. Sci. USA 115, 921 (2018).

[23] S. Castillo-Sepúlveda, R. Cacilhas, V. L. Carvalho-Santos,
R. M. Corona, and D. Altbir, Magnetic hopfions in toroidal
nanostructures driven by an oersted magnetic field, Phys. Rev.
B 104, 184406 (2021).

[24] Y. Liu, W. Hou, X. Han, and J. Zang, Three-Dimensional Dy-
namics of a Magnetic Hopfion Driven by Spin Transfer Torque,
Phys. Rev. Lett. 124, 127204 (2020).

[25] Y. Liu, H. Watanabe, and N. Nagaosa, Emergent Magnetomul-
tipoles and Nonlinear Responses of a Magnetic Hopfion, Phys.
Rev. Lett. 129, 267201 (2022).

[26] Y. Hu, X. Chi, X. Li, Y. Liu, and A. Du, Creation and annihi-
lation of skyrmions in the frustrated magnets with competing
exchange interactions, Sci. Rep. 7, 16079 (2017).

[27] B. Heil, A. Rosch, and J. Masell, Universality of annihilation
barriers of large magnetic skyrmions in chiral and frustrated
magnets, Phys. Rev. B 100, 134424 (2019).

[28] M. Sallermann, H. Jónsson, and S. Blügel, Stability of hopfions
in bulk magnets with competing exchange interactions, Phys.
Rev. B 107, 104404 (2023).

[29] M. N. Potkina, I. S. Lobanov, H. Jónsson, and V. M. Uzdin,
Lifetime of skyrmions in discrete systems with infinitesimal
lattice constant, J. Magn. Magn. Mater. 549, 168974 (2022).

[30] M. Hoffmann, G. P. Müller, and S. Blügel, Atomistic Per-
spective of Long Lifetimes of Small Skyrmions at Room
Temperature, Phys. Rev. Lett. 124, 247201 (2020).

[31] I. S. Lobanov and V. M. Uzdin, The lifetime of micron
scale topological chiral magnetic states with atomic resolution,
Comput. Phys. Commun. 269, 108136 (2021).

[32] I. S. Lobanov, H. Jónsson, and V. M. Uzdin, Mechanism and
activation energy of magnetic skyrmion annihilation obtained
from minimum energy path calculations, Phys. Rev. B 94,
174418 (2016).

[33] M. T. Birch, D. Cortés-Ortuño, N. D. Khanh, S. Seki, A.
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