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Spin-orbital mechanisms for negative thermal expansion in Ca2RuO4
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The phenomenon of negative thermal expansion (NTE) deals with the increase of the lattice parameters and
the volume of the unit cell when the material is thermally cooled. The NTE is typically associated with thermal
phonons and anomalous spin-lattice coupling at low temperatures. However, the underlying mechanisms in the
presence of strong electron correlations in multiorbital systems are not yet fully established. Here, we investigate
the role of Coulomb interaction in the presence of lattice distortions in setting out the NTE effect, by focusing on
the physical case of layered Ca2RuO4 with the d4 configuration at each Ru ion site. We employ the Slater-Koster
parametrization to describe the electron-lattice coupling through the dependence of the d-p hybridization on the
Ru-O-Ru bond angle. The evaluation of the minimum of the free energy at finite temperature by fully solving
the multiorbital many-body problem on a finite-size cluster allows us to identify the regime for which the system
is prone to exhibit NTE effects. The analysis shows that the nature of the spin-orbital correlations is relevant to
drive the reduction of the bond angle by cooling, and in turn the tendency toward a NTE. This is confirmed by the
fact that a changeover of the electronic and orbital configuration from d4 to d3 by transition metal substitution
is shown to favor the occurrence of a NTE in Ca2RuO4. This finding is in agreement with the experimental
observations of a NTE effect which is significantly dependent on the transition metal substitution in the Ca2RuO4

compound.
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I. INTRODUCTION

Nowadays it is widely accepted that strong electron corre-
lations play a prominent role in achieving and controlling a
large variety of quantum phases, physical phenomena, and ef-
fects related to cooperative behaviors that cannot be described
from the properties of individual electrons. Emblematic cases
are the unconventional pairing in high-Tc superconductors [1],
as well as metal-insulator transitions [2] or emergent exci-
tations such as monopoles [3] and skyrmions [4]. Transition
metal oxides (TMOs) are paradigmatic quantum materials [5]
in this context, as they are marked by strong correlations that
result in several types of electronic phases, including charge-
and spin-ordered states. Prominent examples are found among
the 3d TMOs, where unconventional transport properties, or-
dering phenomena, and unusual spectroscopic properties are
observed. It was argued that the comparably weak spatial
extension of 3d orbitals may lead to large electronic Coulomb
interactions, competing with kinetic contributions. Depending
on crystal field, hybridization, Hund’s exchange, and band fill-
ing, this interplay can lead to renormalized metallic behavior
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or induce Mott insulating behavior. In 4d and 5d oxides, spin-
orbit coupling acts on an energy scale comparable to the other
energy scales of the system, and the observed electronic state
is the result of a complex interplay of Coulomb interactions,
spin-orbit splitting, and crystal field effects.

Interestingly, when the electron correlations are somewhat
weaker, as in 4d or 5d TMOs, other challenging effects may
arise due to the subtle competition between electronic and
lattice degrees of freedom. One of the most extraordinary ones
is the negative thermal expansion (NTE) in Ca2RuO4-derived
layered materials. The phenomenon of NTE [6–8] deals with
the observation of a shrinking of the lattice parameters when
the material is heated or vice versa with a lattice expansion by
thermal cooling.

Although the phenomenon is not broadly observed, it has
a remarkable impact for several applications in electronics,
optics, and for the design of thermal engines or medical prod-
ucts [9,10]. The origin of NTE is quite intricate as, apart from
the structural modifications, it can involve the coupling of
electrons, spin, and orbital degrees of freedom. In materials
such as ZrW2O8 and ZnCr2Se4, the NTE is mainly due to
oxygen vibrational modes [11–15] and anharmonicity related
to spin canting and spin-lattice coupling. Hence, while the
manifestation of the effect is directly provided by the mod-
ification of the lattice parameters, a fundamental question
arises on whether the electronic correlations, and the result-
ing spin-orbital couplings, would cooperate or compete with
the tendency of the lattice to exhibit a NTE. This issue is
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FIG. 1. Schematic representation of the TM1-O-TM2 bond for
the case of (a) an undistorted configuration with θ = 0, (b) a non-
vanishing bond angle due to the misalignment between the TM1-O
and TM1-TM2 directions. In (c) we provide a sketch to depict how a
variation of the bond angle for a square geometry of the TM-O lattice
can lead to a modification of the unit cell area. In particular, a thermal
gradient �T that induces an increase of the TM-O-TM bond angle
would lead to a reduction of the unit cell.

particularly relevant in materials with Mott physics and non-
trivial magnetic ordering, with electronic degrees of freedom
being dominated by local Coulomb interaction, especially in
the presence of multiorbital configurations having significant
spin-orbital entanglement.

Looking more inside at the Ca2RuO4 family, it has been
reported that a tiny percentage of Cr substituting Ru produces
a 1% volume reduction that has been ascribed to the collapse
of the orbital and magnetic ordering [16]. Remarkably, substi-
tuting Ru with an M ion (M = Cr, Mn, Fe, or Cu) generally
yields NTE effects in Ca2Ru1−xMxO4 [17–19], with the onset
following the behavior of the metal-insulator and magnetic
ordering transition temperatures [17]. Therefore, the doping
by transition metal (TM) ions plays an important role in un-
veiling a generic tendency toward the phenomenon of NTE
and altering the strength of the spin-orbital interactions while
keeping the system in the insulating regime [20–23].

It is thus compelling to attribute the observed NTE to a
mechanism where electronic correlations play a critical role.
Insulating Ca2RuO4 is a representative case of a multiorbital
correlated TMO, where both spins and orbitals develop their
own dynamics and are coupled to each other through lattice
distortions. In this frame, the mechanism of NTE can thus
contain a high degree of complexity. In TMOs, the distance
of the TM ions is related to the TM-O-TM bond angle which
in turn is determined by the rotation of the TM-O6 octahedra
around a given crystallographic axis. Then, a reduction of
the lattice parameters can be obtained by a deviation from
180◦ of the TM-O-TM bond angle (see Fig. 1). While the
reduction of the TM-O-TM angle is expected to reduce the
kinetic energy in an insulator described by a single orbital,
the energy balance for multiorbital electronic systems is not
obvious, especially in the presence of Coulomb interaction.

Therefore, various cooperative effects may materialize.
The electron localization reduces the kinetic energy of the
electrons and, simultaneously, the lattice expansion may cost
energy due to electron-lattice interaction. Hence, the lattice

expansion may influence the kinetic energy variation even
further. Moreover, the spin-lattice coupling also plays an im-
portant role, particularly when strong competition between
ferromagnetic (FM) and antiferromagnetic (AFM) interaction
occurs since this interplay often leads to a strong bond frus-
tration or lattice anomaly. Interestingly, the frustration may
be released in a phase transition by which a certain type of
magnetic order is stabilized.

Such competing mechanisms depend on the TM-O-TM
bond angle, which directly enters in setting out the most favor-
able structural configurations. In this context, the short-range
orbital or magnetic or spin-orbital correlations play a crucial
role and decide about the energy gain or loss when a variation
of the lattice parameters occurs.

Taking into account these multiple components entering
into the phenomenology of the NTE, we aim to investigate
such physical scenario by assessing the role of Coulomb
interaction and spin-orbital correlations in setting out the
thermal evolution of the TM-O-TM lattice configuration. In
order to determine the impact of the TM-O-TM configura-
tion in the electron-correlated configuration, we employ the
Slater-Koster parametrization to describe the electron-lattice
coupling through the dependence of the d-p hybridization on
the TM-O-TM bond angle. The evaluation of the minimum of
the free energy at finite temperature is achieved by a complete
solution of the multiorbital many-body problems on finite-size
clusters. This approach allows us to identify the electronic
regime where the system can exhibit NTE effects. The analy-
sis shows that the nature of spin-orbital correlations is relevant
to drive the reduction of the Ru-O-Ru bond angle by thermal
cooling, and in turn the tendency to develop a NTE. Indeed,
the changeover of the electronic and orbital configuration
from d4 to d3 by TM substitution clearly supports the role
of electron correlations to account for the occurrence of NTE
in Ca2RuO4. This finding agrees with the experimental obser-
vation of a NTE effect, which exhibits significant dependence
on the TM substitution in the Ca2RuO4 compound.

The paper is organized as follows. First, in Sec. II we
consider a single TM-O-TM bond with two d4 ions and
investigate whether this bond may generate a configuration
compatible with the occurrence of a NTE effect. Second, we
show that the TM-O-TM bond with one d3 ion substituting
the d4 ion has a tendency to favor bond distortions that in
general support the NTE in a planar perovskite. The search
for an optimal bond angle configuration in the presence of
Coulomb interaction at the TM site is further analyzed with
a 2 × 2 plaquette. We derive an effective low-energy model
that properly includes all the d-p charge transfer processes,
the bond angles, and the local Coulomb interaction. In Sec. III
we investigate the case with d4 charge configurations while in
Sec. IV we consider the case of a single d3 impurity replacing
a d4 site. The study of the planar plaquette allows us to address
the role of orbital correlations in setting out electronic states
which are compatible with the NTE effects. In particular,
orbital configurations or electronic mechanisms that break the
rotation by 90◦ in the square lattice are particularly relevant
for favoring lattice distortions that support the NTE effects in
Ca2RuO4. Our main conclusions are summarized in Sec. V.
The superexchange Hamiltonians are explicitly derived and
reported together with the complete set of their coefficients in
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Appendices A and B. In Appendix C we provide details about
the evolution of the optimal angle as a function of the Hund’s
coupling and of the spin-orbit interaction. In Appendix D we
present the results of the effective spin-orbital model for a
single bond with d4-d4 and d3-d4 configurations. Finally, in
Appendix E we introduce a phenomenological electron-lattice
potential to describe the lattice feedback on the electronic
system that is able to limit the bond angle within a physical
range.

II. SINGLE TM-O-TM BOND ANALYSIS

A. The model

In this section, we investigate the energetically most favor-
able TM-O-TM bond angle configuration, which is realized
when Coulomb interaction at the TM element is fully taken
into account. To this end, we consider a multiorbital p-d elec-
tronic system suitable for oxide materials. This includes all
the atomic terms arising from the local Coulomb interaction
and the orbital-dependent connectivity between a TM element
and the oxygen ligands that are allowed in the planar square
lattice geometry, typical for tetragonal perovskites. First, we
consider the case of a single bond made of two TM elements,
i.e., TM1 and TM2, linked via an oxygen (O) ion between
them, as schematically depicted in Fig. 1.

Note that the deviation of the bond angle away from 180◦ is
directly related to the angle θ , formed by the TM-O distance
and the crystal axis. Hence, in the following, we will refer
to θ as a measure of the bond angle, with θ = 0 correspond-
ing to an undistorted 180◦ bond, and the maximal θ = 45◦
corresponding to a 90◦ TM-O-TM bond. The fundamental
physical motivation for this study is to assess a role that can
be played by the electron-electron correlations in setting the
bond angle between TM elements and including their effects
on the thermal evolution of the bond angle.

Within this framework, we aim to evaluate the role of
spin, orbital, and charge-transfer processes in setting out the
energetically most favorable TM-O-TM angle. In particular,
we consider how the Coulomb interaction at the TM site leads
to the optimal TM-O-TM bond angle and whether the re-
sulting configuration is related to the spin-orbital correlations
or other electronic parameters associated with the tetragonal
distortions and spin-orbit coupling. The analysis is performed
by solving exactly a model Hamiltonian for the TM1-O-TM2

cluster, with two TM ions at its ends.
To describe the TM1-O-TM2 cluster, we employ a micro-

scopic model Hamiltonian for the bands close to the Fermi
level for the itinerant electrons within the TM-O plane by
considering the interaction terms at the TM sites and the
kinetic term along the TM-O bond. Since we are focusing
here on low-spin configurations for the d4 electronic states,
the local TM Hamiltonian Hloc [24–26] includes the complete
Coulomb interaction projected on the t2g electrons, the spin-
orbit coupling, and the tetragonal crystal-field (CF) potential.
Therefore, the Hloc at site i is

Hloc(i) = He−e(i) + HSOC(i) + HCF(i). (2.1)

Here, the on-site Coulomb, spin-orbit, and CF terms are ex-
pressed at site i by

He−e(i) = U
∑

α

niα↑niα↓ + JH

∑
α �=β

d†
iα↑d†

iα↓diβ↑diβ↓

+
(

U ′ − JH

2

) ∑
α<β

niαniβ − 2JH

∑
α<β

(�S)iα · (�S)iβ,

(2.2)

HSOC(i) = λ
∑
α,σ

∑
β,σ ′

d†
iασ (�l )αβ · (�s)σσ ′ diβσ ′ , (2.3)

HCF(i) = εxyni,xy + (εxzni,xz + εyzni,yz ). (2.4)

In these expressions, i labels the site and {α, β} are in-
dices running over the three orbitals in the t2g sector, i.e.,
α, β ∈ {dxy, dxz, dyz}, and d†

iασ is the creation operator of an
electron with spin σ at the site i in the orbital α. The interac-
tion is parametrized by the Kanamori parameters: intraorbital
Coulomb interaction U and Hund’s exchange JH.

The strength of the tetragonal distortions is expressed
by the amplitude δ, with δ = (εxy − εz ). We also consider
the possibility of having an orthorhombic splitting, δort, of
the {xz, yz} orbitals by assuming that εyz = εz + δort and
εzx = εz − δort. U is the intraorbital Coulomb interaction, JH

Hund’s exchange, and (U ′ − 1
2 JH ) sets the strength of the

interorbital electron-electron interaction; J ′ is the pair hop-
ping term. We assume a rotational invariant condition for the
Coulomb amplitudes, so that U = U ′ + 2JH , and J ′ = JH .
The operator �l is the projection of the angular momen-
tum operators to the t2g subspace, (lk )αβ = iεkαβ , such as
�l × �l = −i�l , and �si = 1

2 �σi is the spin operator at site i ex-
pressed through the Pauli matrices �σi.

The matrices for the orbital operators in the t2g manifold
are

lx =
⎡
⎣0 0 0

0 0 i
0 −i 0

⎤
⎦ →

⎡
⎣dyz

dxz

dxy

⎤
⎦,

ly =
⎡
⎣0 0 −i

0 0 0
i 0 0

⎤
⎦ →

⎡
⎣dyz

dxz

dxy

⎤
⎦,

lz =
⎡
⎣ 0 i 0

−i 0 0
0 0 0

⎤
⎦ →

⎡
⎣dyz

dxz

dxy

⎤
⎦.

Concerning the local Hamiltonian at the O site, it only in-
cludes the on-site energy term which is introduced to take into
account the energy difference between the occupied orbitals of
O and TM:

HO
el ( j) = εxn j,px + εyn j,py + εzn j,pz. (2.5)

Furthermore, we consider the TM-oxygen hopping, which
includes all the allowed symmetry terms according to the
Slater-Koster rules [27,28] for a given bond connecting a TM
to an oxygen atom along a given symmetry direction, e.g., the
x axis. Here, we allow for rotation of the octahedra around the
c axis assuming that the TM-O-TM bond can form an angle
θ as depicted in Fig. 1. The case with θ = 0 corresponds to
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the tetragonal undistorted bond, while a nonvanishing value
of θ arises when the TM-O6 octahedra are rotated at the
corresponding angle around the c axis.

For the TM-O hopping term, we assume that for a generic
bond connecting the TM to the O atoms along the x direction,
the d-p hybridization includes all the allowed terms, and thus

HTM1−O[x] = tdα,pβ
(d†

i,ασ pi+ax,βσ + H.c.),

where the hopping tdα,pβ
is a function of the bond angle θ . In

particular, according to the Slater-Koster rules, one has

tdxy,px =
√

3 n2
x ny Vpdσ + ny

(
1 − 2n2

x

)
Vpdπ ,

tdxy,py =
√

3 n2
y nx Vpdσ + nx

(
1 − 2n2

y

)
Vpdπ ,

tdxz,pz = nx Vpdσ ,

tdyz,pz = ny Vpdπ ,

with nx = cos θ and ny = sin θ . In a similar way, one can also
express the p-d hybridization amplitude for the O-TM2 bond.
By symmetry correspondence, one can write down the other
hybridization terms along the other TM-O-TM bonds for the
y direction.

Since we are interested in the total free energy at finite
temperature as a function of the bond tilting angle, it is useful
to introduce the expression which is generally given by

F = − 1

β
ln

{∑
i

exp (−βEi )

}
, (2.6)

where β = 1/kBT is the inverse temperature with kB being
the Boltzmann constant, while Ei are the eigenvalues of the
Hamiltonian evaluated by exact diagonalization.

To proceed further with the analysis, we determine the
whole energy spectrum and the corresponding eigenstates
for the TM-O-TM cluster. Having in mind the Ca2RuO4

system, we start our analysis by fixing the atomic elec-
tronic parameters in a regime matching with the AFM
ground state of the monolayer compound [29–32]. Further-
more, the total number of electrons is Ne = 14 for the
TM(d4)-O(2p6)-TM(d4) configuration, while it is Ne = 13 for
the doped TM(d3)-O(2p6)-TM(d4) case.

There, the severe flattening of the RuO6 octahedron oc-
curring below the structural transition corresponds to negative
values for δ, while, according to first-principles calculations or
estimates employed to reproduce the resonant inelastic x-ray
and the magnetic properties, its amplitude is in the range
|δ| ∈ [200, 300] meV [30,33].

Furthermore, it is useful to point out that material-
specific values such as λ = 0.075 eV, U ∈ [1.5, 2.5] eV, and
JH ∈ [0.35, 0.5] eV are taken as a reference for the current
study. Similar values for δ, U , and JH have been used for
calculations of electronic spectra in Ca2RuO4 and the ratio
g = δ/(2λ) is typically considered to lie in the range ∈ [1.5, 2]
for modeling the spin excitations observed by a neutron, Ra-
man, and resonant inelastic x-ray scattering [30,34–36]. For
the hopping amplitudes, according to first-principles calcu-
lations, one can assume the p-d values to be in the range
of [1.0,2.0] eV [38]. These values are in the range of those
employed to describe the electronic and magnetic properties
of ruthenate oxides [37–39].

FIG. 2. (a) Contour map of the optimal bond angle for the
TM(d4)-O-TM(d4) configuration at zero temperature as a function
of the p-d hybridization parameters {Vpdσ ,Vpdπ } for a representative
value of the Coulomb strength and Hund coupling, i.e., U = 2.3 eV
and JH = 0.5 eV. We notice that there are two distinct regimes of
bond distortions that can be favored by the electronic correlations.
For Vpdπ about larger than Vpdσ , the the tendency is to favor a small
tilt of the bond angle which is close to zero. Otherwise, in the
remaining portion of the phase diagram the trend is to stabilize a
large bond angle of π/4. The transition between the two regimes
is quite rapid and occurs in the proximity of the line Vpdσ � Vpdπ .
A variation of the electronic parameters does not alter significantly
the phase diagram. (b) Evolution of the optimal angle as a function
of Vpdσ for fixed values of Vpdπ , for the same choice of parameters as
in (a).

B. Undoped TM(d4)-O-TM(d4) bond

In Fig. 2 we present the distribution of the ground
state optimal bond angle θopt for the TM(d4)-O-TM(d4)
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configuration at zero temperature as a function of the p-d
hybridization parameters {Vpdσ ,Vpdπ }, assuming a representa-
tive value of the Coulomb strength and Hund’s coupling, i.e.,
U = 2.3 eV and JH = 0.5 eV. For the oxygen orbitals we as-
sume that the atomic energy is given by εx,y,z = −4.5 eV. This
analysis allows us to determine the role of the p-d covalency
in setting out the distortions on the basic unit represented by
the TM-O-TM bond. There are two distinct regimes of bond
distortions that can be favored by the electronic correlations.
For Vpdπ about larger than Vpdσ , one finds a tendency to
favor a small tilt of the bond angle with an amplitude that
is close to zero. Otherwise, in the remaining portion of the
phase diagram, the trend is to stabilize a large TM-O-TM bond
angle, of π/4 (then all bonds are 90◦). The transition between
the two regimes is rapid and generally occurs in proximity to
the line Vpdσ � Vpdπ .

We point out that a similar trend is also obtained for the
TM(d3)-O-TM(d4) bond configuration and that a variation of
the electronic parameters (e.g., U , JH , etc.) within the phys-
ical regions previously defined do not alter significantly the
structure of the phase diagram. This trend can be qualitatively
captured by considering the dependence of the d-p hybridiza-
tion on the TM-O-TM bond angle. For large Vpdπ the d-p
charge-transfer and the resulting kinetic energy is optimized
by θ � 0. In the opposite regime with large Vpdσ a significant
deviation from θ � 0 increases the kinetic energy due to the
d-p hopping processes.

Let us then consider the thermal evolution of the optimal
bond angle. To this aim, at each temperature, we determine
the minimum of the free energy with respect to the TM-O-TM
bond angle. Specifically, we select a regime of d-p hybridiza-
tion for which the bond angle has a nonzero value in the
ground state, thus implying that the bond is distorted at low
temperatures. Then, we track the evolution of the angle θopt

that minimizes the free energy as a function of temperature, by
varying the Coulomb interaction U and the strength of Hund’s
exchange.

In Figs. 3(a) and 3(b) we show a representative behavior
of the optimal bond angle for the TM(d4)-O-TM(d4) config-
uration as a function of the temperature. As one can see by
inspection of Fig. 3, the intraorbital Coulomb interaction U is
able to drive a transition from a regime where the bond angle
is insensitive to the temperature change and it optimizes the
total electronic energy by keeping the bond angle undistorted,
to a regime of strong coupling where the high-temperature
bond angle is large and exhibits a tendency to decrease by
reducing the temperature. On the other hand, we find that the
strength of Hund’s exchange also affects the critical value of
the Coulomb interaction where the transition to an undistorted
bond angle occurs, such transition being favored for higher
values of JH . Moreover, it affects the crossover temperature
associated with a variation of the bond angle. Such depen-
dence on Hund’s coupling clearly indicates that the spin and
orbital correlations are linked to the thermal changeover of the
bond angle configuration.

In order to assess the microscopic mechanisms behind the
setting of the energetically most favorable bond angle for the
TM-O-TM configuration, we focus on the spin correlations
between the spin moments at the TM sites by looking at both
the scalar and vector product between spin operators. This

FIG. 3. Temperature dependencies of the bond angles for
(a), (b) TM(d4)-O-TM(d4) and (c), (d) TM(d3)-O-TM(d4) bonds.
Curves in (a) and (c) are for fixed JH and different values of U and
in (b) and (d) are for fixed U and different JH ; the values of U and
JH are indicated. The other parameters are Vpdπ = 1.3, Vpdσ = 1.6,
λ = 0.075, δ = 0.25, δort = 0.09, all in eV.

study aims to search for a link between the spin configuration
and the optimal bond distortion.

In Fig. 4 we report a few representative cases for the
TM(d4)-O-TM(d4) configuration to illustrate the overall

FIG. 4. (a), (c) Temperature dependence of the scalar product
of the spin moments at the TM sites for a TM(d4)-O-TM(d4)
configuration, as a function of the bond angle at T = 460 K and
T = 45 K for U = 2.3 eV and U = 2.1 eV, respectively. (b) and
(d) provide the evolution of the vector product of the spin moments
at the TM sites as a function of the bond angle at T = 460 K and
T = 45 K for U = 2.3 eV and U = 2.1 eV, respectively.
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trend. The bond-angle evolution of the thermal average of
the scalar product between the spin moments at the TM sites
(i.e., the Heisenberg interaction) indicates that the amplitude
is almost temperature independent when x or z spin-spin
correlation is considered, whereas y-y spin correlation tends
to become of AFM type with decreasing temperature [see
Figs. 4(a) and 4(c)], if the bond becomes undistorted, i.e.,
when θ = 0. Moreover, looking at the vector spin-spin cor-
relation, we note that its out-of-plane component gets larger
than the planar one, whose value is almost vanishing. We also
notice that the amplitude of the bond angle that minimizes
the free energy does not correspond to an angle configuration
that maximizes the spin correlations for both the parallel and
perpendicular spin configuration.

C. Hybrid TM(d3)-O-TM(d4) bond

In Figs. 3(c) and 3(d) we consider the behavior of the
hybrid TM(d3)-O-TM(d4) bond, where the electron occu-
pation has been changed at one TM site, by replacing d4

with a d3 impurity. The temperature dependence of the op-
timal bond angle is completely different if compared to the
TM(d4)-O-TM(d4) bond. Indeed, we find that the general
trend is to observe a decrease in the bond angle toward a
more undistorted configuration for all the considered values
of the Coulomb interaction. Although the minimization of the
free energy yields large values of the bond angle at high tem-
peratures it is relevant to point out the trend of the electronic
driving force in distorting the TM-O-TM bond. Interestingly,
an opposite behavior is observed when U increases and JH

decreases; in this case indeed the bond angle increases when
the temperature is lowered.

Focusing on the spin-spin scalar and vector product cor-
relations between the TM sites, we find that the evolution
of the thermal average of the scalar product upon the bond
angle indicates that the amplitude is maximal when the bond
is undistorted, i.e., θ = 0 [see Figs. 5(c) and 5(d)]. On the
other hand, we note that the the amplitude of the bond an-
gle that minimizes the free energy at low temperatures does
correspond to an angle configuration which favors in-plane
parallel spin configurations, with a prevalent component along
the bond direction.

While this is expected in a single-band picture where the
Heisenberg exchange depends on the hopping amplitude, i.e.,
J ∼ t2/U , and the charge transfer strength t is typically re-
duced by tilting the bond angle, in a multiorbital scenario
as that one upon examination the competition between the
various orbital channels does not allow us to have a direct
prediction. On the other hand, the vector product spin cor-
relations [i.e., the Dzyaloshinskii-Moriya (DM) interaction]
are activated by distorting the bond as expected due to the
inversion symmetry breaking arising from the bond tilting; see
Figs. 5(e) and 5(f).

The general outcome is to have a maximal value of the
vector product spin correlations for a bond angle that is nonva-
nishing. Moreover, as we explicitly demonstrate in Figs. 5(e)
and 5(f), the maximal amplitude of the DM exchange is also
temperature dependent. These results indicate that the setting
of the optimal angle in a TM(d3)-O-TM(d4) bond is a conse-
quence of the subtle competition between the Heisenberg and

FIG. 5. (a)–(c) Temperature dependence of the expectation value
of the scalar product of the spin moments at the TM sites for a
TM(d3)-O-TM(d4) configuration, as a function of the bond angle
at two representative temperatures, T = 460 K and T = 45 K, for
U = 1.8 eV and U = 2.0 eV, respectively. (b) and (d) provide the
evolution of the vector product of the spin moments at the TM sites as
a function of bond angle at T = 460 K and T = 45 K for U = 1.8 eV
and U = 2 eV, respectively.

DM interactions, which are in turn strongly tied to the orbital
degrees of freedom and to spin-orbital coupling strength.

D. Comparison between TM(d4)-O-TM(d4)
and TM(d4)-O-TM(d3) bonds

The key outcomes of the TM-O-TM bond analysis can
be summarized as follows. First, the study of the optimal
bond angle as a function of the temperature and Coulomb
interaction indicates that the behavior for the configuration
TM(d3)-O-TM(d4) is substantially different from the case
with TM(d4)-O-TM(d4). Indeed, the TM(d4)-O-TM(d4) is
marked by an increase of the bond angle by reducing the
temperature, while for the TM(d3)-O-TM(d4) one finds that
the bond angle gets reduced by cooling down the system from
high to low temperature. This implies that the NTE effect aris-
ing from a modification of the bond angle, as schematically
depicted in Fig. 1, is more favorable to be realized for the
TM(d3)-O-TM(d4) configuration.

A second relevant outcome of the analysis is that the
optimal bond angle for the ground state in terms of the hy-
bridization d-p parameters generally shows that there are two
electronic regimes corresponding to a region of the phase
space above (below) the diagonal in the {Vpdσ ,Vpdπ } with
small (large) bond angles, respectively. This is a general trend
and the boundary can slightly move when varying the elec-
tronic parameters as the local Coulomb interaction and other
atomic terms as the crystal field potential.

Finally, the evolution of the magnetic state as a func-
tion of the bond angle indicates that the configuration with
minimum energy does not correspond to a state where there
are maximal spin correlations for both the scalar and vector
product between the spins at the TM sites. This implies that
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the variation of the bond angle results from a competition
between the tendency to have parallel spin moments (bond
angle about zero) or perpendicular ones when the inversion
symmetry breaking is more pronounced (bond angle different
from zero). In this context turns out that spin-orbit coupling is
a relevant term, as it couples the spins to the orbital momenta
and thus to the spatial orientation of the bond angle. In the
TM(d3)-O-TM(d4) configuration, the spin-orbit coupling is
inactive at the d3 site, so we argue that its suppression can
account for the tendency to observe an optimal bond angle
which at low temperatures is always close to zero.

We point out that according to the relation U ′ = U − 2JH ,
if JH/U > 1/3 then JH > U ′, which in turn sets a boundary
for the crossover from weak to strong Hund’s coupling. The
solution of the multiorbital Hubbard model for the single bond
has been explored to investigate the changeover from weak
to strong Hund’s coupling regime. Indeed, the amplitude of
Hund’s interaction, as demonstrated in Figs. 3(a) and 3(b),
plays a relevant role in setting out the thermal negative ex-
pansion effects. This is evident, for instance, in the case of
d4-O-d4 bond where one finds a modification of the optimal
angle with a positive thermal expansion effect (i.e., increase of
the bond angle at low temperature), that turns into a negative
thermal one when the amplitude of Hund’s coupling grows.
Along this line, an enhancement of the NTE effects, with a
larger negative variation of the optimal angle and a shift of
its onset toward higher temperatures, is also observed for the
doped d3-O-d4 bond configuration [Figs. 3(c) and 3(d)].

The presented analysis is applicable to all oxide materials.
However, since there is clear-cut experimental evidence of
anomalous negative volume effects in the insulating phase of
the Ca2RuO4 compound and derived doped materials belong
to the same family, we focus on an electronic regime that
is relevant for ruthenium oxides. There, the Ru atom is in
a d4 configuration and one allows for atomic substitutions
that are isovalent and can lead to a change into the d3 or
d2 electronic state at the TM site. This variation can be, for
instance, induced by replacing the Ru with Mn or Cr ions for
achieving a d3 or d2 configuration, respectively.

III. PLAQUETTE CONSISTING OF d4 IONS:
LOW-ENERGY SPIN-ORBITAL DESCRIPTION

In order to account for the electronic behavior in two di-
mensions, a minimal requirement is to simulate bonds in two
inequivalent directions. To this aim, we choose to study a clus-
ter based on a 2 × 2 plaquette. This choice is motivated by the
fact that it is highly computationally demanding to deal with
the full d-p multiband Hubbard model as the size of the Hilbert
space rapidly grows. Therefore, we resort to an approximate
treatment valid in the insulating regime with frozen charge
degrees of freedom due to a large U coupling leading to an
effective spin-orbital exchange. The spin-orbital Hamiltonian
for the d4 configuration with three t2g orbitals has been already
derived [40,41] for a basic symmetric configuration.

Here, instead, we need two new microscopic ingredients:
(i) a nontrivial TM-O-TM bond angle, and (ii) the oxygen
degrees of freedom in the virtual excited states. Note that
(i) can be implemented without (ii) if we neglect the oxygen
degrees of freedom so the effect of bond distortion can, to

FIG. 6. Schematic view of a plaquette of four metallic sites
(red dots) with surrounding oxygens (green dots) with cooperative
rotational distortions by angle ±θ . The bond angles are explicitly
highlighted in cyan.

some extent, be captured by a simplified model. Nevertheless,
we use the full model with oxygens because of the lack of the
oxygen degrees of freedom cannot properly describe a lattice
configuration with a variable bond angle. Indeed, we have
found that the simplified model with projecting out oxygen
degrees of freedom never favors a nonzero bond angle in
the ground state which does not match the results of the d-p
multiband Hubbard model.

The detailed derivation of the TM-O-TM spin-orbital ex-
change up to the fourth order is given in Appendix A. The
resulting Hamiltonian couples two spins S = 1 and orbitals
L = 1 along a bond. The bond Hamiltonian depends on the
direction of the bond in the lattice and the bond angle. We
adopt an idealized 2 × 2 plaquette with fixed TM-O distances
and the distances between TM ions being reduced by co-
operative distortions. The schematic view of the plaquette
and the convention chosen for the site indices and for the
angles indicating the rotations of RuO6 octahedra are given
in Fig. 6. Therefore, the Hamiltonian for the 2 × 2 cluster of
four equivalent d4 ions can be written as

H = H1,2(θ ) + H2,4

(
− π

2
+ θ

)

+H4,3(−θ ) + H3,1

(
π

2
− θ

)

+ λ

4∑
i=1

�Li · �Si −
4∑

i=1

[(δ − δort )a
†
i ai + (δ + δort )b

†
i bi],

(3.1)

where a†
i , b†

i , and c†
i are the hard-core boson operators that

create a double occupation of the yz, zx, and xy orbital,
respectively.
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We study the ground state and finite-temperature properties
of the Hamiltonian (3.1), namely the behavior of the bond
angle θ that minimizes the free energy of the system as
given by

F (θ, T ) = − 1

β
ln

{∑
n

exp [−βEn(θ )]

}
, (3.2)

where the sum runs over the eigenvalues {En(θ )} of H. We
also investigate the behavior of the bond angle in the presence
of a magnetic order with ferromagnetic alignment along one
direction and AFM in the other, thus realizing a so-called
stripe C-AFM pattern. This configuration is stabilized by
adding an effective Zeeman field that breaks the symmetry
and aligns the spin S and orbital L angular moments along the
chosen orientation z:

Hmag = h
(
Jz

1 + Jz
2 − Jz

3 − Jz
4

)
, (3.3)

with �Ji = �Si + �Li.
In Fig. 7(a) we show a phase diagram of a plaquette as a

function of the hybridization amplitudes π and σ , per anal-
ogy to the one obtained for a single bond shown in Fig. 2.
Here, at first glance, we see only two phases: the one with
zero bond angle (straight bonds) when π hybridization is
dominating, and the one with π/4 bond angle when σ hy-
bridization dominates. However, looking closer one notices
a very narrow intermediate phase along the phase boundary
when the bond angle takes intermediate values. This is indi-
cated by the behavior of a representative free energy curve
found in this phase, see Fig. 7(b), having a minimum for an
intermediate value of the optimal bond angle θopt. One can
then immediately track the behavior when going from one
phase to the other. We point out that this peculiar behavior
of the optimal angle, with only a small window of parameters
for the d-p hybridization amplitude showing a rapid variation
from small to large angles, can be regularized by including
the effects of the lattice potential. This effect is demonstrated
in Appendix E. It is shown indeed that, depending on the
electron-lattice coupling amplitude, one can enlarge the range
of electronic parameters for the d-p hopping amplitudes where
a smooth variation from large to small angle takes place.

In Fig. 7(c) we show the curve of the optimal bond versus
pd-π hybridization when crossing the phase boundary. We
observe that it interpolates smoothly between π/4 and 0, lead-
ing to a second-order type transition between the two phases.
Interestingly, when searching for an observable that would
follow the behavior of the optimal angle we find that it is
optimally reproduced by the cross-product of the spins along
a given nearest-neighbor bond. From the symmetry property
of the system, it follows that only the z component of such a
cross-product takes nonvanishing values. Hence, in Fig. 7(d)
we show the average of (�S1 × �S2)z in the ground state (note
that here all the bonds of the plaquette are equivalent). We
see that the profile of the curve resembles very closely the
shape of θopt. The nonvanishing average of the cross-product
of spins means that the system tends to stabilize a noncollinear
magnetic order. Therefore, we can conclude that in the exam-
ined plaquette the change of the optimal bond angle is closely
related to the tendency of the system to develop a noncollinear
spin texture.

FIG. 7. Results for the undoped d4 plaquette [inset in (d)]:
(a) phase diagram as function of π and σ hybridization amplitudes;
(b) typical curve of ground state energy versus bond angle θ in the in-
termediate phase; (c), (d) typical curve of the optimal bond angle and
the ground state average of 〈�S1 × �S2〉z versus δ(Vpdπ ) ≡ Vpdπ − V0

for Vpdσ = 1.5 eV in the intermediate phase marked by a dashed
line in plot (a); (e), (f) thermal dependencies of the optimal bond
angle and average (�S1 × �S2)z in the intermediate phase for Vpdσ = 1.5
and Vpdπ = 1.2973 eV. The other parameters are U = 8.0, JH = 0.5,
εp = −4.5, δ = 0.35, δort = 0.09, and λ = 0.075, all in eV.

The presence of an intermediate phase suggests a frustrated
configuration of the plaquette in a well-defined parameter
area. Thus, we study the thermal behavior of the system for
the intermediate phase with the goal to achieve a configu-
ration with a NTE character. Here, the manifestation of this
effect can be tracked by identifying the configurations with
a positive derivative of the optimal angle with respect to
temperature; i.e., the system should become more distorted
(bond angle different from zero) when the temperature grows.
In Fig. 7(e) we show the behavior of the optimal angle as a
function of temperature in the region of the parameter that
is in close proximity to the intermediate phase. We see that
initially θopt stays constant when the temperature grows up to
about T = 1.5 meV but then rapidly drops to zero at around
T = 4.0 meV and stays zero until reaching a high-temperature
regime. This means that no NTE effect can be obtained in this
regime of parameters. Moreover, the behavior of θopt is non-
analytical at the two transition temperatures and this behavior
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FIG. 8. Results for pure-d4 plaquette with C-AFM magnetic or-
der (see the inset): (a), (b) typical curves of the optimal bond angle
and the ground state averages of 〈�S1 × �S2〉z and 〈�S1 × �S3〉z versus
δ(Vpdπ ) = Vpdπ − V0 for Vpdσ = 1.5 eV in the intermediate phase be-
tween θ = 0 and θ = π/4 (see Fig. 6); (c), (d) thermal dependencies
of the optimal bond angle and average 〈�S1 × �S2〉z and 〈�S1 × �S3〉z

in the intermediate phase for Vpdσ = 1.5 and Vpdπ = 1.3034 eV.
The other parameters are U = 8.0, JH = 0.5, εp = −4.5, δ = 0.35,
δort = 0.09, λ = 0.075, and h = 0.2, all in eV.

is again well reproduced by the chiral spin correlations shown
in Fig. 7(f). This outcome indicates that the thermal behavior
of the system is also related to the noncollinearity of the spin
texture.

Finally, to trigger the NTE effect we have considered the
differences between the plaquette and the former single-bond
analysis where the NTE effect was indeed obtained. We ar-
gue that the main difference between the two systems is the
underlying symmetry. The plaquette obeys a fourfold in-plane
rotation symmetry with which both main phases are compat-
ible. This suggests that the NTE effect could be obtained by
lowering the symmetry of the plaquette. To achieve this we
have employed the striped C-AFM magnetic order introduced
at the beginning of this section.

The results at zero and finite temperatures are shown in
Fig. 8; note that we do not show the phase diagram again
because it changes only slightly. The behavior of the optimal
angle when passing through the intermediate phase is shown
in Fig. 8(a). Note that the angle still interpolates smoothly
between 0 and π/4 but the drop of the function is much more
rapid than before. Again, this behavior is well reproduced
by the cross-product of the spins; see Fig. 8(b). Looking at
the thermal behavior of θopt in the intermediate phase, see
Fig. 8(c), we see a sharp increase of the angle starting roughly
at 20 meV and at around 34 meV. Therefore we get the NTE
effect within this temperature range. Interestingly the θopt

seems to be nonanalytical only at the larger temperature. Fi-
nally, we observe again in Fig. 8(d) that the spin cross-product
follows the optimal angle, including the nonanalytical point.

The qualitative outcome is not affected by the increase of
the JH/U ratio, as inferred from the results reported in Ap-
pendix C where we have analyzed how the thermal profile of
the bond angle is affected by a change of the Hund’s coupling
and spin-orbit coupling. Moreover, as shown in Appendix D
where we plotted the results for the low-energy spin-orbital
model for the case of a single bond, we find that the qualitative
trend is similar to that obtained by solving the full multiorbital
model in the regime of strong U coupling.

IV. PLAQUETTE WITH d3 IMPURITY

Now, we turn to the analysis of the bond-angle evolution
with increasing temperature causing changes in the thermal
average spin correlations developing on a TM(d3)-O-TM(d4)
bond. Similarly to what has been done in the previous section,
we have derived a superexchange Hamiltonian of the plaquette
with a single d3 dopant to be able to solve the problem in the
limit of large U . A single dopant in the d4 plaquette results in
two d4-d4 bonds between the host sites and two hybrid d3-d4

bonds between impurity and host atoms. Therefore, the hybrid
bonds need to be derived including the effect of the oxygen
degrees of freedom and bond distortions, as in the pure d4

case. The full derivation of the effective model is reported
in Appendix B. Note that the case with no distortion and no
oxygens was already addressed in Ref. [20].

It is worth mentioning here that while for pure host bonds,
having large U alone is enough to stabilize the low-energy
spin-orbital model, in the case of the hybrid bonds it is nec-
essary to add a mismatch between the atomic levels of the d3

atom with respect to the d4 one in order to secure different
valences of these atoms. As a result, one gets an exchange
model between spin S = 1 and orbital L = 1 at one site and
the impurity spin S = 3/2 with no orbital degree of freedom at
the impurity. Taking the same angle convention as that shown
in Fig. 6, the Hamiltonian with a d3 impurity at site i = 4
reads as follows [cf. Eq. (3.1)],

H = H1,2(θ ) + Himp
4,2

(
π

2
+ θ

)

+Himp
4,3 (−θ ) + H3,1

(
π

2
− θ

)
+ λ

3∑
i=1

�Li · �Si

−
3∑

i=1

[(δ − δort )a
†
i ai + (δ + δort )b

†
i bi]. (4.1)

Here, we follow the same logic as in the previous sec-
tion without d3 impurity. The results are shown in Fig. 9. As
in the previous case, the phase diagram of Fig. 9(a) exhibits
two phases, one with zero bond angle and the other with an
angle π/4. Their positions are similar as in the pure d4 case;
however, in contrast to that configuration, we find no phase
with an intermediate angle phase between these two. This
follows from the behavior of the free energy, see Fig. 9(b),
which exhibits two local minima at θ = 0 and θ = π/4. When
one passes through the phase boundary the positions of the
minima do not change but the values of the minima do. As a
result, we get a discontinuous, first-order transition between
the two phases.
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FIG. 9. Results for the d3-doped d4 plaquette (insets; dopant
at i = 4): (a) phase diagram as function of π and σ hybridization
amplitudes; (b) typical curve of ground state energy versus bond
angle θ close to the phase boundary; (c) optimal angle versus tem-
perature for Vpdσ = 1.5 and Vpdπ = 1.2848 eV, no magnetic order
imposed; (d) optimal angle versus temperature for Vpdσ = 1.5 and
Vpdπ = 1.2745 eV, C-AFM magnetic order is imposed as shown
by red (blue) color of the nearest-neighbor bonds; (e), (f) averages
of (�Si × �Sj )z along the nearest-neighbor bonds versus tempera-
ture for the same parameters as in (d). The other parameters are
U = Ũ = 8.0, JH = J̃H = 0.5, Ie = 1.0, εp = −4.5, δ = 0.35,
δort = 0.09, and λ = 0.075, all in eV.

In this context, the impact of having a finite temperature
is quite peculiar. If we place ourselves close to the phase
boundary we find that the system jumps between two optimal
angles θ = 0 and θ = π/4 as the temperature grows; see
Fig. 9(c). We argue that in the infinite system there will be
phase separation at the temperatures when two phases are
degenerate which will make the jumps smoother, leading to
the temperature intervals hosting the NTE effect with NTE.

The situation becomes more evident in the C-AFM phase.
The transition at zero temperature remains first order but the
optimal angle first drops slightly from the π/4 value before
jumping to zero when crossing the phase boundary. If we now
place ourselves in the region where the angle is decreased and
look at the thermal behavior, see Fig. 9(d), we get a NTE effect
in the temperature range roughly between 1.5 and 3.2 meV.
The θopt curve shows a nonanalytic behavior at the latter point.
Unlike in the pure d4 case, looking at the spin-spin cross

FIG. 10. Spin-spin correlations for the d3-doped d4 plaquette
(insets; dopant at i = 4) as functions of π hybridization amplitude
across the phase transition between θ = 0 and θ = π/4 phases
at zero temperature. (a)–(d) Correlations 〈Sα

i Sα
j 〉 for the nearest

neighbors. (e), (f) Correlations 〈�Si × �Sj〉z along the nearest-neighbor
bonds. The other parameters are U = Ũ = 8.0, JH = J̃H = 0.5,
Ie = 1.0, εp = −4.5, δ = 0.35, δort = 0.09, λ = 0.075, and
Vpdπ = 1.5, all in eV.

products, see Figs. 9(e) and 9(f), we do not observe that the
curves follow θopt very closely; however in the NTE interval
they exhibit high gradients. Note that due to the presence of
both the impurity atom and the C-AFM order, all the bonds
are now inequivalent. The low- and high-angle phases shown
in Fig. 9 differ in a rather subtle way.

Looking at the spin-spin correlations in Fig. 10 as a
function of the π hybridization, we can clearly see the discon-
tinuities across the transition. The 〈Sα

i · Sα
j 〉 correlations along

the host bonds exhibit only small jumps and do not change
much whereas at the impurity bonds the changes are more no-
table; see Figs. 10(a)–10(d). Specifically, the behavior of the
〈Sy

i Sy
j〉 correlator around the impurity is interesting: it changes

signs across the transition. This change in sign is also visible
in the noncollinear 〈�Si × �S j〉z correlator which grows in abso-
lute values as we increase Vpdπ toward the transition just to
drop to zero and stay at zero in the entire zero-angle phase.

As discussed in Sec. IV, we point out that for the doped
configuration the thermal profile of the bond angle is not
qualitatively affected by a change of the Hund’s coupling
and spin-orbit coupling (see Appendix C). Moreover, the
outcomes of the single effective d3-d4 bond within the
spin-orbital model are qualitatively consistent with those
of the full multiorbital Hubbard model (as reported in
Appendix D).
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V. SUMMARY AND CONCLUSIONS

The phenomenon of the NTE effect deals with the increase
of lattice distances and, in turn, of the volume of the unit
cell, if the material is thermally cooled. Here, we studied
the conditions for obtaining negative thermal effects in ma-
terials characterized by strong electron-electron correlations
involving spin degrees of freedom and multiple orbitals. In
this context, when considering for instance perovskite oxides
with transition metal elements inside the oxygen octahedral
cages, the change of the unit cell size is linked to the octa-
hedral rotations and thus to the amplitude of the TM-O-TM
bond angle. An undistorted (distorted) TM-O-TM bond with
zero (nonvanishing) bond angle corresponds to large (small)
volume of the unit cell, respectively. Hence, the TM-O-TM
bond angle is a key parameter in the phenomenon of NTE.
The TM-O-TM bond angle, on the other hand, sets out the
electrons’ connectivity within the crystal lattice through the
hybridization of the orbitals at the transition metal and oxygen
atoms. Hence, the amplitude of the electronic kinetic energy
is determined by the TM-O-TM bond angle. For the case
of an electron-correlated insulating phase with multiorbital
configurations, the Coulomb interaction prevents the charge
motion and thus the kinetic energy is substantially given by
virtual charge transfer processes and by the resulting spin-
orbital exchanges. Then, while for a single-orbital model one
would expect that the kinetic energy is optimal by having an
undistorted bond, the resulting configuration in the case of
a multiorbital electronic state cannot be a priori predicted
and requires the knowledge of the orbital-dependent mag-
netic correlations. This aspect underlines the complexity of
the fundamental problem we have been facing in this paper:
to establish how the spin-orbital correlations determine the
TM-O-TM distortions and single out the conditions for
achieving NTE effects.

On this basis, it is evident that one needs to evaluate the
dependence of the spin-orbital exchange on the bond angle.
For this reason, we employed a theoretical approach that
explicitly includes the bond angle in the amplitude of the
d-p hybridization processes. In this way, we have accounted
for the modification of the free energy as a function of the
TM-O-TM bond configuration and assess the role of the elec-
tron correlations in a multiorbital electron system.

From our study we have been able to identify a few mech-
anisms which are crucial for achieving NTE effects. First, the
anisotropy of the orbital correlations, as pointed out above,
can play an important role. In particular, the orbital anisotropy
or preferential orbital occupation, which is driven by the
electron correlations, leads to a ground state that is prone to
exhibit NTE effects. The occurrence of these anisotropic or-
bital correlations drives the bond direction to get less distorted
bond. This is what one can find at low temperatures where the
spin-orbital correlations are stronger. On the other hand, ther-
mal fluctuations tend to weaken the spin-orbital correlations, a
condition which favors more distorted bonds. The thermal dis-
order also manifests in the spin channel with the formation of
noncollinear magnetic correlations that energetically support
a distorted bond. If such conditions can be realized, then the
optimal bond angle will decrease by increasing temperature
and thus we will have resulting NTE effects.

A second key element that emerges from our analysis is re-
lated to the presence of low point group symmetry conditions.
In the regime of strong Coulomb interaction, we find that
the breaking of the C4 rotation symmetry can turn a positive
thermal expansion effect into a NTE behavior when tracking
the TM-O-TM bond angle. In our study, this effect has been
studied by considering a magnetic pattern that breaks the C4

rotation symmetry. However, we expect that similar outcomes
for the NTE can be also obtained by considering orbital or
electronic patterns that reduce the point group symmetry of
the system. In this respect, a significant modification of the
NTE effects can be foreseen in thin films under strains or by
applying electric field which would naturally provide micro-
scopic conditions with low point group symmetry.

Another relevant aspect concerns the role played by the
strength of Hund’s coupling to induce the occurrence of NTE
effects. The solution of the multiorbital Hubbard model for the
single bond allows us to explore a regime of strong Hund’s
interaction, for either weak or strong intraorbital Hubbard
U , since it takes into account at the same level the charge,
spin, and orbital degrees of freedom. Indeed, the amplitude
of Hund’s coupling can play an important role in setting out
the thermal negative expansion effects. This is evident, for
instance, in the case of d4-O-d4 bonds where one finds a
changeover of the optimal angle with a positive thermal effect
profile that turns into a negative thermal one by increasing the
amplitude of Hund’s coupling. Additionally, we also find an
enhancement of the NTE effects, with a larger negative varia-
tion of the optimal angle, and a shift of its onset toward higher
temperatures, for the doped d3-O-d4 bond configuration.
Since this type of changeover from positive to NTE effects is
not observed when considering the large-U limit, as evaluated
within the low-energy model employed for the simulation
of the square cluster, we argue that the Hund’s coupling in
the intermediate regime of U interaction is relevant for the
occurrence of negative thermal effects in multiorbital mate-
rials. Although our model analysis has not been expanded to
investigate a Hund’s exchange driven correlated metal [42], on
the basis of the results of the single bond for the multiorbital
Hubbard model, we argue that the effect of large Hund’s cou-
pling can favor the occurrence of NTE. In this context, we are
confident that our analysis may further stimulate the search for
NTE effects in doped Hund’s metal exhibiting strong correla-
tions, as for instance in iron-based materials [43,44], or in the
proximity to a metal-to-insulator orbital selective transition.

Concerning real materials where our study could be ap-
plicable, we recall that the analysis has been substantially
motivated by the NTE observed in the Ca2RuO4 compound.
In this context, our analysis is able to account for the oc-
currence of NTE effects in the Ca2RuO4 family as due to
the transition metal substitution. The analysis specifically
refers to the substitution of Ru (d4) with Mn (d3). We find
that both in the intermediate and in the strong coupling
regimes we can achieve NTE effects close to the impuri-
ties. As mentioned above, since the impurity can act as an
orbital polarizer it can sustain less bond distortions at low
temperatures.

Finally, we mention that the inclusion of a phenomeno-
logical electron-lattice potential, as discussed in Appendix E,
allows us to regularize the maximal bond distortions that
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are obtained within a purely electronic description and to
make smoother the transitions from large to small bond an-
gles across the phase space spanned by the p-d hybridization
hoppings. This is physically plausible and indicates how one
can simulate the conditions which might be more realistic for
material applications. The analysis of correlated models that
microscopically include the electron-phonon interaction will
be the subject of future studies.
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APPENDIX A: d4-p6-d4 EXCHANGE IN THE PRESENCE
OF OCTAHEDRAL ROTATION

The perturbative expansion involving direct p-d exchange,
as well as Anderson and Goodenough d-p-d superexchange,
yields six different virtual excitation energies given by −q−1

i
expressed as

q−1
1 = −8U + 14JH + 2εp,

q−1
2 = −4U + 7JH + εp,

q−1
3 = −U + 3JH ,

q−1
4 = −U,

q−1
5 = −U − 2JH , (A1)

where U and JH are Hubbard and Hund’s couplings at the
metal ions and εp is the on-site energy of the oxygen orbital.
The hoppings between metal and oxygen can be described by
the matrices

T TM1−O
d p =

⎛
⎝0 0 t1

0 0 t2
t3 t4 0

⎞
⎠, T TM2−0

d p =
⎛
⎝0 0 t1

0 0 −t2
t3 −t4 0

⎞
⎠,

(A2)

where T TM1−O
d p describes hopping between the first TM ion

and oxygen and T TM2−O
d p between second transition metal ion

and oxygen in presence of in-plane octahedral rotation. The
rows of these matrices refer to the {dyz, dzx, dxy} orbital states
of the TM ion and columns to {px, py, pz} orbital states of the
oxygen. The hopping amplitudes are given by Slater-Koster
rules, i.e.,

t1 = Vpdπ sin θ,

t2 = Vpdπ cos θ,

t3 = [Vpdπ + (−2Vpdπ +
√

3Vpdσ ) cos2 θ ] sin θ,

t4 = [Vpdπ + (−2Vpdπ +
√

3Vpdσ ) sin2 θ ] cos θ, (A3)

where θ is the angle of the bond between metal and oxy-
gen with respect to 〈100〉 direction in the (001) plane. To
derive exchange we use a second-order perturbative expan-
sion. In the atomic ground state we have two spins S = 1
and orbitals L = 1 at every metal ion. Oxygen is fully oc-
cupied and yields no spin or orbital degree of freedom. In
the second-order perturbation expansion with respect to the
hopping, we get the d4

1(2) p6 � d5
1(2) p5 exchange given by the

Hamiltonian

H(2)
i, j = β

(2)
1 + β

(2)
2 (a†

i bi − a†
j b j + H.c.)

+β
(2)
3 (a†

i ai + a†
j a j ) + β

(2)
4 (b†

i bi + b†
jb j ). (A4)

Here the coefficients in Eq. (A4) take the following form,

β
(2)
1 = 2

(
t2
1 + t2

2

)
q2,

β
(2)
2 = −t1t2q2,

β
(2)
3 = (−t2

1 + t2
3 + t2

4

)
q2,

β
(2)
4 = (−t2

2 + t2
3 + t2

4

)
q2. (A5)

In the fourth-order perturbation expansion with respect to the
hopping we have, inter alia, the Anderson processes where the
electron from the second metal goes through oxygen to the
first one and back again, i.e., d4

1 p6d4
2 � d5

1 p5d4
2 � d5

1 p6d3
2 ,

and analogical process in the other direction. Eventually one
finds a Hamiltonian

H(4)
i, j = (�Si · �S j )

{
α

(4)
1 + α

(4)
2 (a†

i ai + a†
j a j ) + α

(4)
3 (b†

i bi + b†
jb j ) + α

(4)
4 a†

i aia
†
j a j + α

(4)
5 b†

i bib
†
jb j + α

(4)
6 (a†

i aib
†
jb j + a†

j a jb
†
i bi )

+α
(4)
7 (a†

i bi + b†
i ai )(a

†
j b j + b†

ja j ) + [
α

(4)
8 (a†

i bi − a†
j b j ) + α

(4)
9 b†

i cib
†
jc j + α

(4)
10 c†

i aic
†
j a j + α

(4)
11 a†

i cic
†
j a j + α

(4)
12 c†

i bib
†
jc j

+α
(4)
13 (a†

i aia
†
j b j − a†

j a ja
†
i bi ) + α

(4)
14 (b†

i bia
†
j b j − b†

jb ja
†
i bi ) + α

(4)
15 (a†

i cic
†
j b j − a†

j c jc
†
i bi )

+α
(4)
16 (c†

i bic
†
j a j − c†

j b jc
†
i ai ) + H.c.

]}
+β

(4)
1 + β

(4)
2 (a†

i ai + a†
j a j ) + β

(4)
3 (b†

i bi + b†
jb j ) + β

(4)
4 a†

i aia
†
j a j + β

(4)
5 b†

i bib
†
jb j + β

(4)
6 (a†

i aib
†
jb j + a†

j a jb
†
i bi )

+β
(4)
7 (a†

i bi + b†
i ai )(a

†
j b j + b†

ja j ) + [
β

(4)
8 (a†

i bi − a†
j b j ) + β

(4)
9 b†

i cib
†
jc j + β

(4)
10 c†

i aic
†
j a j + β

(4)
11 a†

i cic
†
j a j + β

(4)
12 c†

i bib
†
jc j

+β
(4)
13 (a†

i aia
†
j b j − a†

j a ja
†
i bi ) + β

(4)
14 (b†

i bia
†
j b j − b†

jb ja
†
i bi ) + β

(4)
15 (a†

i cic
†
j b j − a†

j c jc
†
i bi )

+β
(4)
16 (c†

i bic
†
j a j − c†

j b jc
†
i ai ) + H.c.

]
, (A6)

where the coefficients are given in Tables I and II. The convention is such that for example
α

(4)
1 = − 1

2 (t2
1 + t2

2 )2q2q2q4 − 1
2 (t2

1 + t2
2 )2q2q2q5. In the fourth-order perturbation expansion, we also have Goodenough
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TABLE I. Spin-orbital Anderson coefficients for the bent d4-p6-d4 bond.

α(4)
n q2q2q3 q2q2q4 q2q2q5

α
(4)
1 0 − 1

2 (t2
1 + t2

2 )2 − 1
2 (t2

1 + t2
2 )2

α
(4)
2

1
6 (2t4

1 + 2t2
2 t2

1 + 2(t2
3 − t2

4 )2) 1
6 (t4

1 + t2
2 t2

1 − 2(t2
3 − t2

4 )2) 1
6 (3t4

1 + 3t2
2 t2

1 )

α
(4)
3

1
6 (2t4

2 + 2t2
1 t2

2 + 2(t2
3 − t2

4 )2) 1
6 (t4

2 + t2
1 t2

2 − 2(t2
3 − t2

4 )2) 1
6 (3t4

2 + 3t2
1 t2

2 )

α
(4)
4 − 2

3 (t4
1 + (t2

3 − t2
4 )2) 1

6 (t4
1 + (t2

3 − t2
4 )2) − 1

2 (t4
1 + (t2

3 − t2
4 )2)

α
(4)
5 − 2

3 (t4
2 + (t2

3 − t2
4 )2) 1

6 (t4
2 + (t2

3 − t2
4 )2) − 1

2 (t4
2 + (t2

3 − t2
4 )2)

α
(4)
6 − 2

3 (t2
1 t2

2 + (t2
3 − t2

4 )2) 1
6 (t2

1 t2
2 + (t2

3 − t2
4 )2) − 1

2 (t2
1 t2

2 + (t2
3 − t2

4 )2)

α
(4)
7

2
3 t2

1 t2
2 − 1

6 t2
1 t2

2
1
2 t2

1 t2
2

α
(4)
8

1
3 t1t2(t2

1 + t2
2 ) 1

6 t1t2(t2
1 + t2

2 ) 1
2 t1t2(t2

1 + t2
2 )

α
(4)
9 0 − 1

2 t2
2 (t2

3 − t2
4 ) 1

2 t2
2 (t2

3 − t2
4 )

α
(4)
10 0 1

2 t2
1 (t2

3 − t2
4 ) − 1

2 t2
1 (t2

3 − t2
4 )

α
(4)
11 − 2

3 t2
1 (t2

3 − t2
4 ) − 1

3 t2
1 (t2

3 − t2
4 ) 0

α
(4)
12

2
3 t2

2 (t2
3 − t2

4 ) 1
3 t2

2 (t2
3 − t2

4 ) 0

α
(4)
13

2
3 t3

1 t2 − 1
6 t3

1 t2
1
2 t3

1 t2

α
(4)
14

2
3 t1t3

2 − 1
6 t1t3

2
1
2 t1t3

2

α
(4)
15

2
3 t1t2(t2

3 − t2
4 ) 1

3 t1t2(t2
3 − t2

4 ) 0

α
(4)
16 0 1

2 t1t2(t2
3 − t2

4 ) − 1
2 t1t2(t2

3 − t2
4 )

processes where one electron from the oxygen goes to one metal ion and another electron to the other one, i.e.,
d4

1 p6d4
2 � d5

1 p5d4
2 � d5

1 p4d5
2 , an analogical process in the other direction. This leads to a Hamiltonian

H̃(4)
i, j = (�Si · �S j )

{
α̃

(4)
1 + α̃2(a†

i ai + a†
j a j ) + α̃

(4)
3 (b†

i bi + b†
jb j ) + α̃

(4)
4 a†

i aia
†
j a j + α̃

(4)
5 b†

i bib
†
jb j + α̃

(4)
6 (a†

i aib
†
jb j + a†

j a jb
†
i bi )

+ α̃
(4)
7 (a†

i bi + b†
i ai )(a

†
j b j + b†

ja j ) + [
α̃

(4)
8 (a†

i bi − a†
j b j ) + α̃

(4)
9 a†

i cic
†
j a j + α̃

(4)
10 c†

i bib
†
jc j

+ α̃
(4)
11 (a†

i aia
†
j b j − a†

j a ja
†
i bi ) + α̃

(4)
12 (b†

i bia
†
j b j − b†

jb ja
†
i bi ) + α̃

(4)
13 (a†

i cic
†
j b j − a†

j c jc
†
i bi ) + H.c.

]}
+ β̃

(4)
1 + β̃

(4)
2 (a†

i ai + a†
j a j ) + β̃

(4)
3 (b†

i bi + b†
jb j ) + β̃

(4)
4 a†

i aia
†
j a j + β̃

(4)
5 b†

i bib
†
jb j + β̃

(4)
6 (a†

i aib
†
jb j + a†

j a jb
†
i bi )

+ β̃
(4)
7 (a†

i bi + b†
i ai )(a

†
j b j + b†

ja j ) + [
β̃

(4)
8 (a†

i bi − a†
j b j ) + β̃

(4)
9 a†

i cic
†
j a j + β̃

(4)
10 c†

i bib
†
jc j

+ β̃
(4)
11 (a†

i aia
†
j b j − a†

j a ja
†
i bi ) + β̃

(4)
12 (b†

i bia
†
j b j − b†

jb ja
†
i bi ) + β̃

(4)
13 (a†

i cic
†
j b j − a†

j c jc
†
i bi ) + H.c.

]
, (A7)

TABLE II. Orbital Anderson coefficients for the bent d4-p6-d4 bond.

β (4)
n q2q2q3 q2q2q4 q2q2q5

β
(4)
1 0 1

2 (t2
1 + t2

2 )2 1
2 (t2

1 + t2
2 )2

β
(4)
2

1
6 (4t4

1 + 4t2
2 t2

1 + 4(t2
3 − t2

4 )2) 1
6 (−t4

1 − t2
2 t2

1 + 2(t2
3 − t2

4 )2) 1
6 (−3t4

1 − 3t2
2 t2

1 )

β
(4)
3

1
6 (4t4

2 + 4t2
1 t2

2 + 4(t2
3 − t2

4 )2) 1
6 (−t4

2 − t2
1 t2

2 + 2(t2
3 − t2

4 )2) 1
6 (−3t4

2 − 3t2
1 t2

2 )

β
(4)
4 − 4

3 (t4
1 + (t2

3 − t2
4 )2) 1

6 (−t4
1 − (t2

3 − t2
4 )2) 1

2 (t4
1 + (t2

3 − t2
4 )2)

β
(4)
5 − 4

3 (t4
2 + (t2

3 − t2
4 )2) 1

6 (−t4
2 − (t2

3 − t2
4 )2) 1

2 (t4
2 + (t2

3 − t2
4 )2)

β
(4)
6 − 4

3 (t2
1 t2

2 + (t2
3 − t2

4 )2) 1
6 (−t2

1 t2
2 − (t2

3 − t2
4 )2) 1

2 (t2
1 t2

2 + (t2
3 − t2

4 )2)

β
(4)
7

4
3 t2

1 t2
2

1
6 t2

1 t2
2 − 1

2 t2
1 t2

2

β
(4)
8

2
3 t1t2(t2

1 + t2
2 ) − 1

6 t1t2(t2
1 + t2

2 ) − 1
2 t1t2(t2

1 + t2
2 )

β
(4)
9 0 1

2 t2
2 (t2

3 − t2
4 ) − 1

2 t2
2 (t2

3 − t2
4 )

β
(4)
10 0 − 1

2 t2
1 (t2

3 − t2
4 ) 1

2 t2
1 (t2

3 − t2
4 )

β
(4)
11 − 4

3 t2
1 (t2

3 − t2
4 ) 1

3 t2
1 (t2

3 − t2
4 ) 0

β
(4)
12

4
3 t2

2 (t2
3 − t2

4 ) − 1
3 t2

2 (t2
3 − t2

4 ) 0

β
(4)
13

4
3 t3

1 t2
1
6 t3

1 t2 − 1
2 t3

1 t2

β
(4)
14

4
3 t1t3

2
1
6 t1t3

2 − 1
2 t1t3

2

β
(4)
15

4
3 t1t2(t2

3 − t2
4 ) − 1

3 t1t2(t2
3 − t2

4 ) 0

β
(4)
16 0 − 1

2 t1t2(t2
3 − t2

4 ) 1
2 t1t2(t2

3 − t2
4 )
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TABLE III. Spin-orbital Goodenough coefficients for the bent
d4-p6-d4 bond.

α̃(4)
n q1q2q2

α̃
(4)
1 −2(t2

1 + t2
2 )2

α̃
(4)
2 2t2

1 (t2
1 + t2

2 )

α̃
(4)
3 2t2

2 (t2
1 + t2

2 )

α̃
(4)
4 −2(t4

1 + (t2
3 − t2

4 )2)

α̃
(4)
5 −2(t4

2 + (t2
3 − t2

4 )2)

α̃
(4)
6 −2(t2

1 t2
2 + (t2

3 − t2
4 )2)

α̃
(4)
7 2t2

1 t2
2

α̃
(4)
8 2t1t2(t2

1 + t2
2 )

α̃
(4)
9 2t2

1 (t2
4 − t2

3 )

α̃
(4)
10 2t2

2 (t2
3 − t2

4 )

α̃
(4)
11 2t3

1 t2

α̃
(4)
12 2t1t3

2

α̃
(4)
13 2t1t2(t2

3 − t2
4 )

where the coefficients are given in Tables III and IV. The con-
vention is such that, for example, α

(4)
1 = −2(t2

1 + t2
2 )2q1q2q2.

Then the full spin-orbital exchange Hamiltonian can be com-
posed as

Hi, j (θ ) = H(2)
i, j + H(4)

i, j + H̃(4)
i, j , (A8)

being the function of the TMi-O-TM j bond angle θ encoded in

the hopping matrices T TMi−O
d−p and T

TM j−O
d−p . Note that because

these matrices are not the same Hi, j (θ ) �= H j,i(θ ).

APPENDIX B: d3-p6-d4 EXCHANGE IN THE PRESENCE OF
OCTAHEDRAL ROTATION

The perturbative expansion involving direct p-d exchange,
including Anderson and Goodenough d-p-d superexchange,
yields seven different virtual excitation energies given by

TABLE IV. Orbital Goodenough coefficients for the bent
d4-p6-d4 bond.

β̃ (4)
n q1q2q2

β̃
(4)
1 2(t2

1 + t2
2 )2

β̃
(4)
2 −2(t2

1 + t2
2 )(t2

1 − 2 (t2
3 + t2

4 ))

β̃
(4)
3 −2(t2

1 + t2
2 )(t2

2 − 2 (t2
3 + t2

4 ))

β̃
(4)
4 2(t4

1 − 4(t2
3 + t2

4 )t2
1 + t4

3 + t4
4 + 6t2

3 t2
4 )

β̃
(4)
5 2(t4

2 − 4(t2
3 + t2

4 )t2
2 + t4

3 + t4
4 + 6 t2

3 t2
4 )

β̃
(4)
6 2(t4

3 + 6t2
4 t2

3 + t2
1 t2

2 + t4
4 − 2(t2

1 + t2
2 )(t2

3 + t2
4 ))

β̃
(4)
7 −2t2

1 t2
2

β̃
(4)
8 −2t1t2(t2

1 + t2
2 )

β̃
(4)
9 2t2

1 (t2
4 − t2

3 )

β̃
(4)
10 2t2

2 (t2
3 − t2

4 )

β̃
(4)
11 −2t1t2(t2

1 − 2(t2
3 + t2

4 ))

β̃
(4)
12 −2t1t2(t2

2 − 2(t2
3 + t2

4 ))

β̃
(4)
13 2t1t2(t2

3 − t2
4 )

−q−1
i expressed as

q−1
1 = 4J̃H − 3Ũ + εp,

q−1
2 = −Ie + 7JH − 4U + εp,

q−1
3 = −Ie + 4J̃H + 7JH − 3Ũ − 4U + 2εp,

q−1
4 = −Ie + 4J̃H − 4JH − 3Ũ + 3U,

q−1
5 = −Ie + 4J̃H − 7JH − 3Ũ + 3U,

q−1
6 = −Ie + 4J̃H − 9JH − 3Ũ + 3U,

q−1
7 = −Ie − 6J̃H + 7JH + 2Ũ − 4U, (B1)

where U and JH are Hubbard and Hund’s couplings at the d4

metal ions, Ũ and J̃H are for the d3 ions, and εp is on-site
energy of the oxygen.

The hoppings between TM and oxygen site can be de-
scribed by the matrices

T Mi−O
d−p =

⎛
⎝0 0 t̃1

0 0 t̃2
t̃3 t̃4 0

⎞
⎠, T

M j−O
d−p =

⎛
⎝0 0 t1

0 0 −t2
t3 −t4 0

⎞
⎠,

(B2)

where T Mi−O
d−p describes hopping between the first (d3) metal

ion and oxygen and T
M j−O

d−p between the second metal (d4) ion
and oxygen in the presence of in-plane octahedral rotation.
The rows of these matrices refer to dyz, dzx, and dxy orbital
states of the metal, and columns to px, py, and pz orbital
states of the oxygen. The hopping amplitudes are given by
Slater-Koster rules as before, see Eq. (A3), where the π and
σ bonding amplitudes are a priori different for the d3-p6 and
d4-p6 bonds.

To derive exchange we use a second-order perturbative
expansion. In the atomic ground state we have spin S = 1 and
orbital L = 1 at the d4 metal ion and spin S = 3/2 and orbital
L = 0 at the d3 metal ion. Oxygen is fully occupied and yields
no spin or orbital degree of freedom. In the second-order
perturbation expansion with respect to the hopping, we get
the d3

1 p6 � d4
1 p5 and d4

2 p6 � d5
2 p5 exchanges given by the

Hamiltonian

H(2)
i, j = β

(2)
1 + β

(2)
2 (a†

j b j + H.c.) + β
(2)
3 a†

j a j + β
(2)
4 b†

jb j,

(B3)

where the coefficients take the following form,

β
(2)
1 = (

t̃2
1 + t̃2

2 + t̃2
3 + t̃2

4

)
q1 + (

t2
1 + t2

2

)
q2,

β
(2)
2 = t1t2q2,

β
(2)
3 = (

t2
3 + t2

4 − t2
1

)
q2,

β
(2)
4 = (

t2
3 + t2

4 − t2
2

)
q2. (B4)

In the fourth-order perturbation expansion with respect
to the hopping we have, inter alia, the Anderson pro-
cesses where the electron from the second metal goes
through oxygen to the first one and back again, i.e.,
d3

1 p6d4
2 � d4

1 p5d4
2 � d4

1 p6d3
2 , d3

1 p6d4
2 � d3

1 p5d5
2 � d2

1 p6d5
2 .
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This leads to a Hamiltonian

H(4)
i, j = (�Si · �S j ) × {

α
(4)
1 + α

(4)
2 (a†

j b j + H.c.) + α
(4)
3 a†

j a j + α
(4)
4 b†

jb j
} + β

(4)
1 + β

(4)
2 (a†

j b j + H.c.) + β
(4)
3 a†

j a j + β
(4)
4 b†

jb j, (B5)

where the coefficients take the following form,

α
(4)
1 = 1

18

[−6
(
t2
1 + t2

2

)(
t̃2
1 + t̃2

2

)
q2

2q7 − 3
(
t2
1 + t2

2

)(
t̃2
1 + t̃2

2

)
q2

1(q5 + q6) + 4(t3t̃3 − t4t̃4)2q2
1(q4 − q5)

]
,

α
(4)
2 = − 1

18 t1t2
(
t̃2
1 + t̃2

2

)[
q2

1(4q4 − q5 + 3q6) + 6q2
2q7

]
,

α
(4)
3 = 1

18

[
t2
1

(
t̃2
1 + t̃2

2

) − (t3t̃3 − t4t̃4)2][q2
1(4q4 − q5 + 3q6) + 6q2

2q7
]
,

α
(4)
4 = 1

18

[
t2
2

(
t̃2
1 + t̃2

2

) − (t3t̃3 − t4t̃4)2][q2
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and

β
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. (B7)

In the fourth-order perturbation expansion, we also have
Goodenough processes where one electron from the oxygen
goes to one metal and another electron to the other one, i.e.,
d3

1 p6d4
2 � d4

1 p5d4
2 � d4

1 p4d5
2 , d3

1 p6d4
2 � d3

1 p5d5
2 � d4

1 p4d5
2 .

This leads to a Hamiltonian,

H̃ (4)
i, j = (�Si · �S j ) × {

α̃
(4)
1 + α̃

(4)
2 (a†

j b j + H.c.) + α̃
(4)
3 a†

j a j

+ α̃
(4)
4 b†

jb j
} + β̃

(4)
1 + β̃

(4)
2 (a†

j b j + H.c.)

+ β̃
(4)
3 a†

j a j + β̃
(4)
4 b†

jb j, (B8)

where the coefficients take the following form,
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Then the full spin-orbital exchange Hamiltonian for the impu-
rity bond can be composed as

Himp
i, j (θ ) = H(2)

i, j + H(4)
i, j + H̃(4)

i, j , (B10)

being the function of the TMi-O-TM j bond angle θ , encoded

in the hopping matrices T TMi−O
d−p and T

TM j−O
d−p . Here also obvi-

ously assume that Hi, j (θ ) �= H j,i(θ ).

APPENDIX C: ROLE OF JH AND λ IN A d4 PLAQUETTE
WITHIN THE EFFECTIVE SPIN-ORBITAL MODEL

In this Appendix we present the results for the d4 plaquette
as obtained by means of the effective spin-orbital Hamiltonian
where Hund’s exchange and spin-orbit coupling are scaled up
by a factor of 3.2. The factor χ = 3.2 is such that the JH/U
ratio has the same amplitude as that used in the single-bond

FIG. 11. Results for the undoped d4 plaquette with finite JH

and λ increased by a factor of χ = 3.2 compared to Sec. III:
(a), (b) typical curve of the optimal bond angle and the ground state
average of 〈�S1 × �S2〉z versus δ(Vpdπ ) ≡ Vpdπ − V0 for Vpdσ = 1.5 eV
in the intermediate-angle phase; (c), (d) thermal dependencies of the
optimal bond angle and average (�S1 × �S2)z in the intermediate phase
for Vpdσ = 1.5 eV and Vpdπ = 1.2962 eV. The other parameters are
U = 8.0, JH = 1.6, εp = −4.5, δ = 0.35, δort = 0.09, and λ = 0.24,
all in eV.
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FIG. 12. Results for the undoped d4 plaquette with C-AFM mag-
netic order (see the inset) and with JH and λ increased by a factor of
χ = 3.2 compared to Sec. III: (a), (b) typical curves of the optimal
bond angle and the ground state averages of 〈�S1 × �S2〉z and 〈�S1 × �S3〉z

versus δ(Vpdπ ) = Vpdπ − V0 for Vpdσ = 1.5 eV in the intermediate
phase between θ = 0 and θ = π/4; (c), (d) thermal dependencies of
the optimal bond angle and average 〈�S1 × �S2〉z and 〈�S1 × �S3〉z in the
intermediate phase for Vpdσ = 1.5 and Vpdπ = 1.2928 eV. The other
parameters are U = 8.0, JH = 1.6, εp = −4.5, δ = 0.35, δort = 0.09,
λ = 0.24, and h = 0.2, all in eV.

multiorbital Hubbard model. Indeed, the ratio of the values of
the Hubbard-U interaction used in the effective spin-orbital
exchange approach with respect to the U used in the multi-
orbital Hubbard model calculations is 3.2 (U = 8 eV in the
effective spin-orbital model vs U = 2.5 eV in the multior-
bital Hubbard model). The results without magnetic order are
shown in Fig. 11 and with a C-AFM magnetic order in Fig. 12.
The outcomes indicate that the qualitative behavior does not
change and it is substantially the same as that described in
Sec. III. However, the energy windows of Vpdπ hybridization

FIG. 13. Optimal angle versus temperature for a single (a) d4-d4

bond and (b) d3-d4 bond, for different values of JH (renormal-
ized by a factor of χ = 3.2). The other parameters are Vpdσ = 1.6,
Vpdπ = 1.3, U = 8.0, εp = −4.5, δ = 0.25, δort = 0.09, λ = 0.24,
and h = 0.2, all in eV.

FIG. 14. Results for a pure d4 plaquette as obtained within
the effective low-energy spin-orbital exchange approach: (a) elec-
tronic free energy versus bond angle for a given Vpdσ = 1.5 eV and
different values of Vpdπ = V0 + δ(Vpdπ ) chosen in the intermediate-
angle phase; (b) optimal angle versus Vpdπ for a purely electronic
free energy (red curve) and for the phenomenological electronic-
phononic free energy [Eq. (E1)] assuming a representative value for
the coupling constant, i.e., k = 6 meV. The inset of (b) shows the
optimal angle versus temperature dependence for Vpdπ = 1.2902 eV.
The other electronic parameters are U = 8.0, εp = −4.5, δ = 0.35,
δort = 0.09, and λ = 0.075; all values are in eV.

amplitude and temperature where the optimal angle profiles
exhibit signatures of variations are different.

APPENDIX D: SINGLE BOND WITHIN THE EFFECTIVE
SPIN-ORBITAL EXCHANGE APPROACH

In Fig. 13 we show the temperature-dependent curves of
the optimal angles for single d4-d4 and d3-d4 bonds. The
results should be compared with Sec. II. We see that the trends
observed for a full Hubbard model for large U are reproduced
in this effective approach; i.e., the angle drops with tempera-
ture and lower Hund’s exchange gives larger bond angles.

APPENDIX E: ROLE OF THE LATTICE POTENTIAL:
A PHENOMENOLOGICAL APPROACH

In the absence of the lattice response, the free energy
analysis of the electronic model leads to solutions of the
optimal bond angles that correspond to extreme rotations of
the octahedra and maximal bond angle variations occur in a
small range of amplitudes for the p-d hopping parameters.
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Here we show how this problem can be overcome by including
an effective electron-lattice potential. To this aim, we con-
struct a phenomenological model that includes an effective
electron-lattice potential that is quadratic in the bond angle.
We assume that the coupling constant is proportional to the
optimal angle that is obtained by minimizing the free energy
of the purely electronic system. Such an assumption is phys-
ically plausible because the lattice acts as a restoring force
and it is reasonable to expect that its strength, through the
electron-phonon coupling, can be dependent on the amplitude
of the optimal angle that is set by the electronic degrees of
freedom. The proposed phenomenological form of the total
free energy can hence be expressed as

F (θ ) = Fel(θ ) + k (θel/π )(θ/π )2, (E1)

where k is an elastic constant. Therefore, we assume that the
lattice deformation potential is harmonic with the stiffness

being proportional to θel, the angle that minimizes the elec-
tronic part Fel(θ ).

We have implemented the phenomenological model in
Eq. (E1) for the case of the d4 plaquette. In Fig. 14(a) we
show the typical curves of the electronic free energy at zero
temperature as a function of the bond angle. We note that the
curves have a single minimum that moves from 0 to π/4 in
a small window of energy variation for the Vpdπ parameter
(of the order of μ eV). In Fig. 14(b) we present the opti-
mal angle versus Vpdπ and versus temperature (inset) for the
electron-phonon model of Eq. (E1). We notice that by a proper
choice of the constant coupling k, which should be of the
same order as the electronic free energy change between 0
and π/4 away from the transition region, one can stabilize an
intermediate-angle phase at a scale of up to tens of eV in Vpdπ .
Such a phase is demonstrated to exhibit a NTE effect at finite
temperature, as can be seen from an inspection of the inset in
Fig. 14(b).
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