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Adiabatic-impulse approximation in the non-Hermitian Landau-Zener model
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In the non-Hermitian Landau-Zener models, we investigate the dynamical transition both in parity-time sym-
metric and symmetry-broken regimes. Taking into account the complex nature of the energy of the non-Hermitian
systems, the absolute value of the gap was used to determine the relaxation rate of the system. To show the
dynamics of the phase transitions, the relative population is used to estimate the topological defect density in
nonequilibrium phase transitions, rather than the excitations in the corresponding Hermitian systems. The result
shows that the adiabatic-impulse approximation, which is fundamental to the Kibble-Zurek mechanism, may
be adapted to the parity-time symmetric non-Hermitian Landau-Zener models to examine the dynamics near the
critical point. The most basic non-Hermitian two-level models with an exact solution exhibiting the Kibble-Zurek
mechanism are presented. It would be interesting to extend this scenario to quantum many-body models, such as
the quantum phase transition in the Ising model.
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I. INTRODUCTION

A two-level quantum system exhibiting either an avoided
or a level crossing plays an essential role in the quantum adia-
batic dynamics. The transition probability is usually captured
by the Landau-Zener (LZ) theory [1,2] as the control parame-
ter changes with time. Usually, the quantum two-level system
provides not only qualitative but also quantitative descriptions
of the system properties. It has become the standard theory
for investigating many physical systems, e.g., the smallest
quantum magnets and Fe8 clusters cooled below 0.36 K are
successful described by the LZ model [2,3].

In many cases, the relevant parameters (i.e., the energy
gap between the two levels in time) have the potential to be
more general than the original LZ process. This motivates
us to extend the level-crossing dynamics to level coalescence
and various power-law dependencies in this paper. By ap-
propriately varying the external parameters driving the LZ
transition, these LZ models can be experimentally realized
in polarization optics [4], adiabatic quantum computing [5,6],
and non-Hermitian (NH) photonic Lieb lattices [7–9].

Fundamental axioms of quantum mechanics impose the
Hermitian nature on the Hamiltonian. However, recent de-
velopments have shown the emergence of rich features for
NH Hamiltonians describing intrinsic nonunitary dynamics
[10–14], which have also been recently realized exper-
imentally [15–17]. Although the eigenvalues of the NH
Hamiltonians can still be interpreted in terms of energy bands
[18,19], the significance of their eigenvectors can no longer
be handled by conventional methods because they are not or-
thogonal and thus already possess limited overlap without any
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additional perturbations [20–25]. In this context, the excep-
tional points [26–31] (EP) are particularly important, where
the complex spectra become gapless. These can be seen as the
NH counterparts of the conventional quantum critical points
[32–34]. In the EP, two (or more) complex eigenvalues and
eigenstates coalesce and then no longer form a complete basis
[35–37]. The main purpose of this article is to study the linear
quenching dynamics near the critical point, captured by the
Kibble-Zurek (KZ) mechanism [27,28,38–44].

In this context, we present a successful combination of
the KZ theory of topological defect production [45–47]
and the quantum theory of the parity-time (PT) symmetric
non-Hermitian Landau-Zener (NHLZ) model [48–51]. Both
theories play a prominent role in contemporary physics. The
KZ theory predicts the production of topological defects
(vortexes, strings) in the course of nonequilibrium phase
transitions [17,52–59]. This prediction applies to phase transi-
tions in liquid 4He and 3He, liquid crystals, superconductors,
ultracold atoms in optical lattices [60–62], and even to cos-
mological phase transitions in the early universe [63,64].
However, to the best of our knowledge, the KZ mechanism has
not yet been considered in the simplest NH two-level model.

This paper mainly focuses on the dynamical evolution
of the PT-symmetric NHLZ model, including adiabatic and
impulse regimes during the slow quench of a system param-
eter. The NHLZ model exhibits a real-to-complex spectral
transition, commonly referred to as the PT transition. In the
PT-symmetric regime, the eigenvalues are real, ensuring that
the probability is conserved. When the energy gap is large
enough away from the EP, the adiabatic theorem ensures that a
system prepared in an eigenstate remains in an instantaneous
eigenstate. This is in contrast to diabatic evolutions induced by
a very fast parameter change. It can be seen that the evolution
process of the PT-symmetric regime is almost the same as that
of the Hermitian system [46]. Attempts to simplify the entire
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evolution with the adiabatic-impulse (AI) approximation are
more involved in the PT-symmetry broken regime where the
eigenvalues are complex conjugates. The AI approach has its
origins in the KZ theory of classical nonequilibrium phase
transitions [65–67]. Furthermore, the probability is no longer
conserved because there is an exponential growing and an
exponential decaying energy level, and only the exponential
growing state is left under the adiabatic evolution. Thus, the
adiabatic conditions of the NH system are modified [68–70].
Near the EP, however, due to the reciprocal of the absolute
value of the energy gap being greater than the change of the
parameters, the dynamics cannot be adiabatic, and the system
gets excited. Then, since the probability of the system is not
conserved during the evolution, the relative occupation is pro-
posed to calculate the excitation rather than the projection of
the excited state. This scenario is captured by the AI approxi-
mation. Finally, we also give nontrivial diabatic solutions for
the NHLZ model, successfully obtaining the theoretical free
parameters in the AI approximation.

In this paper, we demonstrate and discuss the AI approx-
imation from the simplest NH two-level LZ model in two
separate sections. Section II presents the AI approximation
in the PT-symmetric region and the precise solutions to the
two quenching processes: γ ∈ (−∞,−γEP ), and (γEP,∞),
where γEP represents EP. In Sec. III, we will examine the AI
approximation solution of the PT-symmetric broken regime
under various initial conditions. In Appendix A, we discuss
the exact diabatic solution of the NH Landau-Zener-like prob-
lem. Details of the analytic calculations for the exact solutions
in the PT-symmetric regimes are presented in Appendix B.

II. PT-SYMMETRIC REGIME

The PT-symmetric NHLZ model we consider is

H (t ) = 1

2

(
(−1)nγ ν

ν(1 − δ) (−1)n+1γ

)
, (1)

where γ = �t is time-dependent and � is time-independent
constant. In this section, we take n = 0. The system ex-
periences the adiabatic time evolution when � → 0, and
� → ∞ means diabatic evolution. In this model, ν and
δ > 0 are constant parameters. We set ν = 1 as an energy
unit without changing the results. The eigenvalues are Es =
± 1

2

√
γ 2 + 1 − δ.

For a NH Hamiltonian H , let 〈iL| denote the ith left
eigenstate with (generally complex) eigenenergy Ei, i.e.,
〈iL|H = 〈iL|Ei. Note that the jth right eigenvector | jR〉 satis-
fies H | jR〉 = Ej | jR〉. Two equations satisfy the biorthonormal
relation 〈iL| jR〉 = δi j .

At any instantaneous time, the right eigenstates of this
Hamiltonian can be expressed in the time-independent basis
|1〉 and |2〉. The ground state |↓ (t )R〉 and the excited state
|↑ (t )R〉 are given by the following equation:[| ↑ (t )R〉

| ↓ (t )R〉
]

=
(

− i√
δ−1

cosh θ
2 i sinh θ

2

− 1√
δ−1

sinh θ
2 cosh θ

2

)[|1〉
|2〉
]
, (2)

where cosh θ = ε/
√

ε2 − 1, sinh θ = 1/
√

ε2 − 1, ε =
γ /ν

√
δ − 1, θ ∈ [0, π ]. If θ is complex, the Hamiltonian’s

PT symmetry is broken, which is considered in Sec. III.

FIG. 1. (a) The energy dispersion relation of the quantum system
as a function of γ described in Eq. (1) with ν = 1. Note the level
cross occurs at EP γEP = ±√

δ − 1 and the asymptotic form of
eigenstates is denoted by |1〉 and |2〉. The dash-dotted line is for
the dispersion relation of the Hamiltonian (1) with ν = 0. (b) The
inverse of the energy gap as a function of γ in the NHLZ model. The
four dashed lines correspond to the instants ±t̂s in the PT-symmetric
and ±t̂b in the PT-symmetric broken regimes, which separate the
adiabatic and impulse regimes.

The energy dispersion of the system is depicted in Fig. 1(a).
The energy gap is �g =

√
γ 2 + ν2(1 − δ). Provided that the

band gap is sufficiently large, the system is in the adiabatic
regime, whereas when the gap is small it undergoes an
impulsive time evolution as illustrated in Fig. 1(b). Here, ±t̂s
and ±t̂b represent the instants at which the PT-symmetric
and PT-broken regimes switch from adiabatic to impulse,
respectively. It can be seen that the energy gap �g = 0 at the
EP (γ = |γEP| = ν

√
δ − 1 and |tEP| = ν

√
δ − 1/τQ|γEP|),

which is accompanied by the coalescing of the eigenvalues
and eigenstates.

We introduce the density of topological defects in the
NHLZ model as follows. Suppose the state |1R〉 is the
eigenstate of arbitrary NH operator Ô: Ô|1R〉 = n|1R〉 (n
is a constant), while the state |2R〉 always corresponds to
the 0 eigenvalue, i.e., Ô|2R〉 = 0|2R〉. For any normalized
state, it can be written as |
〉 = a|1R〉 + b|2R〉 (|a|2 + |b|2 =
1, 〈iL| jR〉 = δi j in the PT-symmetric regime). The unit density
defect is determined by the projected value of the operator
Ô, 〈Ô〉p = |〈1L|Ô|
〉/n|2 = |〈1L|
〉|2. But for the nonunitary
evolution in the PT-symmetry broken regime, the probability
of time evolution state in the instantaneous states is not con-
served, i.e., |a|2 + |b|2 
= 1. Then, 〈Ô〉p is replaced with the
relative occupation as

Dr = |〈1L|
〉|2
|〈1L|
〉|2 + |〈2L|
〉|2 , (3)

where 〈nL| is the nth left eigenstate. However, when we
discuss only the PT-symmetric regime, where |〈1L|
〉|2 +
|〈2L|
〉|2 = 1, then Dr returns back to the Hermitian case,
i.e., Dr = 〈Ô〉p.

Suppose the system evolves adiabatically from the ground
state of (1) at t → −∞ to the ground state across the EP.
Then, the state of the system will go from a density-free
phase to a density-defected one, that is, the system undergoes
a phase transition from |1R〉 to |2R〉. If the time evolution
fails to be adiabatic, which is usually the case, then the state
at the end is a superposition of states |1R〉 and |2R〉, so the
excitation probability of the operator Ô is nonzero. In this
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section, we will demonstrate that the KZ theory can predict
the topological density (3) in the NHLZ system.

Consider the dynamics of the LZ model described by
the time-dependent Schrödinger equation i d

dt |
〉 = H (t )|
〉,
where H (t ) is given in Eq. (1). When the whole evolu-
tion begins at time ti → −∞, the initial state is chosen to
be the ground state |φG(ti )〉, and remains the corresponding
instantaneous eigenstate when t f → −tEP on the negative
half-axis of the time axis. Since the eigenvalues coalesce
at EP, no matter how slowly the parameters are driven, it
is impossible for the quantum system of a state to evolve
adiabatically close to the critical point. The goal of this
paper is to quantify this inevitable excitation level in NH
systems.

The essence of the KZ mechanism is to simplify the sys-
tem’s dynamics by assuming that the evolution of the system
is either adiabatic or diabatic. That is, the quenching process
is split into the impulse regime near the EP, where the state
is changeless, and the quasiadiabatic regime far from the EP,
where the state can adjust to the changes in the parameter. This
is the key concept from Zurek [65–67], and the transition from
the adiabatic to impulse region is determined by the relevant
time scale. In addition, the relevant time scale is proportional
to the reciprocal of the energy gap, which is small when
the parameter is far from the EP and relatively large in the
impulse regime. The adiabatic theorem states that the system
will evolve from the ground state and stays in the ground
state as long as the reciprocal of the gap is large enough.
This demonstrates clearly that, under the adiabatic evolution
regime, which can be viewed as the corresponding relaxation
time scale defined above, the reciprocal of the gap must be
large, τ = 1/

√
γ 2 + ν2(1 − δ). The dimensionless distance

ε = �t/(ν
√

δ − 1) of the system from the exceptional point
is equivalent to the relative temperature. The quench time
is τQ = ν

√
δ − 1/� ≡ 1/(τ0�), where τ0 = 1/ν

√
δ − 1 is a

time dimensionless constant. Thus, the analogy of the relax-
ation time scale, relative temperature, and quench time scale
are established. Finally, the relaxation time can be written as

τ = τ0√
ε2 − 1

, ε = t

τQ
. (4)

In the limit |ε| � 1, the relaxation time τ ≈ τ0/|ε| will be the
same as the theory of topological defect density in liquid 4He
[65–67], which will be discussed in details below.

The energies of the system in this section are real at the
beginning of the evolution, and the energy gap is large enough
so that the states of the system evolve adiabatically. On the
contrary, when the time-dependent parameter of the Hamil-
tonian is gradually approaching an exceptional point, the
time-evolved state can not follow the change of the parameter
of the Hamiltonian. The evolved state becomes an impulse
near the EP. Under the AI approximation, the whole dynamic
process is described by the KZ mechanism. So, the whole evo-
lution process can be divided into two different regimes: t ∈
(−∞,−t̂ ) and t ∈ [−t̂,−tEP]. In the PT-symmetric regime

t ∈ (−∞,−t̂ ) : |
(t )〉≈ (phase factor) |φG(t )〉,
t ∈ [−t̂,−tEP] : |
(t )〉≈ (phase factor)|φG(−t̂ )〉, (5)

which is the same for the evolution t ∈ [γEP,+∞), because
the energy spectrum is real and symmetric on both sides when
|γ | > γEP (γEP = τQtEP). In Hermitian systems, there are also
two regions: A, when t ∈ [−∞,−t̂] the wave function is an
instantaneous ground state |φG(t )〉 of the Hamiltonian in the
adiabatic regime; B, when t ∈ [−t̂, t̂] the wave function is in
an impulse regime and is essentially unchanged from −t̂ . At
the PT-symmetric regime, t < −t̂ (or t > t̂ ) equal to A and
t ∈ [−t̂,−tEP] (or t ∈ [tEP, t̂]) equals to B. The difference,
however, is that the impulse regime in a non-Hermitian system
is separated by the EP. Since at this point the instantaneous
eigenstate coalesces with the other, the time-dependent wave
function that passes through the EP has the same popula-
tion for both instantaneous eigenstates. We conclude that
the KZ mechanism defined by the biorthogonal basis in the
PT-symmetric regime is basically the same as that in the
Hermitian system.

According to Eq. (5), the state will be impulsed in the
regime near the EP that only has a different phase factor.
When the energy gap away from the EP is large, the state
can evolve adiabatically over time. It can be considered the
instantaneous eigenstate of the Hamiltonian with a different
phase factor. Clearly, the process will revert to adiabatic evo-
lution once the real energy gap becomes large enough. The
assumption behind Eq. (5) is based on how well the KZ
mechanism works in the NHLZ model.

However, the determination of the density defects still
needs to get the instants ±t̂ . It was first calculated by Zurek in
the paper on classical phase transition [65–67],

τ (t̂ ) = αt̂, (6)

where α = O(1) is a constant independent of τQ [45,46]. In
the PT-symmetric regime, by substituting Eq. (4) into Eq. (6),
we get the solution of dimensionless distance εs,

ε̂s = εs(t̂ ) = 1√
2

√√√√√1 + 4

x2
α

+ 1, xα = α
τQ

τ0
. (7)

For fast transition, i.e., xα → 0, we get t̂ = √τ0τQ/α. In this
paper, we obtain the analytical solution of α. The specific
example in Appendix A illustrates this approach. The time-
dependent Schrödinger equation can be solved exactly in the
diabatic limit (xα → 0) if one looks at the lowest nontrivial
terms in the expression for the excitation amplitudes. But get-
ting an exact solution is very complicated. After obtaining α in
the way described by Appendix A, the whole AI approxima-
tion is complete in the sense that there are no free parameters,
so its prediction can be strictly checked by comparison with
the diabatic solution.

Since there are two PT-symmetric regimes separated by in-
stants ±t̂s, we consistently denote two cases when the system
evolves from t < −tEP, t > tEP by (i), (ii), which are the same
as (i), (ii) in Appendices A and B.

(i) The first case considered is completely in the PT-
symmetric region. The initial state |
(ti )〉 is set to be the
ground state |↑ (ti )R〉, and the initial evolution point is away
from the EP, i.e., from −∞ to −γEP. This implies that in
the NH system, the left eigenstate is used to determine the
excited state occupation rather than the right eigenstate in the
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FIG. 2. Transition probability as a function of τQ in the PT-
symmetric regime for the excitation probability D↓ (lower curves),
and for the D↑ (upper curves). Solid lines represent the results from
the AI approximation (8) and (12). The dotted lines represent the
exact solution by substituting the time-dependent wave functions
obtained from (B6) and (B7) into (8) and (12). The lower (upper)
curves correspond to θ0 = 0.01π (0.50π ) with α = π

4 .

Hermitian system,

D↓ = |〈↓ (t f )L | 
̃(t f )〉|2 ≈ |〈↓ (t f )L | 
̃(−t̂ )〉|2

= |〈↓ (−tn)L |↑ (−t̂ )R〉|2

= 1
2 cosh θ0

√
P(xα )/2 + 1

2 sinh θ0

√
P(xα )/2 − 1 − 1

2 ,

(8)

where tn > 0 is a point near the EP and θ0 = arctanh(τQ/ti ) ∈
[−π, π ] measures the distance between the start or end
point of the time evolution and the EP, P(xα ) = 2 + x2

α +
xα

√
4 + x2

α , and the |
̃(t f )〉 is the normalized time-dependent
state. During the whole evolution of the NH system, we nor-
malize the wave function at every step dt .

Furthermore, the case of pass over EP is not considered.
When the two eigenvectors merge, it is not possible to infer
from which of the two states of the system started. Even at the
adiabatic limit (τQ → ∞), the density of defects (D↓) of the
final state at the EP is almost the same.

For fast transitions τQ → 0, the excitation probability D↓
is expanded into a series as below

D↓ = sinh2

(
θ0

2

)
+ 1

2
sinh(θ0)

√
xα

+ 1

4
cosh(θ0)xα + O

(
x3/2
α

)
. (9)

Here θ0 = −arccoth(6/5), so sinh(θ0) = −5/
√

11 and
cosh(θ0) = 6/

√
11. By plugging these values, one can write

Eq. (9) as

D↓ = sinh2

(
log(11)

4

)
− 5

√
xα

2
√

11
+ 3xα

2
√

11
+ O

(
x3/2
α

)
, (10)

which is plotted as a function of τQ in Fig. 2. It turns out
that α can be obtained by looking at the diabatic excitation
probability. The exact expression and calculation for α can be

found in Appendix A. Substituting η = 1/2 into Eq. (A6), to
the lowest nontrivial order one gets

P↓ = −1

2
+ 1

2
cosh

(
log(11)

2

)
− 5

√
π
4 τQ

2
√

11
, (11)

where P↓ denotes diabatic approximation, which implies the
exact expression of α = π

4 .
(ii) For the second case, we begin with the ground state

at ti = τQ/ tanh(π/2) and end at t f → ∞. As discussed in
Eq. (8), the AI approximation can directly generate the pre-
dictions, most notably the probability of finding the system in
an excited state is

D↑ = |〈↑ (t f )L | 
̃(t f )〉|2

≈ |〈↑ (t̂ )L |↑ (ti )
R〉|2

= 1
2 cosh θ0

√
P(xα )/2 − 1

2 sinh θ0

√
P(xα )/2 − 1 − 1

2 .

(12)

Here, we assumed that

|〈↑ (t f )L | 
̃(t f )〉|2 ≈ |〈↑ (t̂ )L | 
̃(t̂ )〉|2

≈ |〈↑ (t̂ )L | 
̃(ti )〉|2

= |〈↑ (t̂ )L |↓ (ti )
R〉|2. (13)

For a fast transformation τQ → 0, we can expand D↑ into a
series

D↑ = sinh2

(
θ0

2

)
− 1

2
sinh (θ0)

√
xα

+ 1

4
cosh (θ0)xα + O

(
x3/2
α

)
, (14)

where θ0 → π/2. The determination of the constant α is pre-
sented in Appendix A. By substituting η = 1/2 into Eq. (A9),
we can get α = π/4. That is, to obtain the constant α, this
method of combining AI approximation and diabatic solu-
tion prediction leads to completely satisfactory results that
are much easier and more elementary than the determination
of the exact LZ solution [1]. A comparison between the AI
prediction for α = π/4 and the exact solution is shown in
Fig. 2. Given that the initial state is prepared far away or in
the vicinity of the EP, the system is within the freezing regime
of the time interval [−t̂,−tEP] or [tEP, t̂], as shown in Fig. 2
and illustrated below.

A comparison of AI approximations in Eq. (8) and Eq. (12)
to the exact results performed in Appendix B for τQ/τ0 < 0.15
and |θ0 − π/2| � π/10 proclaims satisfactory agreement, see
Fig. 2. For larger τQ or |θ0 − π/2| the agreement gradually
decreases, due to the fact that for the parameter at the start
time (end time) ti = τQ/ tanh(θ0) (t f = τQ/ tanh(θ f )), maybe
outside the impulse regime [−t̂,−tEP] or [tEP, t̂], where the
initial assumption is violated. One avoids these problems
when ti � −t̂ and |t f | � t̂ , i.e., when the entire evolution
of the system is clearly divided into adiabatic and frozen
regimes, see Eq. (5).

III. PT-SYMMETRIC BROKEN REGIME

When the evolution is a full NH drive, is it possible to see
agreement between precise solutions and AI approximations
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in the PT-symmetric broken region? In Hamiltonian (1), we
assume n = 1/2, so (−1)1/2 = i is an imaginary number. It
must be remembered that δ should be 0 in the PT-symmetric
broken regime. For the PT-symmetric broken regime, we can
write the Hamiltonian as

H (t ) = 1

2

(
iγ ν

ν −iγ

)
, (15)

where γ = �t . Moreover, the quench time τQ = 1/�τ0 with
τ0 = 1/ν. The time-evolving right eigenstates have trans-
formed into the following states:[| ↑ (t )R〉

| ↓ (t )R〉
]

=
(

1√
1−e2β

ieβ 1√
1−e2β

1√
1−e−2β

ie−β 1√
1−e−2β

)[|1〉
|2〉
]
, (16)

where β is determined by sinh β =
sgn(γ )

√
γ 2 − 1, cosh β = |γ |, β ∈ (−∞,+∞). This full

NH drive is equivalent to quenching the imaginary tachyon
mass [15]. The eigenvalues of the Hamiltonian are

Eb = ± i

2

√
γ 2 − ν2. (17)

For |γ | > ν, the system is in the PT-symmetric broken regime,
where all eigenvalues are imaginary. Otherwise, the eigen-
values are all real when |γ | < ν, i.e., the system is in the
PT-symmetric regime.

As the eigenvalues are complex conjugate and there is an
exponentially growing state and an exponentially decaying
state. Likewise, we assume that time starts from the ground
state of −∞ and continues to −γEP, or from γi to ∞, where
γi is in the impulse regime on the other side. However, the
ground state here refers to the eigenstate corresponding to
the positive eigenvalue because γ changes adiabatically. Now
the system has enough time to evolve to the exponentially
growing state. This state corresponds to the least-dissipative
instantaneous eigenstate with the largest imaginary eigenvalue
and dominates the adiabatic process. This is unique to the non-
Hermitian system, absent from Hermitian dynamics. Thus, the
initial state is always chosen to be the least-dissipative eigen-
state |φl (ti )R〉. When the time-dependent state evolves to the
vicinity of the exceptional point, the state will be excited. In
Fig. 3, we plot the density of defects as a function of τQ for two
different α0 = 0.20π (1.25π ). The density of topological de-
fects calculated by the relative population is a function of τQ.
Surprisingly, we discover that the KZ mechanism is still valid
in the PT-symmetric regime and can accurately describe the
slow quench dynamics. The KZ mechanism only describes the
impulse regime’s density when the instantaneous transition
rate ε̇/ε is much larger than the energy gap �g, completely
different from the Hermitian system [45,46]. Therefore, these
two important approximations coming from passing through
first adiabatic, then impulse regime in comparison to Eq. (5)
can be considered,

t ∈ (−∞,−t̂ ) : |
(t )〉 ≈ (phase factor) |φl (t )R〉,
t ∈ [−t̂,−γEP] : |
(t )〉 ≈ (phase factor)|φl (−t̂ )R〉. (18)

The same holds in the interval t ∈ [tEP,∞). Adiabaticity in
the Hermitian system means that the probabilities are con-
stant. But in the NH systems, only the least dissipative state
can evolve adiabatically because the probabilities on the other

FIG. 3. Relative transition probability as a function of τQ in the
PT-symmetric broken regime. Solid lines represent the AI approx-
imation from (20) and (23). The lower (upper) curves correspond
to α0 = 0.20π (1.25π ). Dotted lines represent the numerics by
solving Eq. (B9) with the corresponding initial conditions of α0 =
0.20π (1.25π ). For all the curves α = 121

400 [E 1
2
( 121

200 )]2.

states are suppressed. Nonetheless, the definition remains un-
changed in the impulse regions.

However, the eigenvalues are purely imaginary numbers,
so the “relaxation time” is not the energy gap of real eigenval-
ues but rather the absolute value of the imaginary eigenvalue
difference,

τ = τ0

|√1 − ε2| , ε = t

τQ
, (19)

where τ0 = ν = 1. Naturally, after substituting Eq. (19)
into Eq. (6), one obtains the dimensionless distance ε̂b =

1√
2

√
1+
√

1+ 4
x2
α

=ε̂s.

Since there are two PT-symmetric broken regimes sepa-
rated by instants ±t̂b, we consistently denote the other two
cases when the system evolves from t < −tEP, t > tEP by (iii),
(iv), which are the same as (iii), (iv) in Appendices A and B.

(iii) For the third case, we examine the situation where the
initial state is chosen to the least eigenstate prepared in the
impulse area close to the EP, and assume the limits t f → t̂ .
Taking the initial state

|
(ti )〉 = |↑ (ti )
R〉 = 1√

1 − e−2β0
ieβ0 |1〉 + 1√

1 − e−2β0
|2〉,

However, due to the nonunitary time-dependent evolution, D↑
may be greater than 1. Instead of the D↑ in Eq. (12), the rela-
tive population of the instantaneous eigenstates is proposed to
calculate the density [49],

Dr = |〈↑ (t f )L|
̃(t f )〉|2
|〈↑ (t f )L|
̃(t f )〉|2 + |〈↓ (t f )L|
̃(t f )〉|2

≈ | 〈↑ (t̂ )L|↓ (ti )R〉|2
| 〈↑ (t̂ )L|↓ (ti )R〉|2+ | 〈↓ (t̂ )L|↓ (ti )R〉|2

= sinh(β0)

2
√

P(xα )/2 − 1 − cosh(β0)
√

2P(xα )
+ 1

2
, (20)
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where β0 = arccosh|γi| ∈ [0,∞) measures the distance of
the starting point from the exceptional point, e.g., β0 =
π/2 when evolution starts from a crossing center. Here,
we assumed that |〈↑ (t f )L|
̃(t f )〉|2 ≈| 〈↑ (t̂ )L|
̃(t̂ )〉|2 ≈|
〈↑ (t̂ )L|
̃(ti )〉|2 =| 〈↑ (t̂ )L| ↓ (ti )R〉|2. However, in the PT-
symmetric broken phase, it is worth noting that truncation is
needed for time t f to ensure that the probability is not greater
than 1, means ε̇/ε � �g. It is needed to do truncation in
numerical value, and a good agreement between AI approx-
imation and numerics is easily noticed.

AI predictions can be directly compared to accurate results
Eq. (A15) after series expansion

Dr = 1

e2β0 + 1
+ tanh (β0)sech(β0)

2

√
xα + O

(
x1/2
α

)
, (21)

where α is easily determined and is presented in
Appendix A. By putting η = 1/2 into Eq. (A15) one can
get α = 121

400 [E 1
2
( 121

200 )]2, where En is the exponential integral

function given by En(z) = ∫∞
1

e−zt

t n dt .
(iv) The fourth case considered evolves the system to the

vicinity of the critical point, t f → −tn. The initial condition is
starting from the ground state at ti → −∞ and assuming that

|〈↓ (t f )L|
̃(t f )〉|2 ≈ |〈↓ (−tn)L | 
̃(−t̂ )〉|2

≈| 〈↓ (−tn)L| ↓ (−t̂ )R〉|2, (22)

and we obtained

Dr = − sinh(β0)

2
√

P(xα )/2 − 1 − cosh(β0)
√

2P(xα )
+ 1

2
. (23)

The excitation after the expansion equal to

Dr = 1

e2β0 + 1
− tanh (β0)sech(β0)

2

√
xα + O

(
x1/2
α

)
, (24)

As clear from the above expressions, the exact calculation
in Appendix A gives the constant α for the first nontrivial term
in Eq. (24), which substituting into Eq. (A16) with η = 1/2
gives α = 121

400 [E 1
2
( 121

200 )]2.
Figure 3 shows a comparison of the Eq. (20) and numerical

evolution (B9) with τQ. For τQ/τ0 < 1.2 and |β0| � π/2, the
two show good agreement. For larger τQ, however, the agree-
ment gradually decreases, which we attribute to the fact that
the starting time ti = τQ cosh(β0) may be beyond the impulse
regime [tEP, t̂], or the final point t f = τQ cosh(β f ) may be less
the impulse regime [−t̂,−tEP]. So that the assumption that
the initial evolution or the end stage is an impulse is violated.
To avoid this, the starting point ti � t̂ or t f � −t̂ , i.e., the
whole evolution within the two regimes has been described in
Eq. (18).

IV. SUMMARY

We have demonstrated that, based on the assumption of
the Kibble-Zurek mechanism, the AI approximation can be
generalized to provide good quantitative predictions about
the adiabatic dynamics of NH two-level Landau-Zener-like
systems. The AI approximation is key to the KZ mechanism,
as it enables us to calculate the excitations in the frozen
region. We use the relative occupation instead of the projec-
tions on the exciting eigenstate in the Hermitian system when

the probabilities are not conserved. First, we discuss only
the PT-symmetric regimes, where we have found a KZ-like
dependence of the topological defect density on the quench
rate, which is similar to the Hermitian Landau-Zener model.
In addition, the scheme of adiabatic and impulse regimes is
basically consistent with the corresponding Hermitian system.
Secondly, when the entire evolution is a complete NH drive
process, we have found that the reciprocal of the absolute
value of the complex energy spectrum can characterize the re-
laxation time of the system, and it can be used to approximate
the transition from adiabatic to freezing. Our results show that
the KZ-like mechanism also predicts the density of defects in
the diabatic regimes of the PT-symmetric broken regimes.

We expect that the AI approximation can be generalized
to arbitrary NH two-level models, many-body models such
as the Ising model [54], and even incommensurate models
such as the Aubry-André model [55,71–75]. Finally, the re-
sults for slow quenching in the vicinity of EP can be verified
experimentally, for example, as in cold Fe8 clusters [2,3],
Mach-Zender interferometer [47], and single-photon interfer-
ometry [28].
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APPENDIX A: EXACT DIABATIC EXPRESSION
FOR TRANSITION PROBABILITY

To test the predictions of the AI approximation for a PT-
symmetric two-level system different from the Landau-Zener
model and determine the exact value of the constant α, we
investigate the dynamics induced by the Hamiltonian [46]

H (t ) = 1

2

⎛⎝(−1)n sgn(t )
∣∣ t
τQ

∣∣ η

1−η 1

1 − δ (−1)n+1 sgn(t )
∣∣ t
τQ

∣∣ η

1−η

⎞⎠,

(A1)

where η ∈ (0, 1) are constant [when η = 1/2, the system
is simplified to the NHLZ model (1)]. We propose the
lowest order exact formulation of the exciting probability
in a class of the NH two-level systems described by the
Hamiltonian (A1).

First, when n = 0, δ = 2, the evolution is assumed to occur
in the PT-symmetric regimes, e.g., in the interval |t | > τQ

when η = 1/2. Then the time-depended wave function is ex-
pressed as

|
(t )〉 =C1(t ) exp

(
−i(1 − η)|t |1/(1−η)

2τ
η/(1−η)
Q

)
|1〉

+ C2(t ) exp

(
i(1 − η)|t |1/(1−η)

2τ
η/(1−η)
Q

)
|2〉, (A2)
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where the exponential is from ∓i
∫

dt sgn(t )|t/τQ|η/(1−η)/2.
This wave function is reduced to two first-order differential
equations concerning C′s by the time-dependent Schrödinger
equation

Ċ1(t ) = 1

2i
exp

(
i(1 − η)|t |1/(1−η)

τ
η/(1−η)
Q

)
C2(t ), (A3)

Ċ2(t ) = 1

2i
k exp

(
−i(1 − η)|t |1/(1−η)

τ
η/(1−η)
Q

)
C1(t ). (A4)

(i) Time evolution from the ground state of ti → −∞ to t f →
−tn. Here tn means evolution in the vicinity of EP. We want to
integrate Eq. (A3) from −∞ to −tn. The initial conditions are
C1(−∞) = 1, C2(−∞) = 0. Simplification occurs when one
assumes a quite fast transition, i.e., τQ → 0. Then obviously
C1(t ) = 1 + O(τβ

Q ) with β > 0. Substituting such C1(t ) into
Eq. (A4), we get

C2(−γn) = 1

2i
kτ

η
Q

∫ −γn

−∞
dγ exp

[−i(1 − η)|γ |1/(1−η)
]

+ (higher-order terms in τQ), (A5)

where −γn means the point near −γEP. C1(−γn) ≈ 1, which
after some algebra results in

D↓ = |〈2L|
(t f )〉|2 = 1 − |〈1L|
(t f )〉|2

= − 1

2
+ 1

2
cosh

(
log(11)

2

)
− 5

2
√

11
(ατQ)η

+ (higher-order terms in τQ), (A6)

where

α =
(

36

25

)1/η
{

(1 − η)2η�(1 − η)2

× Im

⎡⎣(i

(
−6

5

) 1
1−η

)η−1
⎤⎦2⎫⎬⎭

1/η

, (A7)

here the Im stands for the imaginary part.
(ii) Time evolution from the ground state of ti → tn

to +∞. Here the initial function is −i√
2

√
γ0√
γ 2

0 −1
+ 1|1R〉 +

i√
2

√
γ0√
γ 2

0 −1
+ 1|2R〉. For fast transition one has that C1(t ) =

−i√
2

√
γ0√
γ 2

0 −1
+ 1 + O(τβ

Q ), C2(t ) = i√
2

√
γ0√
γ 2

0 −1
+ 1 + O(τ δ

Q),

where β, δ > 0 are constants. Integrating Eq. (A4) from γ0 to
∞, one gets

C2(+∞) = ikτ
η
Q

2 tanh π
4

∫ +∞

γ0

dγ exp
[−i(1 − η)γ 1/(1−η)

]
− i√

2

√√√√ γ0√
γ 2

0 − 1
+ 1

+ (higher-order terms in τQ), (A8)

which makes it easy to show that

D↑ = |〈1L|
(t f )〉|2 = 1 − |〈2L|
(t f )〉|2

= sinh2

(
log(5)

4

)
− 1√

5
(ατQ)η

+ (higher-order terms in τQ), (A9)

where α = (1 − η)2η cos2( πη

2 )�(1 − η)2.
(iii) Time evolution from t → tn to t → t f in the PT-

symmetric broken regime. Because at t → ∞, the positive
energy eigenstate will dominate the occupation probability,
and the exponential increase of the least dissipative state over
time suppresses another eigenstate with negative imaginary
energy, so it is required time truncation t f ≈ t̂ . And we assume
that the Hamiltonian is given by Eq. (A1) with n = 1/2,

δ = 0.
Because the parameter n = 1/2, δ = 0 of the Hamiltonian

in PT-symmetry broken regime are different from the value of
the PT-symmetric phase (1), the wave function is rewritten as

|
(t )〉 =C1(t ) exp

(
(1 − η)|t |1/(1−η)

2τ
η/(1−η)
Q

)
|1〉

+ C2(t ) exp

(
−(1 − η)|t |1/(1−η)

2τ
η/(1−η)
Q

)
|2〉. (A10)

Substituting the above wave function into the Schrödinger
equation, it can be reduced to

Ċ1(t ) = C2(t )

2i
exp

(
−(1 − η)|t |1/(1−η)

τ
η/(1−η)
Q

)
, (A11)

Ċ2(t ) = C1(t )

2i
exp

(
(1 − η)|t |1/(1−η)

τ
η/(1−η)
Q

)
. (A12)

Integration of Eq. (A11) and Eq. (A12) separately gives

C1(γ f ) = τ
η
Q

2i
ieπ/2

∫ γ f

γn

dγ exp[−(1 − η)γ 1/(1−η)] + 1

+ (high-order terms of τQ), (A13)

C2(γ f ) = τ
η
Q

2i

∫ γ f

γn

dγ exp[(1 − η)γ 1/(1−η)] + ieπ/2

+ (high-order terms of τQ). (A14)

Then the relative occupation leads to the following prediction:

Dr = |〈2L|
(t f )〉|2
|〈1L|
(t f )〉|2 + |〈2L|
(t f )〉|2

= 1

12
(6 −

√
11) + (ατQ)η

+ (high-order terms of τQ), (A15)

where

α =
(

11

20

)1/η

Eη

((
11

10

) 1
1−η

(1 − η)

)
. (A16)

where E is the exponential integral function given by En(z) =∫∞
1

e−zt

t n dt .
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(iv) Time evolution from ti → −∞ to t f → −tn in the
PT-symmetric broken regime. To correctly calculate the den-
sity of topological defects, we need to introduce the relative
population in Eq. (3) instead of projection on excited states in
Eq. (8).

Because the unnormalized initial wave function is
(ieπ/2, 1) we have C1(γ0) = ieπ/2 and C2 = 1. For fast tran-
sition, one has that C1(t ) = ieπ/2 + O(τβ

Q ), where β > 0 is a
constant. Integrating Eq. (A11) and Eq. (A12) from −∞ to
−tn, one gets

C1(γ f ) = τ
η
Q

2i
ieπ/2

∫ −γn

−∞
dγ exp

[−(1 − η)γ 1/(1−η)
]

+ (high-order terms of τQ), (A17)

C2(γ f ) = τ
η
Q

2i

∫ −γn

−∞
dγ exp

[
(1 − η)γ 1/(1−η)

]+ 1

+ (high-order terms of τQ), (A18)

which according to Eq. (3) can easily leads to

Dr = |〈1L|
(t f )〉|2
|〈1L|
(t f )〉|2 + |〈2L|
(t f )〉|2

= 1

12
(6 −

√
11) − (ατQ)η

+ (high-order terms of τQ), (A19)

with α is defined in Eq. (A16).

APPENDIX B: EXACT SOLUTIONS OF THE
NON-HERMITIAN LANDAU-ZENER SYSTEM

In this section, we present the exact solution to the dynam-
ics of the NH LZ model [1,46,48–50]. The model is similar
to Eq. (1), described by the ordinary differential equations for
probability amplitudes c1 and c2,

i
d

dt
c1(t ) = 1

2
γ (t )c1(t ) + 1

2
νc2(t ),

i
d

dt
c2(t ) = 1

2
νkc1(t ) − 1

2
γ (t )c2(t ). (B1)

We can get the second-order equation of c2(t ) by decoupling
the above equation by differentiating it again

d2

dt2
c2(t ) + 1

4

(
k + t2

τ 2
Q

− 21̇

τQ

)
c2(t ) = 0. (B2)

Then a solution with the initial condition |c1(t → −∞)|2 =
0, |c2(t → −∞)|2 = 1 is given by

c2(t ) = aD− 1
4 ikτQ−1

(
eiπ/4t√

τQ

)
+ bD− 1

4 ikτQ−1

(
−eiπ/4t√

τQ

)
,

(B3)

the general solution can be expressed in terms of the inde-
pendent Weber function Dν (z), where ν = 1

4 ikτQ, z = − eiπ/4t√
τQ

.
Then, the time-dependent wave function can be obtained from

the Schrödinger equation

|
(t )〉 = 2i

k

[
∂t − it

2τQ

]
[aD−ν−1(iz) + bD−ν−1(−iz)]|1〉

+ [aD−ν−1(iz) + bD−ν−1(−iz)]|2〉. (B4)

The constants a and b are as determined from the initial values
of c1(ti ) and c2(ti ),

a = �(1 − ν)√
2π

[Dν−1(−zi )c1(ti) + 2
√

τQeiπ/4Dν (−zi)c2(ti )],

b = �(1 − v)√
2π

[Dv−1(zi )c1(ti ) − 2
√

τQeiπ/4Dv (zi)c2(ti )].

(B5)

(i) Exact solution to the NHLZ problem when evolution
begins at ti → −∞, i.e., |
(−∞)〉 ∼ |1R〉. The Hamiltonian
is given by Eq. (B1), together with the c2(t ) and initial con-
dition yields a = 0, b = k

√
τQe−kπτQ/16/2. Substituting them

into Eq. (B4) results in

|
(t )〉 = ei3π/4e
−kπτQ

16 D− 1
4 ikτQ

(
−eiπ/4

√
τQ

t

)
|1〉

+ k
√

τQ

2
e− kπτQ

16 D− 1
4 ikτQ−1

(
−eiπ/4

√
τQ

t

)
|2〉. (B6)

The density defect can be calculated by the D↑, which leads
to the excitation probability of the system at t f in the form of
Eq. (A6).

(ii) Exact solution of LZ problem when evolution starts
from a ground state at PT-symmetric regime. From ti →
tn to t f → ∞. Combining the initial condition c1(ti ) =
−i√

2

√
γ0√
γ 2

0 −1
+ 1, c2(ti ) = i√

2

√
γ0√
γ 2

0 −1
+ 1 and Eq. (B5), the

constants a and b can be obtained

a = 1

c

[
e

iπ
4
√

τQ sinh

(
log(21)

4

)
D iτQ

4 −1

(
−11

10
e

iπ
4
√

τQ

)
+2 cosh

(
log(21)

4

)
D iτQ

4

(
−11

10
e

iπ
4
√

τQ

)]
,

b = 1

c

[
2 cosh

(
log(21)

4

)
D iτQ

4

(
11

10
e

iπ
4
√

τQ

)
−e

iπ
4
√

τQ sinh

(
log(21)

4

)
D iτQ

4 −1

(
11

10
e

iπ
4
√

τQ

)]
, (B7)

where

c = 2D iτQ
4

(
−11

10
e

iπ
4
√

τQ

)
D iτQ

4 −1

(
11

10
e

iπ
4
√

τQ

)
+ 2D iτQ

4

(
11

10
e

iπ
4
√

τQ

)
D iτQ

4 −1

(
−11

10
e

iπ
4
√

τQ

)
. (B8)

From here, it is easy to prove that when t f → t̂ , the modulus of
the projection of the system on state |2L〉 is equal to Eq. (A9).

However, the PT-symmetric broken regime is too small to
observe the adiabatic-impulse transition. The Hamiltonian is
replaced by the case of n = 1/2, δ = 0 in the Eq. (1), and the
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ordinary differential equations are obtained,

i
d

dt
d1(t ) = 1

2
iγ (t )d1(t ) + 1

2
νd2(t ),

i
d

dt
d2(t ) = 1

2
νd1(t ) − 1

2
iγ (t )d2(t ), (B9)

And the process to get the d1 and d2 is the same as
the Eq. (B2), but with ν = τQ

4 , z = t√
τQ

. By combining this
observation with η = 1/2 version of Eq. (A18) one gets

|
(t )〉 = i

[
2∂t + t

τQ

]
[aD−ν−1(iz) + bD−ν−1(−iz)]|1〉

+ [aD−ν−1(iz) + bD−ν−1(−iz)]|2〉. (B10)

Then the constants a and b from Eq. (B10) turn out to be equal
to

a = 1

c
(
√

τQD−ν−1(izi )c1(ti) − 2D−ν (izi )c2(ti )),

b = 1

c
(
√

τQD−ν−1(−zi )c1(ti ) + 2D−ν (−izi )c2(ti )). (B11)

where c = 2D−ν−1(izi)D−ν (−izi ) + 2D−ν−1(−izi )D−ν (izi).
(iii) Exact solution of LZ when evolution begins from

a ground state at ti → arccosh(θ0)τQ. When θ0 = 0.2π ,

the initial state is |
(0)〉 = (i/
√

1 + e
2π
5 , 1/

√
1 + e− 2π

5 ). The
variables a and b from Eq. (B11) are proved to be equal to

a =
√

π

2

(
− i(

√
11 + 6)

20
√

τQ + 25 − 3(
√

11 + 3)

25
√

2π
τQ

)
,

b =
√

π

2

(
− i(

√
11 + 6)

20
√

τQ − 25 − 3(
√

11 + 3)

25
√

2π
τQ

)
.

(B12)

As a result, this straightforward calculation directly leads to
Eq. (A15).

(iv) Exact solution to the LZ problem when the evolution be-
gins from a PT-symmetry broken ground state. From ti → −∞
to t f → −tn. The initial state is |
(0)〉 = |1R〉. Combining the
initial condition c1(ti ), c2(ti) and Eq. (B10), the constants a
and b can be obtained

a = 0, b = e− 3
8 iπτQτ

τQ
8

Q �
( τQ

4 + 1
)

√
2π

. (B13)

However, due to the nonunitary evolution, the time must
be truncated, and assuming ti → − cosh( 5π

4 τQ), density as a
function of τQ is shown in Fig. 3. The relative occupation is
equal to (A19).
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