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Role of interaction-induced tunneling in the dynamics of polar lattice bosons
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Intersite dipolar interactions induce, even in absence of disorder, an intriguing nonergodic dynamics for dipolar
bosons in an optical lattice. We show that the inherent dipole-induced density-dependent tunneling, typically
neglected, plays a crucial role in this dynamics. For shallow-enough lattices, the delocalization stemming from
the interaction-induced hopping overcomes the localization induced by intersite interactions. As a result, in
stark contrast to the more studied case of hard-core bosons, delocalization is counterintuitively strengthened
when the dipolar strength increases. Furthermore, the quasicancellation between bare and interaction-induced
tunneling may lead, near a lattice-depth-dependent value of the dipole strength, to an exact decoupling of the
Hilbert space between ergodic hard-core states and strongly nonergodic soft-core ones. Our results show that
interaction-induced hopping should play a crucial role in future experiments on the dynamics of polar lattice
gases.
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I. INTRODUCTION

Many-body localization (MBL) has attracted in recent
years a major attention as a paradigmatic manifestation of
nonergodic dynamics in the presence of disorder [1–3]. While
the very existence of MBL in the thermodynamic limit re-
mains a controversial and extensively discussed topic [4–14],
experimental signatures of nonergodic dynamics in finite
systems on a timescale of several hundreds of tunneling
times have been clearly observed [15–20]. Recent years have
brought also a number of examples of nonergodic dynamics
in disorder-free systems, ranging from implementations of
lattice gauge theories [21–23], to tilted lattices and smooth
potentials [24–29]. A prominent example, related to an ap-
proximate global constraint and an appropriate choice of the
initial state, is given by the so-called quantum scars [22,30–
32]. Approximate global constraints result often in Hilbert-
space fragmentation [33].

A particularly interesting example of Hilbert-space frag-
mentation and disorder-free nonergodic dynamics is provided
by polar gases in optical lattices [34]. A sufficiently large
dipole strength results in an emerging dynamical constraint
given by the approximate conservation of the number of pairs
of nearest-neighbor (NN) particles. This, combined with the
eventual conservation of the number of next-to-NN pairs, re-
sults in Hilbert space shattering [34] and strongly nonergodic
dynamics in hard-core systems. In those systems, on-site in-
teractions are assumed large-enough to prevent more than one
particle per lattice site.

In this work we show that the dynamics of soft-core dipolar
bosons, with possibly multiply occupied sites, may be drasti-
cally different than their hard-core counterparts. This marked
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difference results from the crucial role played by interaction-
induced density-dependent tunneling (DDT). Although DDT
may be generally relevant in Hubbard models with strong-
enough on-site interactions [35,36], it is particularly relevant
in polar lattice gases due to the long-range dipole-dipole in-
teractions, as shown by recent studies of their ground-state
properties [37–40]. Our results show that due to DDT, a
growing dipole strength results in enhanced particle delocal-
ization, in a stark contrast to the hard-core case. Moreover,
DDT induces, for a particular, lattice-depth-dependent dipolar
strength, a quasicancellation between kinetic tunneling and
DDT leading to a peculiar exact decoupling of the Hilbert
space into ergodic and strongly nonergodic states.

The structure of the paper is as follows. Section II intro-
duces the lattice model under consideration. Section III is
devoted to the spectral properties of soft-core bosons. Sec-
tion IV discusses how the effect of DDT on the spectral
properties translates into a markedly modified particle dynam-
ics. In Sec. V we study the case in which the bare hopping and
the DDT quasicancel. Finally, in Sec. VI, we summarize our
conclusions.

II. MODEL

We consider externally oriented dipolar bosons in a deep
one-dimensional (1D) optical lattice. The system is well de-
scribed by the extended Bose-Hubbard (EBH) model:

ĤEBH = −t
L−1∑
j=1

(â†
j â j+1 + H.c.)

+ U

2

L∑
j=1

n̂ j (n̂ j − 1)
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+ V

2

∑
i �= j

1

|i − j|3 n̂in̂ j

− T
L−1∑
j=1

[â†
j (n̂ j + n̂ j+1)â j+1 + H.c.], (1)

where a†
j (a j) denotes the bosonic creation (annihilation) op-

erator, and t is the bare tunneling amplitude. The first line of
Eq. (1) is the standard Bose-Hubbard model, in which the on-
site interaction strength U results from both contactlike and
dipole-dipole interactions. We fix U/t = 3 below. The second
line describes the intersite dipolar interactions characterized
by the dipolar strength V , which may be tuned by changing
the dipole orientation with respect to the lattice axis. We note
in passing that keeping U fixed while changing V requires
tuning the contact interaction, via, e.g., a Feshbach resonance.
We assume a strong confinement transversal to the lattice
axis, since otherwise the 1/r3 decay of the dipolar interaction
should be generally modified [41,42].

The last line in Eq. (1) corresponds to the DDT, with am-
plitude T , which, interestingly, is negative. For a given lattice
depth V0 (which we characterize below by s = V0/ER, with ER

the recoil energy), and employing the appropriate form of the
on-site functions (see the Appendix A), one finds that, for the
moderate value of U/t considered, T is linearly proportional
to V over a broad range of V/t values (Fig. 1). Particularly
relevant, as discussed below, is the case in which T/t = −1,
which occurs for an s-dependent critical V/t .

We consider in the following a half-filled lattice, with
N = L/2 bosons in L sites, with open boundary conditions.
This choice facilitates the comparison with previous studies
on hard-core bosons [34]. Since the maximal site occupation
equals the total particle number, we are limited in our exact
diagonalization analysis to system sizes up to L = 16 (which
corresponds to a large Hilbert space dimension of 490 314
states). Although this precludes a reliable extrapolation to the
thermodynamic limit, it provides already a clear qualitative
picture, and it is quantitatively relevant for site-resolved ex-
periments on ultracold gases in optical lattices, also typically
limited to a small number of sites [19,20].

FIG. 1. Relation between the DDT rate T and V for U/t = 3 and
s = 8. The dash-dotted line shows the almost perfect correspondence
with a linear function. The dashed lines emphasize that T/t = −1 at
V/t = 8.8.

FIG. 2. Energy dependence of the DoS, P (ε), and the gap ratio,
rε , for T = 0 (a) and in the presence of DDT (b) for L = 16 with
V/t = 50. The circles indicate the initial states employed in Fig. 4(b).
(c) The mean gap ratio, r, for s = 8 and L = 14 as a function of V/t
with (circles) and without (triangles) DDT.

III. SPECTRAL PROPERTIES

In this section, we discuss how DDT radically modifies the
spectral properties of soft-core polar lattice gases.

A. Density of states

Hard-core dipolar bosons undergo Hilbert-space shatter-
ing for large-enough V/t due to the emergent constraint
induced by the approximate conservation of the number of
NN and next-to-NN pairs [34]. A similar behavior is shared
by soft-core bosons in the absence of DDT. Figure 2(a)
shows the density of states (DoS), P (ε), for L = 16 with
V/t = 50 and s = 8. The DoS presents pronounced peaks
corresponding to different number of occupied NN links,
NNN = ∑L−1

j=1 〈n jn j+1〉. In contrast, in the presence of DDT,

104305-2



ROLE OF INTERACTION-INDUCED TUNNELING IN THE … PHYSICAL REVIEW B 107, 104305 (2023)

Hilbert-space fragmentation is largely washed out [Fig. 2(b)],
even for large V/t , indicating the lack of conservation
of NNN .

B. Mean gap ratio

The DDT also strongly modifies the level-spacing statis-
tics. This is best observed in the behavior of the gap ratio,
defined as rn = min(δn, δn+1) where δn = En − En−1 with
{En} being the ordered set of eigen-energies [43]. The mean
gap ratio r is evaluated as the average value over the whole
spectrum. In Fig. 2(c), we depict r for L = 14, s = 8 and
different ratios V/t . Integrable systems, with Poissonian level
statistics, are characterized by r ≈ 0.386, whereas for er-
godic time-reversal invariant systems one expects r ≈ 0.53,
corresponding to the Gaussian orthogonal ensemble (GOE)
of random matrices. We observe the latter behavior only for
low V/t . For increasing V/t , a general decrease of r is ob-
served. Whereas for T = 0 the gap ratio reaches a Poissonian
value for large V/t , signaling quasi-integrability, the pres-
ence of DDT results in a mixed dynamics, with the value
of r lying in between Poissonian and GOE statistics. Note
as well the pronounced sharp minimum at V/t = 8.8, which
is related to the condition T/t = −1, discussed in detail in
Sec. V.

C. Energy dependence of the gap ratio

The rn values present a marked energy dependence, which
plays a crucial role in the dynamics (see Sec. IV). In order to
monitor this dependence, we introduce the scaled energy ε̃ ∈
[0, 1], defined as ε̃ = (ε − εmin)/(εmax − εmin), where εmin

(εmax) is the minimum (maximum) eigenenergy for a given
V/t . We determine the gap ratio r̄ε as the rolling average
of 4000 energy gaps in the scaled energy interval around a
given ε̃.

In the absence of DDT [see Fig. 3(a)], the whole spectrum
is ergodic at low V/t . At V/t ≈ 10, a strong energy depen-
dence appears in the form of approximately ergodic fingers
separated by approximately regular regions. This structure
correlates with the modulation of the density of states [see
Fig. 2(a)].

The situation is markedly different in the presence of DDT
[see Figs. 2(b) and 3(b)]. High-lying eigenstates remain er-
godic even for very large V/t ratios. Only low-lying states
are significantly nonergodic, with a gap ratio close to the
Poissonian value, since these states are characterized by a
small number of NN links, reducing the effective role played
by the DDT. At the largest V/t values, approximately one
half of the states belongs to the ergodic sector, explain-
ing the fact that r saturates around 0.45 [Fig. 2(c)]. This
strongly suggests that the dynamics of polar lattice gases
initially built from low-energy eigenstates must be markedly
different from that of systems prepared in high-energy ones.
Whereas the former should reveal localization features, the
latter should present ergodic dynamics. Note as well, that
the spectrum becomes to a large extent Poissonian at V/t =
8.8 (for s = 8), corresponding with the dip in r observed in
Fig. 2(c).

FIG. 3. Energy dependent gap ratio, r̄ε , as a function of the
dipolar interaction strength, V/t , and the scaled energy, ε̃, for L = 14
sites and s = 8 with T = 0 (a) and with DDT (b).

IV. PARTICLE DYNAMICS

In this section, we show how the modified spectral proper-
ties translate into a radically altered dynamics in the presence
of DDT.

A. Homogeneity

We consider the time evolution of the system when start-
ing with an initial Fock state, |ϕ〉. In view of the expected
energy-dependence of the dynamics, we choose carefully the
initial state such that its energy lies at the center of an energy
window with a large DoS, avoiding regions of low density of
states occurring due to a possible Hilbert-space fragmentation.
Whereas recent MBL experiments have employed an initial
density wave [15,16], this is not a good choice for a polar
lattice gas with large V/t , since it lies at the extremes of
the spectrum. Instead, we consider a manifold of initial Fock
states, with a given number of NN pairs, NNN .

We are interested in how the initial inhomogeneous popula-
tion in the lattice redistributes at time τ > 0 amongst the sites,
and in particular whether it becomes eventually homogeneous,
washing out any information about the initial distribution.
Density homogenization is best analyzed using the inhomo-
geneity parameter:

I (τ ) =
∑L

i=1 [〈n̂i(τ )〉 − ρ]2∑L
i=1 [〈n̂i(0)〉 − ρ]2

, (2)
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FIG. 4. (a) Inhomogenity I(τ f = 500/t ) as a function of V/t ,
for L = 12 and s = 8. The curves (see legend) depict different cases
without (T = 0) and with DDT (T �= 0), for initial states with NNN =
L/6 and L/4. We depict as well the case with s = 10 and NNN = L/6.
Observe that the peak of enhanced inhomogeneity is at V/t = 8.8
for s = 8 but at V/t ≈ 13 for s = 10, corresponding to the different
value of V/t at which T/t = −1 (see inset for the dependence of T/t
on V/t for s = 10). Error bars indicate the result from the bootstrap
estimate based on data for about 200 initial conditions in each sector.
(b) Inhomogeneity I(τ ) for L = 16 with V/t = 50, for initial states
with two different energies corresponding to the cases indicated by
circles in Fig. 2(b).

with ρ = N/L (= 1/2 in our case). Note that 0 < I < 1,
with 0 (1) indicating a fully homogeneous (inhomogeneous)
distribution.

Figure 4 shows I (τ f ) for different V/t ratios, after an
experimentally accessible time τ f = 500/t [24]. We obtain
I (τ f ) after averaging over initial Fock states with NNN = L/4,
which is the most populated sector in the possibly fragmented
Hilbert space [34]. In Fig. 4, we depict as well our results
for NNN = L/6 for comparative purposes. As for the case of
hard-core bosons, in the absence of DDT, when V/t grows
the inhomogeneity at a fixed time increases, indicating the
strongly nonergodic character of the dynamics. In contrast, the
presence of DDT results even for large V/t in a low (but non
zero) inhomogeneity, reflecting the delocalizing role played
by the DDT, in agreement with the markedly different spectral
properties.

The above-mentioned energy dependence of the level
statistics is reflected in the different dynamics observed for
initial conditions belonging to different spectral regions. We
illustrate this point in Fig. 4(b), where we depict the evo-
lution of the inhomogeneity for L = 16 with V/t = 50, and
two different initial conditions indicated in Fig. 2(b). For
initial Fock states with NNN = 0 (corresponding to low en-
ergies) I (t ) remains very significant even at τ f = 500, the
largest time considered. This is in agreement with the fact
that the corresponding eigenstates present an approximately

FIG. 5. Inhomogenity I(τ f = 500/t ) as a function of the lattice
depth, s, for L = 12 with V/t = 50, for initial states with NNN = L/4
(blue solid curve) and NNN = L/6 (red solid curve). The dashed lines
show the corresponding results in the mean field approximation when
DDT is replaced by an effective hopping rate te f f . The inset shows
T/t as a function of s for the case under consideration.

Poissonian level statistics [Fig. 3(b)]. In contrast, the inho-
mogeneity reaches much lower values for initial states with
NNN = L/4, which lie at high energies, and are character-
ized by an approximately GOE level spacing [Fig. 3(b)].
Whether the nonzero saturation value of I is due to the
small system size (resembling the behavior observed in the
disordered XXZ model [14]) or to a not fully chaotic be-
havior cannot be determined with the system sizes studied
here.

B. Dependence on the lattice depth

In the absence of DDT, the static and dynamic properties
of the EBH model are given by the value of V/t and U/t ,
irrespective of the actual lattice depth s (which is just relevant
for fixing the overall time scale 1/t). The situation changes
when considering the effect of the DDT. The value of T is
an s-dependent function of V/t . For a fixed V/t ratio, T/t
decreases when s increases, and hence the effect of DDT is
reduced. The dynamics is hence markedly dependent on the
lattice depth.

This dependence is illustrated in Fig. 5, where we plot as
a function of s the inhomogeneity I (τ f = 500/t ) for L = 12
with V/t = 50, and different initial sectors. For low-enough
s, the DDT is relevant, and the system reaches homogeneity
despite the large V/t value. In contrast, for deeper lattices,
the delocalizing effect of the DDT becomes less relevant
compared to the localizing role of intersite interactions. As
a result, I (τ f ) reaches large values indicating strongly noner-
godic dynamics.

C. Mean-field analysis

A qualitative understanding of the effect of the DDT is
provided by applying mean-field decoupling [39]:

−â†
i [t + T (n̂i + n̂ j )]â j � −(t + 2ρT )â†

i â j . (3)

104305-4



ROLE OF INTERACTION-INDUCED TUNNELING IN THE … PHYSICAL REVIEW B 107, 104305 (2023)

Since in our case ρ = 1/2, DDT results in an effective
mean-field hopping rate teff = t + T . It becomes evident that
T/t = −1 is a special case, which we discuss in Sec. V.
The dynamics is hence not regulated by the ratio V/t , as
in the absence of DDT, but rather by V/teff = V/t

1+T/t . Since
T (V ) = α(s) + β(s)V , with β(s) < 0, the ratio approaches
V/teff � − 1

β(s) for a sufficiently large V/t . Hence, increasing
the dipolar strength does not result (as in the absence of
DDT) in a diverging ratio between inter-site interactions and
hopping, which leads necessarily to localization, but rather
in a saturated ratio, |V/teff |max. This maximal ratio depends
on the lattice depth, increasing with growing s. This explains
two relevant qualitative features in Figs. 4 and 5: The in-
dependence of I of V/t for large-enough V/t , and the very
low inhomogeneity observed even for low s. The latter results
from the low value of |V/teff |max.

In Fig. 5 we compare our results using the full EBH in
Eq. (1) with those obtained in the mean-field-inspired model
in which the DDT is replaced by modifying the kinetic tun-
neling t into teff . As expected, the effective mean-field model
reproduces well the qualitative features, although there are
marked quantitative differences due to the significant density
fluctuations in the system.

V. CRITICAL DIPOLE STRENGTH

Interestingly, in contrast to what happens for large V/t , the
presence of DDT may result in a strongly non-ergodic dynam-
ics for relatively modest values of V/t , for which the model
without DDT would predict ergodicity. As already hinted in
previous sections this occurs when T/t � −1, for which the
bare hopping and the DDT quasicancel each other [40]. This
is reflected in the marked minimum observed in the average
gap ratio r̄ in Fig. 2 and the corresponding maximum in the
inhomogeneity in Fig. 4.

For T/t = −1, the hard-core Hilbert subspace, with max-
imally one particle per site, exactly decouples from those
states with at least one site with double or higher occupa-
tion. These two subspaces present markedly different spectral
properties. Whereas the hard-core boson subspace presents
GOE-like statistics (r ≈ 0.527), matching the behavior ob-
served in Ref. [34], the rest of the Hilbert space (the soft-core
subspace) shows an approximately Poissonian statistics (r ≈
0.4) as the states in this subspace are strongly affected by the
destructive interplay between kinetic and interaction-induced
tunneling occurring for T/t = −1. This behavior is, as other
properties, energy dependent.

A. Eigenstate properties

Let us consider first the eigenstate properties in both
the hard- and soft-core sectors for T/t = −1. We focus
in particular on the half-chain entanglement entropy, S =
−Tr[ρL/2 ln ρL/2], where the reduced density matrix ρL/2 =
Tr1,...,L/2|ψ〉〈ψ | is obtained after tracing out half of the sys-
tem for a given eigenstate |ψ〉. Figure 6(a) shows S for the
hard-core sector for L = 18 with V/t = 8.8 and s = 8, cor-
responding with T/t = −1. It displays a fingerlike structure
due to partial Hilbert-space fragmentation. Thus, for the eval-
uation of the average entropy we consider only eigenstates

FIG. 6. (a) Entanglement entropy S for the hard-core sector at
T/t = −1 (V/t = 8.8 for s = 8) for L = 18. The dashed horizontal
line corresponds to the random-matrix theory value. Vertical lines
indicate a single sector taken to calculate the average entropy (shown
in the inset for different system sizes). Panel (b) shows the entangle-
ment entropy for the remaining decoupled sector for L = 14. The
average entropy does not depend significantly on the system size for
this nonergodic sector.

corresponding to a single finger, as denoted by vertical dotted-
dashed lines in Fig. 6(a). The hard-core sector is characterized
by large entropies, with the average growing linearly with
the system size, indicating volume-law scaling, characteristic
of delocalized states and nonintegrable dynamics. A similar
analysis for the soft-core sector reveals a much broader distri-
bution of S with many low entanglement states, and a much
weaker entropy growth with the system size [Fig. 6(b)]. This
characterisation of the eigenstates nicely matches with the gap
ratio histograms shown in Fig. 7. The dashed-dotted theo-
retical predictions drawn in Fig. 7 are P(r) = 2/(1 + r)2 for
the Poissonian case and P(r) = 27(r + r2)/8(1 + r + r2)5/2,
a good approximation for the GOE case [44].

B. Time dynamics

The spectral properties at T/t = −1 translate into a
markedly different dynamics for the hard-core and the soft-
core sectors. Figure 8(a) shows (for L = 12, s = 8, and V/t =
8.8) the long-time evolution of the inhomogeneity for differ-
ent initial states within the NNN = L/6 sector. The hard-core
sector (family I) behaves ergodically, with I practically van-
ishing for times τ > 200/t .
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FIG. 7. Histogram P(r) of the gap ratio, r, for s = 8 and V/t =
8.8 (corresponding to T/t = −1). The dashed-dotted lines corre-
spond to the GOE and Poisson predictions. The histograms are
presented separately for the two decoupled sectors of hard-core
bosons (with GOE statistics) and the remaining soft-core subspace
(showing close to Poissonian behavior). The values for r are chosen
from within the orange dashed-dotted lines indicated in Fig. 6. In the
hard-core sector we consider L = 18, whereas for the soft-core one
(richer in eigenstates) we are restricted to L = 14.

FIG. 8. (a) Inhomogenity I as a function of time, τ for T/t = −1
(V/t = 8.8 for s = 8), for initial Fock states in the NNN = L/6 sector.
Family I corresponds to hard-core states; family II consists of initial
states with a single doubly occupied states, and family III is formed
by the remaining initial Fock states with higher fillings per site. The
family II is further split into subfamily A, which contains states
with a single | · · · 12 · · · 〉 or | · · · 21 · · · 〉 arrangement, and subfamily
B which does not consist of such Fock states. Panel (b) shows the
results without DDT for the same initial states. In all cases, L = 12.

In the soft-core sector, states with a single double-
occupancy (family II) decay much slower. Those with a single
pair | · · · 12 · · · 〉 (subfamily II A) present a rapid initial decay
of I corresponding to the spreading of the remaining three
bosons over the available space, resembling family I. After
a short time (of the order of 1/t), a slower decay of I takes
place determined by the highly nonresonant mixing of the
occupied pair with the rest. The rest of family II, with a single
double-occupancy surrounded by empty sites, decays much
slower already at short times and then presents a pronounced
plateau (at this stage a single occupancy still survives the
dynamics) finally reaching a nonzero value. The rest of the
soft-core states (family III) is characterized by a single large
occupancy, and presents a very slow dynamics.

In absence of DDT [Fig. 8(b)] initial states belonging
to families I or II undergo a rapid homogenization. Inter-
estingly, only a partial homogenization occurs for a single
high-occupancy initial states. This is due to the energy penalty
induced by the on-site interaction [45].

Finally, we note that the splitting of the Hilbert space into
decoupled sectors results solely from the T/t = −1 condition,
being independent of the character of interactions. Since it is
independent of the considered 1/r3 tail, we expect a similar
effect for any long-range potential.

VI. CONCLUSIONS

Our results show that interaction-induced hopping should
play a crucial role in future experiments on the dynamics
of polar lattice gases. Density-dependent tunneling strongly
modifies the dynamics of soft-core dipolar bosons in one-
dimensional lattices. For shallow-enough lattices, the delo-
calizing effect resulting from the interaction-induced hopping
overcomes the localization effect induced by the intersite in-
teractions. As a result, counterintuitively and in stark contrast
to the hard-core case, delocalization is strengthened when
the dipolar strength increases. Interestingly, although this is
generally the case, at a critical dipole strength the density-
dependent hopping quasicancels the bare hopping resulting in
a separation of the Hilbert space in ergodic hard-core states
and strongly nonergodic soft-core ones.
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APPENDIX: PARAMETERS OF THE EXTENDED
BOSE-HUBBARD MODEL

The calculation of the parameters of the extended Bose-
Hubbard model closely parallels the technique described
in detail in Ref. [40]. We assume a quasi-one-dimensional
model with an optical lattice along x, and a tight harmonic
confinement in the transversal directions, leading to the
single-particle trapping potential

Vt (r) = mω2

2
(y2 + z2) + V0 cos2(kx) , (A1)

where m is the particle mass, ω is the harmonic trapping
frequency along y and z, and k is the wave vector of the laser
that forms the optical lattice.

The Hamiltonian of the system may be expressed as (see,
e.g., [36]):

Ĥ =
∫

d3r�̂†(r)

[
− h̄2

2m
∇2 + Vt(r)

]
�̂(r)

+1

2

∫
d3r

∫
d3r′�̂†(r)�̂†(r′)Vint (r − r′)�̂(r′)�̂(r)

, (A2)

with the bosonic field operators �̂(r) and �̂†(r) that obey the
commutation relation [�̂(r), �̂(r′)†] = δ3(r − r′). Vint (r −
r′) describes interactions between bosons that is conveniently
split into the contact and dipole-dipole terms:

Vint (r) = Vc(r) + Vd (r). (A4)

The contact term is characterized by the s-wave scattering
length, as. Using the customary notation, Vc(r) = gδ(3)(r),
with g = 4π h̄2as/m. Dipole-dipole interactions give a second
interaction term, Vd (r). We consider dipoles polarized by an
external field along the z axis (perpendicular to the axis of the
optical lattice) with

Vd (r) = C
1 − 3 cos2(θ )

r3
, (A5)

where θ is the angle between the dipole and r. The dipole-
dipole interaction is anisotropic in space since the force
depends on the dipole orientation. The strength of the
dipole-dipole interactions C = μ0μ

2/4π (C = d2/(4πε0))
for magnetic (electric) dipoles with moment μ (d) where μ0

(ε0) are the magnetic (electric) permeability, respectively.
For sufficiently deep optical lattice (s = V0/ER > 3, where

ER = h̄2k2/(2m)) we may expand the field operator as

�̂(r) =
L∑

j=1

W j (r)â j =
L∑

j=1

φ0(y)φ0(z)Wj (x) â j, (A6)

where j = 1, . . . , L denotes the site index, and the operator â j

annihilates boson at site j. The corresponding basis function
W j (r) is the product of the ground states of the harmonic
oscillators along y, z, and the Wannier function (of the low-
est band) along the lattice (shallower lattices may implicate
the necessity of taking higher bands into account). Plugging
Eq. (A6) into Eq. (A3), one expresses the Hamiltonian in
as a polynomial of the annihilation and creation operators.

Employing the orthogonality of the Wannier functions, one
arrives at the form

Ĥ = −t
L−1∑
j=1

(â†
j â j+1 + H.c.) + 1

2

L∑
i, j,k,l

Vi jkl â
†
i â†

j âk âl , (A7)

where the integrals Vi jkl are explicitly given as

Vi jkl =
∫

d3rd3r′Wi(r)W j (r′)Vint (r − r′)Wk (r′)Wl (r).

(A8)

The single-particle tunneling amplitude is obtained from the
single-particle part of the Hamiltonian

t = −
∫

d3rWi(r)

[
− h̄2

2m
∇2 + Vt (r)

]
Wi+1(r)

=
∫

dx Wi(x)

[
h̄2

2m

∂2

∂x2
− V0 cos2(kx)

]
Wi+1(x) , (A9)

where we limit ourselves to NN tunneling only, assuming a
sufficiently deep optical lattice (for shallow lattices, with s =
V0/ER < 4, one might need to include next-to-NN tunnelings
into the picture; see, e.g., Ref. [46].)

As it turns out the integrals over perpendicular directions
can be explicitly carried out [47–50], yielding

Vi jkl =
∫

dx dx′Wi(x)Wj (x
′)V1D(x − x′)Wk (x)Wl (x

′),

(A10)

where the effective quasi-one-dimensional potential is
given by

V1D =
(

g1D − 2C

3l2

)
δ(|x − x′|)

+ C

l3

[√
π

8
e(x−x′ )2/(2l2 )

(
1 + (x − x′)2

l2

)

× Erfc

( |x − x′|
l
√

2

)
− |x − x′|

2l

]
, (A11)

in terms of the harmonic oscillator length in the perpendic-
ular direction, l = (h̄/mω)1/2 and the effective 1D contact
interaction strength g1D = g/(2π l2). In Eq. (A11) δ stands
for Dirac delta function and Erfc for the complementary error
function. Note that the term proportional to the delta function
contains contributions from both the contact and dipole-dipole
interactions.

The largest contribution is given by the on-site interac-
tion term (diagonal in i jkl indices), traditionally denoted as
U ≡ Viiii. For contact interactions this is the dominant term.
For long-range dipolar interactions the next important term
has the form of a density-density interaction (Vi ji j + Vi j ji )n̂in̂ j

(for i �= j) where often only the NN term for j = i ± 1 is
taken into account. We mention parenthetically that while for
contact interactions Vi ji j and Vi j ji are identical, for a dipo-
lar potential one finds that |Vi ji j | � |Vi j ji|. Since Wannier
functions are well localized on sites, for tight perpendicu-
lar binding and 1/r3 potential one may approximate Vi ji j =
V/|i − j|3 recovering the typical dipolar tail; here V = V0110

is the value of the integral for the NNs. A standard extended
Bose-Hubbard model (see, e.g.. [51]) considers just terms
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involving U and V coefficients and neglects the dipolar tail.
The latter may play an important role in the dynamics of the
system [34,42], and may differ from the standard 1/r3 decay
if the transversal confinement is not sufficiently strong [42].

Other important terms, introduced by Hirsch [35] for
strongly correlated spinful fermions, are density-dependent
tunnelings (DDT), also called correlated hoppings, coming

from Vi jkl terms with three equal indices. The most important
corresponds to NN correlated tunneling, e.g. Viii(i+1)â

†
i n̂iâi+1.

For shortness of notation the corresponding amplitude is de-
noted by T (or rather, due to some historical reasons −T
[36]). Taking together contributions containing U , V , and T
terms, one arrives at the extended Bose-Hubbard Hamiltonian
of Eq. (1).
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[39] R. Kraus, K. Biedroń, J. Zakrzewski, and G. Morigi, Super-
fluid phases induced by dipolar interactions, Phys. Rev. B 101,
174505 (2020).

[40] R. Kraus, T. Chanda, J. Zakrzewski, and G. Morigi, Quantum
phases of dipolar bosons in one-dimensional optical lattices,
Phys. Rev. B 106, 035144 (2022).

[41] M. L. Wall and L. D. Carr, Dipole–dipole interactions in optical
lattices do not follow an inverse cube power law, New J. Phys.
15, 123005 (2013).

[42] H. Korbmacher, P. Sierant, W. Li, X. Deng, J. Zakrzewski, and
L. Santos, Lattice control of nonergodicity in a polar lattice gas,
Phys. Rev. A 107, 013301 (2023).

[43] V. Oganesyan and D. A. Huse, Localization of interact-
ing fermions at high temperature, Phys. Rev. B 75, 155111
(2007).

[44] Y. Y. Atas, E. Bogomolny, O. Giraud, and G. Roux, Distribution
of the Ratio of Consecutive Level Spacings in Random Matrix
Ensembles, Phys. Rev. Lett. 110, 084101 (2013).

[45] G. Carleo, F. Becca, M. Schiro, and M. Fabrizio, Localization
and glassy dynamics of many-body quantum systems, Sci. Rep.
2, 243 (2012), article.

[46] S. Trotzky, Y.-A. Chen, A. Flesch, I. P. McCulloch, U.
Schollwöck, J. Eisert, and I. Bloch, Probing the relaxation
towards equilibrium in an isolated strongly correlated one-
dimensional Bose gas, Nat. Phys. 8, 325 (2012).

[47] S. Sinha and L. Santos, Cold Dipolar Gases in Quasi-
One-Dimensional Geometries, Phys. Rev. Lett. 99, 140406
(2007).

[48] F. Deuretzbacher, J. C. Cremon, and S. M. Reimann,
Ground-state properties of few dipolar bosons in a quasi-one-
dimensional harmonic trap, Phys. Rev. A 81, 063616 (2010).

[49] F. Deuretzbacher, J. C. Cremon, and S. M. Reimann, Erratum:
Ground-state properties of few dipolar bosons in a quasi-one-
dimensional harmonic trap [Phys. Rev. A 81, 063616 (2010)],
Phys. Rev. A 87, 039903(E) (2013).

[50] N. Bartolo, D. J. Papoular, L. Barbiero, C. Menotti, and A.
Recati, Dipolar-induced resonance for ultracold bosons in a
quasi-one-dimensional optical lattice, Phys. Rev. A 88, 023603
(2013).

[51] D. Rossini and R. Fazio, Phase diagram of the extended Bose-
Hubbard model, New J. Phys. 14, 065012 (2012).

104305-9

https://doi.org/10.1038/s41567-018-0137-5
https://doi.org/10.1103/PhysRevB.105.224205
https://doi.org/10.1103/PhysRevB.106.L041101
https://doi.org/10.1103/PhysRevB.101.174204
https://doi.org/10.1103/PhysRevLett.127.260601
https://doi.org/10.1016/0921-4526(94)91840-6
https://doi.org/10.1088/0034-4885/78/6/066001
https://doi.org/10.1088/1367-2630/15/11/113041
https://doi.org/10.1103/PhysRevB.97.245102
https://doi.org/10.1103/PhysRevB.101.174505
https://doi.org/10.1103/PhysRevB.106.035144
https://doi.org/10.1088/1367-2630/15/12/123005
https://doi.org/10.1103/PhysRevA.107.013301
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1103/PhysRevLett.110.084101
https://doi.org/10.1038/srep00243
https://doi.org/10.1038/nphys2232
https://doi.org/10.1103/PhysRevLett.99.140406
https://doi.org/10.1103/PhysRevA.81.063616
https://doi.org/10.1103/PhysRevA.87.039903
https://doi.org/10.1103/PhysRevA.88.023603
https://doi.org/10.1088/1367-2630/14/6/065012

