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Ab initio Boltzmann approach to coupled magnon-phonon thermal transport
in ferromagnetic crystals
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We propose an ab initio Boltzmann transport approach taking into account magnon-phonon scattering
(MPS) and three-phonon scattering simultaneously to accurately evaluate the thermal transport properties of
ferromagnetic crystals. Using this approach, we studied the nonelectronic thermal transport properties of the
body-centered cubic iron as a case. The reasonable agreement between our calculation results and the available
experimental data suggests that phonons dominate the nonelectronic thermal conduction at high temperatures,
and magnons may contribute to the thermal conductivity only at low temperatures. Remarkably, the abnormal
increase in the magnon thermal conductivity at high temperatures implies that other magnon-involved scattering
events instead of MPS should dominate the magnon thermal conductivity. Moreover, analyses of average scatter-
ing rates and heat propagation lengths suggest that hydrodynamic heat transport may occur at low temperatures.
This new approach fills the gap in the first-principles evaluation of the coupled magnon-phonon thermal transport
properties in magnetic crystals. Our results will provide valuable references for further investigations of the
interplay between magnons and phonons and broaden relevant research prospects about heat management and
energy manipulation.
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I. INTRODUCTION

Thermal transport in magnetic systems has received
widespread attention with the rapid progress of spintronics
[1,2] and spin caloritronics [3–5] in recent decades. A series of
emerging and exciting transport phenomena governed by the
interplay between spins and phonons, such as the thermal Hall
effect [6–8], spin Seebeck and spin Peltier effects [9,10], and
magnetocaloric effect [11], have vastly broadened the scopes
of heat management and thermal manipulation and potentially
inspired applications in thermoelectrics [12–14] and thermal
logic gates [15,16]. However, past investigations about heat
transfer were mainly devoted to nonmagnetic materials in
which phonons, electrons, and the interplay between them
dominate the thermal transport properties [17–20]. In contrast,
the relevant studies about heat transport behavior and the
interplay between magnons and phonons in magnetic systems
are comparatively lacking.

In early studies, experimental measurements were mainly
carried out on the thermal conductivity of magnons to detect
spin quantum states [21,22] and evaluate magnon-phonon
damping [23] in magnetic crystals, where the external mag-
netic field was usually utilized to extract the magnon’s
thermal conductivity. Several recent investigations focused on
magnon’s thermal transport properties [24–26] and magnon-
phonon relaxation [27–29] in magnetic crystals. These studies
suggested that magnon-phonon scattering (MPS) is crucial in
explaining magnetic crystal’s heat and spin transport behav-
iors. Consequently, mode-level insights into the MPS events
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and the coupled magnon-phonon thermal transport in mag-
netic crystals are essential for both fundamental science and
practical applications.

An ab initio approach urgently needs to be developed to
accurately evaluate the thermal transport properties of mag-
netic crystals at the mode level. Over the past two decades,
many theoretical frameworks and ab initio methods have been
developed to evaluate the nonmagnetic materials’ phonon and
electron transport properties. Specifically, these methods can
be broadly divided into three categories: (i) the full quantum
mechanical frameworks based on the nonequilibrium Green’s
function (NEGF) for capturing the quantum transmission
behavior of phonons and electrons in nanoscale tunneling
junctions with phonon anharmonicity [30–36] or electron-
phonon coupling [37–40]; (ii) the semiclassical Boltzmann
transport equation (BTE) for predicting the phonon (PBTE)
[41–45] and the coupled electron-phonon [46–51] transport
properties of bulk materials or micro devices; (iii) the clas-
sical [52–55] or ab initio [56–58] molecular dynamics (MD)
for statistically evaluating the thermal transport properties of
large-scale systems with thousands of atoms. These methods
have covered the phonon and electron transport properties in
the nonmagnetic systems from quantum dots to bulk materials
but rarely involved the magnon-related transport behaviors
and scattering events like MPS.

Fruitful efforts have recently been made in the theoretical
modeling and the numerical simulation of the thermal trans-
port properties in magnetic systems [59]. Using the theoretical
framework of the NEGF, several recent studies focused on
quantum mechanical modeling of the inelastic heat or spin
transfer behaviors across one-dimensional model junctions
[60–63] and three-dimensional practical interfaces [64]. These
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works suggested the possibility of tuning heat transport be-
havior through the interplay between magnons and phonons.
However, the NEGF-based methods incur high numerical
computation costs and, therefore, usually are applied to small-
enough (0.1–10 nm) nanodevices, which dramatically limits
its scope of applications. At the same time, methods based
on spin-lattice dynamics (SLD) [65–67], an extension of MD,
have been developed to assess the thermal transport properties
of vibrations and spins statistically in magnetic systems, such
as the body-centered cubic (bcc) iron [68,69] and the Co/Cu
interface [70]. One great advantage of this approach is that it
can capture the thermodynamic behavior near the phase tran-
sition temperature. Still, the accuracy of the adopted potential
function and the validity of this approach in small systems
with strong quantum effects needs further verification. In ad-
dition, several recent studies have been devoted to modeling
the spin Seebeck and spin Peltier effects [71,72], the mag-
netocaloric effect [73], and the magnon-phonon relaxation
[74] in magnetic insulators and metals, utilizing the contin-
uous BTE governed by magnon-phonon interaction. These
studies provided no complete mode-level information about
phonons and magnons with first-principles accuracy, such as
magnon-phonon scattering rates and modal mean free path.
However, these modal quantities are essential for a deeper
understanding of the interplay between magnons and phonons
and the coupled spin and heat transport behaviors.

In this paper, an ab initio approach (MP-BTE) coupling
magnons with phonons is reported based on the theoretical
framework of the Boltzmann transport equation to accurately
evaluate the thermal transport properties of magnetic crystals
at the mode level. Both magnon-phonon scattering and three-
phonon scattering are incorporated into the MP-BTE to assess
the scattering rates of magnons and phonons accounting for
the coupled magnon-phonon thermal transport behavior. Uti-
lizing this new approach, we studied the nonelectronic thermal
transport properties of the ferromagnetic bcc iron over a
broad temperature range. A reasonable agreement between
our numerical results and the available experimental data
is obtained. Despite the same scaling law of the calculated
magnon-phonon scattering rate as that reported in previous
studies [68,75], the abnormal magnon thermal conductivity at
high temperatures indicates that other magnon-involved scat-
tering events should dominate the magnon scattering. Besides,
we show that a “strong-enough” magnetic field is not always
able to accurately recover the magnon’s thermal conductivity
from the total due to magnon-phonon scattering. Finally, the
average scattering rate analysis implies that hydrodynamic
heat transport phenomena may appear at low temperatures.
These results would provide valuable references for further
exploring the nonelectronic thermal transport in bcc iron and
other magnetic materials.

This paper is organized as follows. First, the theoretical
framework of the presented MP-BTE is formulated in Sec. II,
and some momentous expressions and equations about the
magnon-phonon scattering and the linearization of the MP-
BTE are derived. To demonstrate the validity and usefulness
of this method, in Sec. III, the bcc iron crystal’s coupled
magnon-phonon thermal transport properties are analyzed in
detail and compared with the available experimental and the-
oretical data. Next, in Sec. IV, we discuss the advantages and

limitations of the presented MP-BTE approach and suggest
some application prospects of this method for further investi-
gation. Finally, we conclude this study in Sec. V.

II. THEORY AND METHOD

In ferromagnetic crystals, the nonelectronic thermal trans-
port is dominated by phonons and magnons. In the steady
state, the microscopic transition rate in the distribution of
phonons is governed by the steady-state BTE formulated by
Peierls [76]:

∂nq,λ

∂t

∣∣∣∣
scat

+ ∂nq,λ

∂t

∣∣∣∣
diff

= 0, (1)

where q and λ denote the phonon’s wave vector and branch
index, respectively. nq,λ is the undetermined phonon distribu-
tion in the steady state. The first term of the left-hand side
of Eq. (1) (labeled “scat”) is the dissipation rate of phonon
by internal scattering events, i.e., phonon isotope scattering,
three-phonon scattering, etc. The second term (labeled “diff”)
describes the phonon diffusion induced by the applied tem-
perature gradient. Following the idea of Eq. (1), we can also
write down the BTE of magnon as

∂nk,γ

∂t

∣∣∣∣
scat

+ ∂nk,γ

∂t

∣∣∣∣
diff

= 0, (2)

where k and γ denote the magnon’s wave vector and branch
index, nk,γ is the steady-state distribution of magnon.

To solve the BTEs of phonon and magnon, i.e., Eqs. (1)
and (2), we follow the idea of the widely used linearization
approximation [77,78]. For the diffusion term, generally, the
phonon (or magnon) diffusion rate driven by a small temper-
ature gradient, namely ∇T , can be given by

∂n�

∂t

∣∣∣∣
diff

= −v� · ∇T
dn̄�

dT
, (3)

where � denotes (q, λ) or (k, γ ) for phonon or magnon,
respectively. v� means group velocity, and n̄� = n̄(ε�) is the
equilibrium population, obeying Bose-Einstein statistics, of
the phonon (or magnon) with energy ε�.

On the other hand, the scattering terms in Eqs. (1) and (2)
are determined by microscopic scattering events, as shown
in Fig. 1. In the presented MP-BTE method, the phonon-
involved scattering processes include three-phonon scattering
(S3−p), isotope scattering (Sp−i), boundary scattering (Sp−b),
and magnon-phonon scattering (Sm−p). The magnon-involved
scattering processes include magnon-phonon scattering and
magnon boundary scattering (Sm−b). Notably, the first three
processes involving phonons, i.e., S3−p, Sp−i, and Sp−b,
have been generally considered in previous phonon transport
studies based on BTE [41–45]. One can find the detailed ex-
pressions of corresponding scattering rates of these processes,
respectively denoted by �

p,±
λ,λ′,λ′′ , �

p
λ,λ′ , and �

p
λ , in Appendix A.

Here we focus on the magnon-phonon scattering process, i.e.,
Sm−p.

Similarly to the case of electron-phonon scattering [79],
the phonon and magnon scattering rates arising from
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FIG. 1. Schematic of scattering processes included in the pre-
sented MP-BTE method. These magnon-involved (green straight
arrow) and phonon-involved (blue wavy line with arrow) scattering
processes include three-phonon scattering (S3−p), phonon isotope
scattering (Sp−i), phonon boundary (Sp−b) and magnon boundary
(Sm−b) scattering, and magnon-phonon scattering (Sm−p). The wavy
lines with double arrows indicate phonon-absorbed and phonon-
emitted processes. The first three processes are generally considered
in the widely used PBTE method.

magnon-phonon scattering processes have the forms

�
p,+
γ ,γ ′,λ(k, q) = π

h̄
|Mγ ,γ ′,λ(k, q)|2δ(ωq,λ + εk−q,γ ′ − εk,γ )

× (n̄k−q,γ ′ − n̄k,γ ), (4)

�m,±
γ ,γ ′,λ(k, q) = π

h̄
|Mγ ,γ ′,λ(k, q)|2δ(εk,γ ± ω∓q,λ − εk−q,γ ′ )

×
(

n̄∓q,λ ∓ n̄k−q,γ ′ + 1

2
∓ 1

2

)
, (5)

with δ(ε) the Dirac delta function. Here ε and ω denote
energies of magnon and phonon, respectively. Mγ ,γ ′,λ is the
magnon-phonon scattering amplitude and can be obtained
from the magnon-phonon coupling term of Hamiltonian as
detailed in Appendix A. �

p,+
γ ,γ ′,λ is the phonon-magnon scat-

tering rate corresponding to the absorption process where one
phonon absorbs one magnon and turns into another magnon
(ωq,λ + εk−q,γ ′ = εk+G,γ , G denotes a reciprocal lattice vec-
tor), keeping the energy and quasimomentum conservation.
�m,±

γ ,γ ′,λ are magnon-phonon scattering rates corresponding to
absorption and emission processes where one magnon ab-
sorbs or emits one phonon and turns into another magnon
(εk,γ ± ωq,λ = εk±q+G,γ ′ ). All the above scattering rates were
computed using data from the first-principles calculations, as
discussed in Sec. III A, with the locally adaptive Gaussian
approximation for the delta function [42].

According to Eq. (3), the actual distribution n� can be
linearized as n� = n̄� − τ 0

� (v� + ��) · ∇T dn̄�

dT with the equi-
librium relaxation time τ 0

� computed as

1

τ 0
q,λ

=
∑

q′,λ′,λ′′

[
�

p,+
λ,λ′,λ′′ (q, q′) + �

p,−
λ,λ′,λ′′ (q, q′)

]

+
∑

k,γ ,γ ′
�

p,+
γ ,γ ′,λ(k, q) +

∑
q′,λ′

�
p
λ,λ′ (q, q′) + �

p
λ
(q),

(6)

1

τ 0
k,γ

=
∑

q,γ ′,λ

[
�m,+

γ ,γ ′,λ(k, q) + �m,−
γ ,γ ′,λ(k, q)

] + �m
γ (k). (7)

Here �� is a correction term that carries the nonequilibrium
information beyond the relaxation time approximation (RTA)
[80]. �

p
λ and �m

γ are boundary scattering rates with the gener-
alized form

�
p(m)
� = 1

LCas

∣∣vp(m)
�

∣∣, (8)

where LCas denotes the effective sample size, namely Casimir
length, dependent on the geometry of the grain boundary
[81,82]. In this way, the resulting linearized BTE can be
concisely written as [43,78]

F� = τ 0
� (v� + ��). (9)

The expression of the correction term, including only
three- and two-phonon scattering processes, has been given in
the PBTE method [78,83]. However, unlike the case in PBTE,
the correction term �� in the presented MP-BTE is composed
of two parts, i.e., phonon and magnon parts, respectively
denoted by �q,λ and �k,γ . Considering all the scattering
processes shown in Fig. 1, these two correction terms have
forms

�q,λ =
∑

q′,λ′,λ′′
�

p,+
λ,λ′,λ′′ (q, q′)

(
ξ

q′,λ′′
q,λ Fp

q′,λ′′ − ξ
q′−q,λ′
q,λ Fp

q′−q,λ′
)

+
∑

q′,λ′,λ′′
�

p,−
λ,λ′,λ′′ (q, q′)

(
ξ

q′,λ′′
q,λ Fp

q′,λ′′ + ξ
q−q′,λ′
q,λ Fp

q−q′,λ′
)

+
∑

k,γ ,γ ′
�

p,+
γ ,γ ′,λ(k, q)

(
ξ

k,γ

q,λ Fm
k,γ − ξ

k−q,γ ′
q,λ Fm

k−q,γ ′
)

+
∑
q′,λ′

�
p
λ,λ′ (q, q′)ξq′,λ′

q,λ Fp
q′,λ′ , (10)

�k,γ =
∑

q,γ ′,λ

�m,−
γ ,γ ′,λ(k, q)

(
ξ

q,λ

k,γ Fp
q,λ + ξ

k−q,γ ′
k,γ

Fm
k−q,γ ′

)

+
∑

q,γ ′,λ

�m,+
γ ,γ ′,λ(k, q)

(
ξ

k−q,γ ′
k,γ

Fm
k−q,γ ′ − ξ

−q,λ

k,γ Fp
−q,λ

)
,

(11)

with the shorthand symbol ξ�
�′ = ε�/ε�′ , where �

p,±
λ,λ′,λ′′ are

three-phonon scattering rates corresponding to absorption and
emission processes.

Note that �q,λ and �k,γ are interrelated through F� and
thus cannot be determined separately. Several numerical al-
gorithms, namely iteration method [78,84], direct method
[44,83], and variational method [43], have been suggested to
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solve this set of self-consistent equations, i.e., Eqs. (9)–(11).
In this work, we adopt the direct method to obtain the exact
solution of MP-BTE. The final thermal conductivity can be
yielded in terms of F� as

κα,β
x = 1

kBT 2�N

∑
�

ε2
� n̄�(n̄� + 1)vα

� Fβ

� , (12)

where x labels phonon (p) or magnon (m). kB, �, and N are the
Boltzmann constant, the unit cell’s volume, and the sampling
number of k (or q) grid points, respectively. This expression
can also be written as κα,β

x = ∑
� C�v

α
� Fβ

� with C� the heat
capacity of the mode �. Incidentally, when �� = 0, Eq. (12)
will degenerate into the version under the RTA.

III. VALIDATION AND RESULTS

In this section, we apply the above MP-BTE method to the
natural isotopic bcc iron with ferromagnetic order to verify
the validity of this approach and investigate relevant thermal
transport properties. First, in Sec. III A, the dispersion rela-
tions of magnon and phonon, obtained from first-principles
calculations, are compared with available experimental data
to demonstrate the accuracy of the parameters used in this
work. The computational details are illustrated incidentally.
Next, the thermal conductivities of magnon and phonon are
calculated at the temperature range from 10 K to 1000 K, in
Sec. III B, and compared with the available experimental and
theoretical results. Furthermore, in Sec. III C, we analyze the
influence of magnon-phonon scattering on the heat conduc-
tance of magnon and phonon at the mode level in detail. After
that, in Sec. III D, the thermal transport behavior tuned by
an external magnetic field is also further explored at various
temperatures. Finally, the possibility of hydrodynamic heat
transport in the present bcc iron is indicated in Sec. III E.

A. Dispersion relations and computational details

The accurate calculation of magnon and phonon energy
spectra is crucial in searching for scattering processes that
satisfy both energy and momentum conservation. We com-
puted the dispersion relations of phonons (solid blue line,
left axis) and magnons (solid red line, right axis), as plotted
in Fig. 2, utilizing first-principles calculations based on the
density functional theory (DFT). As a comparison, the avail-
able neutron-scattering data of phonon (square marker) and
magnon (circle marker) spectra are also given. The calculated
results are considerably consistent with the experimental data,
confirming the input parameters from our first-principles cal-
culations are reliable.

The spin-polarized DFT calculation was implemented in
the Vienna ab initio simulation package (VASP) [87,88]
within the projector augmented-wave method [89,90] using
the generalized gradient approximation (GGA) and Perdew-
Burke-Ernzehof exchange-correlation functional (PBE) [91].
An energy cutoff of 500 eV was used, and a convergence
threshold of 10−8 eV was adopted for each self-consistent
electronic step. First, a relaxation process of the primi-
tive cell of bcc iron ran with a k mesh of 16 × 16 × 16
until the maximum force was smaller than 10−4 eV/Ang2

on each atom. After that, all input parameters of the

FIG. 2. First-principles phonon (dashed blue line, left axis) and
magnon (solid red line, right axis) spectrum of ferromagnetic bcc
iron. The results are compared with available neutron-scattering
data of phonon (square marker, from Ref. [85]) and magnon (circle
marker, from Ref. [86]) spectra, respectively.

MP-BTE method, i.e., exchange-coupling constants (ECCs),
second-order force constants (2nd-IFCs), third-order force
constants (3rd-IFCs), and exchange-force constants (the linear
expansion coefficient of ECCs to the displacement of the
atom, denoted by EFCs) (see Appendix A for the definition),
were computed on a 4 × 4 × 4 supercell of the optimized cell.

The Hellmann-Feynman force was computed in VASP
using a k mesh of 4 × 4 × 4 for evaluating 2nd-IFCs and
3rd-IFCs. The 2nd-IFCs were computed by the PHONOPY
package [92] combined with density functional perturbation
theory implemented in VASP. The crystal symmetry and
acoustic sum rule [93] were applied to ensure the obtained
2nd-IFCs are physical. The 3rd-IFCs were calculated by the
thirdorder.py code [78] with a cutoff radius to the seventh
nearest-neighbor atom (about 0.7 nm), which is enough to
obtain accurate three-phonon scattering information [69]. On
the other hand, to evaluate the magnetism-related parameters,
i.e., ECCs and EFCs, the spin-polarized DFT calculation was
performed in the OpenMX code [94,95] using GGA+PBE
schema with an energy cutoff of 600 Ry and a conver-
gence criterion of 10−8 Hartree. The ECCs were computed
based on the Liechtenstein method [96,97] implemented in
our in-house code interfaced with the OpenMX code. A
larger k mesh of 7 × 7 × 7 was adopted here to ensure these
magnetism-related parameters, i.e., ECCs and EFCs, were
evaluated accurately. The EFCs were obtained from the fi-
nite displacement method, as detailed in Appendix A. In
our calculations, the magnetic moments of Fe atoms in bcc
iron are about 2.216 μB, and the nearest-neighbor ECC is
about 21.4 meV (the corresponding Curie temperature is about
1326 K), basically agreeing with previous studies [98,99].

After the above calculations, we obtained all the input data
for MP-BTE, i.e., 2nd-IFCs, 3rd-IFCs, ECCs, and EFCs. In
this method, the energy spectrum of the magnon was deter-
mined by the magnon’s dynamical matrices formulated by the
ECCs, and phonon energies were obtained by diagonalizing
the phonon’s dynamical matrices computed by the 2nd-IFCs.
The scattering amplitudes of three-phonon scattering (Vλ,λ′,λ′′ )
and magnon-phonon scattering (Mγ ,γ ′,λ) were computed from
3rd-IFCs and EFCs, respectively. The specific expressions
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FIG. 3. Temperature dependence of phonon (κX
p , solid or dashed

red line), magnon (κX
m , dash-dotted or dotted blue line), and total

(κX
total, dark solid or dashed line) thermal conductivities from exact

solution (κExact
x ) or RTA (κRTA

x ) of MP-BTE with the Casimir length
of 100 µm. As a comparison, the temperature-dependent phonon
thermal conductivity without MPS (κX

p,0, solid or dash-dotted cyan
line) is plotted. The results are compared with available experimental
(square and circle symbols) and computational (triangle symbols)
data of nonelectronic thermal conductivity from Refs. [69,100,101].

for transforming these real-space matrices to the reciprocal
versions can be found in Appendix A. A k mesh of 28 × 28 ×
28 was adopted in the MP-BTE calculation to obtain conver-
gent thermal conductivities for both magnon and phonon (see
Appendix B for the convergence test). It should be noted that,
unlike the spin-lattice coupling, the magnon-phonon scatter-
ing mainly focuses on the energy exchange between the spin
waves and the atomic vibrations. The static part of exchange-
coupling-induced phonon renormalization had been contained
in the spin-polarized calculations of IFCs [64].

B. Nonelectronic thermal conductivity

Taking into account the magnon-phonon scattering, the
exact solutions of phonon thermal conductivities (κExact

p ) agree
well with the experimental measurements (nonelectronic ther-
mal conductivity) in high-purity iron samples with a grain
boundary size of about 100 µm [100,101] (unless otherwise
specified, this boundary size would be used in all calcula-
tions below), at temperatures above 200 K (see the circles
in Fig. 3). However, when the temperature drops to 100 K,
the exact solution of the total thermal conductivity (κExact

total =
κExact

p + κExact
m ) instead of the phonon thermal conductivity

is consistent well with the experimental data (see squares in
Fig. 3). Specifically, magnons make a remarkable contribution
of about 17% to the total thermal conductivity at the temper-
ature of 100 K. The above results suggest phonons instead of
magnons dominate the nonelectronic thermal transport at high
temperatures (above 200 K). Nonetheless, the contribution of

magnons to the nonelectronic thermal conductivity needs to
be attracted to attention at low temperatures (below 100 K).

Furthermore, it is also noted that the experimental re-
sults and κExact

total have opposite trends due to the anomalous
raising of κExact

m over the temperature range from 200 K to
1000 K, as shown in Fig. 3. Although this trend may be
reasonable since the Curie temperature of the bcc iron is up to
1300 K (see Appendix D for qualitative analyses). However,
in this temperature region, the predicted thermal conduction
of magnons is dominated by magnon-phonon scattering pro-
cesses. These unrealistically high thermal conductivities of
magnons indicate that other kinds of scattering events, such
as magnon-magnon and magnon-impurity scattering, should
be further considered to suppress the magnon heat conduction
at temperatures above 200 K.

Besides, temperature-induced lattice expansion and spin
disorder may also be necessary for reasonable nonelectronic
thermal conductivity at high temperatures [102]. As a compar-
ison, the nonelectronic thermal conductivities from a previous
study based on the equilibrium molecular dynamics [69] are
also plotted (triangle symbols) in Fig. 3, which is in broad
agreement with experimental measurements. This work also
suggested that the MPS contributes little to the total thermal
conductivity at high temperatures above 300 K, agreeing with
our prediction. Due to the inhomogeneity of practical iron
samples, nevertheless, we do not intend to address this issue
here and only focus on the introduction of MPS and its influ-
ence on magnons and phonons.

C. Influence of the MPS on phonons and magnons

To further illustrate the role of the MPS in thermal trans-
port, this section analyzes the influences of the MPS on
phonon and magnon at the mode level.

First, the phonon scattering rates induced by the MPS (red
circle symbols, τ−1

p−m) and all other phonon-involved processes
(black square symbols, τ−1

p−p + τ−1
p−b) at temperatures of 100,

300, and 1000 K are shown in Fig. 4. It is seen that the
phonon scattering rates induced by the MPS are much (about
two orders of magnitudes) smaller than that induced by all
other scattering processes at all temperatures. Moreover, in
the high-energy region (red dashed circle), the gap between
these two groups of scattering rates decreases with rising
temperature. These results suggest that the magnon-phonon
scattering has little impact on the phonon relaxation and the
phononic thermal conduction in bcc iron. This point can also
be seen from the exact phonon thermal conductivities with
(κExact

p ) and without MPS (κExact
p,0 ), as shown in Fig. 3. The gap

between κExact
p,0 and κExact

p increases with the temperature but is
still small enough (the percentage of the gap to κExact

p is about
4.8% at 300 K and about 12.7% at 1000 K) to be neglected.

We noticed that a recent SLD-based study [69] also sug-
gested that introducing the MPS hardly affects the phonon
thermal conductivity in bcc iron. Theoretically, this may be
attributed to the slight overlap of the density of states be-
tween magnons and phonons, resulting in a magnon-phonon
scattering far smaller than three-phonon scattering. A similar
case may be found in electron-phonon interaction. Since the
electron’s energy in materials is typically far greater than the
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FIG. 4. Phonon scattering rates from magnon-phonon scatter-
ing processes (τ−1

p−m, square black marker) and from all other
(phonon-phonon scattering τ−1

p−p = τ−1
3−p + τ−1

p−i and phonon boundary
scattering τ−1

p−b, circle red marker) processes at 100, 300, and 1000 K.
The overlap area between τ−1

p−m and τ−1
p−p + τ−1

p−b in red dashed circle
increases with temperature increasing.

phonon’s, the phonon scattering induced by electron-phonon
interaction can be neglected in most materials.

On the other hand, to show the influence of the MPS on
magnons, as shown in Fig. 5, we plotted the scattering rate
(τ−1

m ), exact mean free path [λm(ε�) = |F�|], modal thermal
conductivity (κExact

m,mod.), and the cumulative thermal conduc-
tivity [κExact

m,cum.(ε�) = ∑
�′ κExact

m,�′ θ (ε� − ε�′ ), where θ (ε) is the

FIG. 5. Temperature dependence of magnon (a) scattering rate
τ−1

m , (b) exact mean free path λm, (c) modal thermal conductivity
κExact

m,mod., and (d) cumulative thermal conductivity κExact
m,cum. at 100 K (cir-

cle marker), 300 K (triangle marker), and 1000 K (square marker). ε

denotes the magnon’s energy here. The power laws of τ−1
m ∼ε1 below

100 meV and τ−1
m ∼ε2 above 200 meV are consistent well with that

suggested in Refs. [68,75].

Heaviside step function] of magnons at different tempera-
tures. Figure 5(a) shows the total magnon scattering rates
induced by the MPS and the magnon-boundary scattering with
a Casimir length of 100 µm at 100, 300, and 1000 K. The
magnon-boundary scattering rates are not separately shown
here since they are approximately three orders more mi-
nor than the MPS-induced scattering rates. Remarkably, the
magnon scattering rate varies directly as ε1 below the en-
ergy of about 100 meV and directly as ε2 above the energy
of about 200 meV, which agrees well with previous studies
[68,75,103]. Nevertheless, the magnon damping in bcc iron
cannot be considered dominated by the magnon-phonon scat-
tering since the resulting magnon thermal conductivity shown
in Fig. 3 is markedly overestimated. This result indicates that
other scattering events, like four-magnon scattering, may need
further consideration.

To further explain the anomalous raising of magnon ther-
mal conductivity above 100 K, we show the mean free path
(λm) and the modal thermal conductivity (κExact

m ) of magnons
in Figs. 5(b) and 5(c), respectively. It is seen that, with the
temperature rising, the mean free path normally decreases,
whereas the resulting thermal conductivity of magnons with
energy above 100 meV increases anomalously. According to
the expression of thermal conductivity in Eq. (12), the only
two temperature-dependent variables governing thermal con-
ductivity are the mean free path and the specific heat capacity.
Accordingly, the abnormal increase of magnon thermal con-
ductivity should be attributed to the sharp increases in the
occupation (n̄�) and the specific heat capacity of magnons with
energy above 100 meV. To show this point intuitively, we plot-
ted the magnon cumulative thermal conductivity as a function
of energy in Fig. 5(d). One can observe the great contribution
of magnons with energy between 100 and 200 meV to the ab-
normal increase in thermal conductivity. These results suggest
that other kinds of scattering events, such as magnon-magnon
scattering, should be of further concern because the magnon
thermal conductivity is greatly overestimated at temperatures
above 100 K.

D. Effect of the external magnetic field

A “strong-enough” magnetic field is usually applied in
thermal measurements of magnetic materials to “freeze” low-
energy magnons, extracting the magnon’s contribution from
the total thermal conductivity [104–106] (see also Appendix C
for more details). Despite the complexity of thermal trans-
port in the practical bcc iron, where electrons, phonons, and
magnons coexist, in this section, we still show the nonelec-
tronic thermal transport behaviors tuned by external magnetic
fields at various temperatures as a reference for further study.

The nonelectronic thermal transport behaviors tuned by
external magnetic field H (H here denotes the magnetic-
field-induced Zeeman energy with the unit of meV) at
various temperatures are shown in Fig. 6. First, as shown
in Fig. 6(a), we plotted the ratio of exact thermal conduc-
tivity with the magnetic field of H to that with H = 0, i.e.,
κExact (H )/κExact (0), for magnons, phonons, and the total as
a function of H at the temperature of 10 K. Remarkably, the
thermal conductivity of magnons visibly depends on the exter-
nal magnetic field, while the phonon’s thermal conductivity is
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c

FIG. 6. Nonelectronic thermal conductivities tuned by external magnetic fields at various temperatures. (a) The ratio of the exact thermal
conductivity with the magnetic field of H to that with H = 0 meV at the temperature of 10 K, respectively, for phonon (blue thin line), magnon
(red line), and the total (cyan bold line). (b) Magnon’s thermal conductivity with H = 0 meV (red solid line), compared with differences
between the total thermal conductivity without magnetic field and that with H = 10 meV (red dashed line) as well as H = 100 meV (dotted
red line). (c) The temperature dependence of exact thermal conductivities of magnons (red bold lines) and phonons (blue thin lines), with
various magnetic fields of 0 meV (solid lines), 10 meV (dashed lines), and 100 meV (dotted lines).

hardly affected. The total thermal conductivity decreases by
about 10% as H increases from 0 to 10 meV (equivalent to
a strong magnetic induction of about 86 T). However, even
if such a strong field is applied, the contribution of magnons
to thermal conductivity can still not be neglected, which indi-
cates that a stronger field or a lower temperature is required to
remove the magnon’s thermal conduction.

To illustrate how strong a magnetic field is required in
experimental measurements to obtain an accurate magnon’s
thermal conductivity at various temperatures, we plotted the
differences between the total thermal conductivity without an
external magnetic field and that with H = 10 meV (dotted
line) as well as H = 100 meV (dashed line) in Fig. 6(b).
As a comparison, the exact thermal conductivity of magnons
was also plotted [solid line, κExact

m (H = 0)]. We adopted the
convention κdiff.

total (H ) = κExact
total (0) − κExact

total (H ) to simplify the
description below. One can see that the stronger the magnetic
field H is, the closer κdiff.

total (H ) is to κExact
m (H = 0). However,

there are still visible relative errors of about 11% and 21%
between κExact

m (H = 0) and κdiff.
total (100) at temperatures 10 and

20 K, respectively. With temperature further rising, this rel-
ative error increases to about 93% and 98% at temperatures
300 and 1000 K. These results imply that a “strong-enough”
magnetic field still hardly separates the magnon’s thermal
conductivity from the total in bcc iron at temperatures above
10 K. However, for ferromagnetic materials with high-energy
magnons, the magnon’s thermal conductivity should also
be important at high temperature. Therefore, the coupled
magnon-phonon transport theories and the relevant numerical
methods thus are necessary.

It is noteworthy that in the above idea of evaluating
κExact

m (H = 0) using κdiff.
total (H ), the assumption that the mag-

netic field only affects the magnons has been used. However,
this assumption may not always be reasonable because
magnons and phonons are coupled, and the magnetic field
can also indirectly influence phonons. To illustrate this point,
Fig. 6(c) shows the temperature-dependent thermal conductiv-
ity, of magnons and phonons, with various magnetic fields of
0, 10, and 100 meV. At temperatures below 100 K, the change

in the total thermal conductivity mainly originates from
magnons, while phonons dominate at temperatures above
100 K. Meanwhile, remember the discussion in Sec. III C,
at temperatures above 100 K, the MPS slightly enhances the
phonon thermal conductivity. These results indicate that the
magnon thermal conductivity (κExact

m ) may be wrongly eval-
uated in ferromagnets with strong MPS since the enhanced
part of the phonon thermal conductivity will be regarded as a
part of the κExact

m if determining κExact
m (H = 0) using κdiff.

total (H ).
The misestimated part of the magnon thermal conductivity is
induced by the MPS and should enlarge with the enhancement
of the MPS.

E. Possible hydrodynamic heat transport

Remarkably, the thermal conductivity at the RTA level is
far smaller (about one order of magnitude for magnons and
three orders of magnitude for phonons at 10 K) than that with
the exact solution at low temperatures, which usually indicates
a hydrodynamic heat transport may occur [107].

To analyze the transport state of coupled magnons and
phonons under various conditions (temperature and grain
size), we define the thermodynamic averages of several phys-
ical qualities as follows [108]:

τ−1
T(N,R),av =

∑
� C�τ

0
T(N,R),�

−1

∑
� C�

, (13)

v2
av =

∑
� C�v� · v�∑

� C�

, (14)

�RTA
av = vav/τ

−1
T,av, (15)

where τ−1
T(N,R),av is the average scattering rate with “N”, “R”,

and “T” denoting the N-scattering process (intrinsic scatter-
ing processes with momentum conservation), the R-scattering
process, i.e., intrinsic scattering processes without momentum
conservation (U-scattering processes) and boundary scattering
processes, and all processes (N- and R-scattering processes),
respectively.
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100 μm

FIG. 7. The propagation length (�Exact
av , solid line, using exact solution; �RTA

av , dashed line, at the RTA level) of (a) magnon (blue lines),
(b) phonon (red lines), and (c) the total (purple lines), as a function of the temperature. Note that (a) and (c) share the same legend (except the
color of lines for propagation length) with (b). The contour maps filled with colors denote the ratio of the average scattering rate of N-processes
to that of R-processes, namely τ−1

N,av/τ
−1
R,av, for (a) magnon, (b) phonon, and (c) the total, with respect to the temperature and the Casimir length

LCas. The line at 100 µm (dash-dotted black line) is plotted as a reference.

v2
av is the average square velocity. As before, C� and v� are

the specific heat capacity and the group velocity of magnon
(or phonon) at mode �, respectively. �RTA

av is the heat prop-
agation length under RTA. For the exact solution, the heat
propagation length is given by

�Exact
av = vav/τ

−1,Exact
T,av , (16)

where the average exact scattering rate τ−1,Exact
T,av has the form

τ−1,Exact
T,av =

∑
� C�v� · v�∑

� C�|v� · F�| . (17)

Note that boundary scattering is not considered while calcu-
lating the propagation lengths, meaning that the propagation
lengths defined here characterize an intrinsic transport prop-
erty unrelated to the grain boundary. Notably, the exact
propagation lengths are primarily limited by the U-scattering
events since the N-scattering events do not directly contribute
to thermal resistance under the exact solution.

Figures 7(a)–7(c) show the heat propagation length
[�Exact(RTA)

av , vertical axis, without boundary scattering] and
the ratio, with different Casimir lengths (LCas, vertical axis), of
the average N-scattering rate to the average R-scattering rate
(τ−1

N,av/τ
−1
R,av, contour maps filled with colors) at various tem-

peratures for magnon, phonon, and the total, respectively. It is
seen that the average propagation length using exact solution
(�Exact

av , solid line) is far greater (two orders of magnitude for
magnons, and about four orders of magnitude for phonons, at
10 K) than that with RTA (�RTA

av , dashed line), which usually
indicates a hydrodynamic heat transport may occur. The blue
areas below the lines of �RTA

av , corresponding to τ−1
N,av � τ−1

R,av,
are the ballistic region where the boundary scattering limits
the heat transport. The yellow areas above the line of �Exact

av
are the diffusive region where the R-scattering limits the heat
transport.

Following Guyer’s conditions [109], two conditions need
to be met to detect the hydrodynamic heat transport phe-
nomenon: (i) τ−1

N,av � τ−1
R,av and (ii) LCas � �Exact

av . The first

condition ensures that the N-scattering dominates the heat
transport so that the heat carriers collectively move with a
slowly dissipated global momentum and produce the temper-
ature wave. The second condition ensures that the temperature
wave is still maintained well when reaching the probing
boundary, such as the grating boundary [110]. According to
the above two conditions, if the grain boundary size is selected
as 100 µm (dark dash-dotted lines), then the hydrodynamic
heat transport will occur at the temperature range from 10
to 14 K [the intersection of �Exact

av and the line of 100 µm
in Fig. 7(c)]. In this region, the value of τ−1

N,av/τ
−1
R,av is be-

tween 101 and 102 for magnons and over 103 for phonons,
suggesting both magnons and phonons may be simultaneously
in the hydrodynamic regime. It shall inspire great interest in
not only the phonon hydrodynamic heat transport but also
the magnon hydrodynamic spin transport. However, since the
bcc iron is metallic, the electrons should also play an essen-
tial role in such dynamic heat transport behaviors through
electron-phonon coupling. Therefore, we can make no more
conclusions about the hydrodynamic heat transport in the bcc
iron but only give an inspiring reference for further studies
about relevant topics.

IV. DISCUSSION

Due to the complexity of couplings among different carri-
ers (phonons, magnons, and electrons), accurately calculating
and decoupling the thermal conductivity in bcc iron is still
challenging. Both the anomalous thermal conductivity of
magnons at high temperatures and the possible hydrodynamic
heat transport behavior at low temperatures are crucial for
a deeper understanding of the coupled magnon-phonon heat
transport in ferromagnetic systems like bcc iron. The MP-
BTE method allows people to investigate thermal transport
properties in ferromagnetic crystals at the mode level with
first-principles accuracy and therefore is complementary to
other methods such as NEGF [63,64] and SLD [67–69].
Specifically, this method fills the gap in the ab initio BTE
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method for evaluating the heat transport properties of mag-
netic crystals and is expected to vastly broaden the research
scope of thermal transport, combining with an array of tuning
means, such as phase transition [111], stacking and twisting
[112,113], gating [114], and strain [115].

Before concluding our study, we briefly highlight two
limitations that our methodology inherited from the lin-
earized Boltzmann transport equation. All these constants,
i.e., ECCs, 2nd-IFCs, 3rd-IFCs, and EFCs, are computed
by first-principles adiabatically, which means the effects of
temperature on magnon spectrum, phonon spectrum, and
magnon-phonon coupling strength are not considered. How-
ever, these effects may also be essential to heat transport
properties at high temperatures, especially around the Curie
temperature [69,102]. Therefore, the MP-BTE method is not
appropriate for the case that is far away from the perturba-
tion approximation. Furthermore, the linear approximation
adopted in Eq. (3) requires the applied temperature gradi-
ent (∇T ) to be small enough that the deviation of phonon
(magnon) distribution can be expressed in terms of the linear
order of ∇T . As a result, the small-size (0.1–10 nm) systems’
thermal conductivities given by the MP-BTE at low tempera-
tures (ballistic limit) may hardly reflect the practical situation
quantitatively.

However, even so, the MP-BTE method can still give es-
sential and in-depth insights into the coupled heat and spin
transport behaviors in magnetic systems at the mode level
and is expected to provide inspiring and valuable references
to practical applications such as thermoelectric devices [116]
and thermal logic gates [117,118].

V. CONCLUSIONS

In conclusion, we have developed an ab initio Boltzmann
transport approach, namely MP-BTE, coupling magnon with
phonon, incorporating both magnon-phonon scattering and
three-phonon scattering, for the accurate evaluation of thermal
transport properties in ferromagnetic materials. Remarkably,
the MP-BTE method can directly decouple and analyze scat-
tering rates induced by various scattering events at the mode
level. The reasonable agreement between our calculation
results and the available experimental and theoretical data
suggests the validity of this approach in capturing the coupled
heat transfer behavior of magnons and phonons in magnetic
crystals. Besides, the strong magnon-phonon scattering may
induce to obtain an unreliable magnon thermal conductivity
in the thermal measurement under a strong magnetic field.
In addition, the potential hydrodynamic behavior of magnons
and phonons should attract considerable attention to the low-
temperature heat conduction in magnetic crystals. However,
at high temperatures, other kinds of scattering events, such
as magnon-magnon and magnon-impurity scattering, should
be further considered to obtain reliable information about
magnon scattering. This new approach paves the way for the
first-principles investigation of the coupled magnon-phonon
transport behaviors in magnetic crystals at the mode level,
thus broadening the research prospects of heat management
and energy manipulation. The application of this method will
provide distinctive and deeper insights into the interplay be-
tween magnons and phonons in other magnetic materials.
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APPENDIX A: MATRIX TRANSFORMATION
AND SCATTERING AMPLITUDES

This section shows the transformation expressions of some
matrices used in the main text and derives the scattering
amplitudes of three-phonon scattering and magnon-phonon
scattering.

The energy spectra of magnons and phonons are obtained
by respectively diagonalizing the magnon’s and phonon’s dy-
namic matrices [64]:

Xi, j (k) = 1√
SiS j

∑
m

Xi, j (m, 0) exp [−ik · (Rm − R0)],

(A1)

Ki, j (q) = 1√
mimj

∑
m

Ki, j (m, 0) exp [−iq · (Rm − R0)],

(A2)

where Si and mi are the magnitude of the atomic spin and
the relative atomic mass of the ith atom, respectively. Rm is
the position vector of the mth unit cell. Xi, j and Ki, j are the
ECCs and the 2nd-IFCs between atoms (or vibrational degree
of freedom) i and j. k and q are the magnon’s and phonon’s
wave vectors that traverse the whole Brillouin zone instead of
only the yz plane. It should be noted that, by multiplying the
factor

√
SiS j , the ECCs adopted here exactly correspond to

that given by the Liechtenstein method. The diagonalization
of dynamical matrices defined in Eqs. (A1) and (A2) will
yield the phonon’s and magnon’s dispersion relations shown
in Fig. 2.

Unlike the form defined in Ref. [64], the magnon-phonon
scattering amplitude here needs to be rewritten in the modal
space as

Mγ ,γ ′,λ(k, q) =
∑
m,n,

∑
i, j,k

h̄√
2ωq,λNmk

Mi, j,k (m, n, 0)

× ϕ−k,γ ,iϕk−q,γ ′, jφq,λ,k

× exp [−ik · (Rm − R0)]

× exp [i(k − q) · (Rn − R0)], (A3)

where h̄ and N is the Planck constant and the sampling
number of wave vectors k and q. ωq,λ is the energy of the
phonon with wave vector q at branch λ. ϕk,γ and φq,λ are
the eigenvectors of magnons and phonons at specific modes,
respectively. Mi, j,k is the linear expansion coefficient of the
exchange-coupling constant between atoms i and j to the
vibrational degree of freedom k, namely the EFCs, and can
be computed using the below finite displacement idea:

Mi, j,k (m, n, l ) =
Xi, j (m, n)|r0

k +δ
− Xi, j (m, n)|r0

k −δ

2δ
, (A4)
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where r0
k is the equilibrium position of the atom with the

vibrational degree of freedom k. δ is a finite displacement
along the direction of k.

As for the three-phonon scattering amplitude, it was al-
ready given in previous studies about anharmonic phonon
transport [78,83]. Here we reproduce it using the symbols
defined in this paper as

Vλ,λ′,λ′′ (q, q′) =
∑
m,n

∑
i, j,k

h̄3√
8Nmimjmk

Vi, j,k (m, n, 0)

× φ−q,λ,iφq−q′,λ′, jφq′,λ′′,k

× exp [−iq · (Rm − R0)]

× exp[i(q − q′) · (Rn − R0)], (A5)

where Vi, j,k denotes the 3rd-IFCs. In terms of the three-
phonon scattering amplitude, the corresponding three-phonon
scattering rates have the forms

�
p,±
λ,λ′,λ′′ (q, q′) = 3 ± 1

2

π

h̄

|Vλ,λ′,λ′′ (q, q′)|2
ωq,λωq′∓q,λ′ω±q′,λ′′

× δ(ωq,λ ± ωq′∓q,λ′ − ω±q′,λ′′ )

×
(

n̄q′∓q,λ′ ∓ n̄±q′,λ′′ + 1

2
∓ 1

2

)
, (A6)

where “+” and “−” denote the absorption and emission pro-
cesses of three-phonon scattering, respectively.

Besides, the expression of phonon-isotope scattering rate
has been given in previous studies [119,120]. We also repro-
duce it here for reference as follows:

�
p
λ,λ′ (q, q′) = πωq,λωq′,λ′

2Nh̄
δ(ωq,λ − ωq′,λ′ )

×
∑

i

gi| 	φ∗
q′,λ′;i · 	φq,λ;i|2, (A7)

where gi = ∑
α f α

i (1 − mα
i /m̄i )2 is the Pearson deviation co-

efficient of masses mα
i of isotopes α of atom i. f α

i and m̄i = mi

are the amount ratio of isotope α and the average mass of atom
i, respectively. For iron atoms, gi = 8.219 × 10−5 is used in
this work.

APPENDIX B: CONVERGENCE TEST OF K-MESH

We show the convergence testing results in this section. To
find a sufficiently dense grid to obtain reasonable thermal con-
ductivities, as shown in Fig. 8, we computed the exact thermal
conductivities of magnon and phonon using various k meshes,
i.e., N × N × N (N = 12, 14, . . . , 30), at temperatures of 10,
100, 300, and 1000 K. It is seen that thermal conductivities
converge harder at low temperatures. However, a k mesh of
28 × 28 × 28 is dense enough for thermal conductivities to
converge over temperatures from 10 K to 1000 K. A denser
k mesh may yield more accurate results at low temperatures
but provide no more information except for wasting more
computing resources.

In particular, we emphasize that the poor convergence at
10 K does not affect our conclusions about possible hydrody-
namic transport in Sec. III E. To demonstrate this point, we
extend the grid point number to the largest that we can use,

FIG. 8. Magnon’s (dotted blue lines, κExact
m ) and phonon’s (dotted

orange lines, κExact
p ) exact thermal conductivities calculated with

various k meshes, i.e., N × N × N (N = 12, 14, . . . , 30), at different
temperatures of 10, 100, 300, and 1000 K. No boundary scattering
was considered in these calculations.

i.e., N = 34, and perform the convergence test. The results
are shown in Fig. 9. We would like to explain the validity of
our conclusion from two aspects below.

On the one hand, it can be seen that thermal conductiv-
ities have an increasing trend or oscillatory behavior with
the increase of N , and these unstable values become stable
as temperature increases. We may not be able to conclude

20

×102

FIG. 9. Magnon’s (dotted blue lines, κExact
m ) and phonon’s (dotted

orange lines, κExact
p ) exact thermal conductivities calculated with

various k meshes, i.e., N × N × N (N = 12, 14, . . . , 34), at different
temperatures of 10, 15, 20, and 30 K. No boundary scattering was
considered in these calculations.
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2

FIG. 10. Magnon’s (dotted blue lines, κExact
m ) and phonon’s (dot-

ted orange lines, κExact
p ) exact thermal conductivities calculated with

various k meshes, i.e., N × N × N (N = 12, 14, . . . , 34), at different
temperatures of 10, 15, 20, and 30 K. The Casimir length of 100 µm
was considered in these calculations.

that the thermal conductivities are convergent at 10 K, but
we can think that they are nearly convergent above 15 K (in
fact, at 15 K, they look oscillatory as N increases). That is,
thermal conductivities and other thermal properties we cal-
culated at 15 K should be relatively convergent. Meanwhile,
we emphasize that the exact propagation length (bold solid
lines in Fig. 7), i.e., the effective collective mean free path of
a group of particles (magnons, phonons, or all particles), is
bound to increase as the temperature decreases. So, at tem-
peratures below 15 K, the exact propagation lengths should
be greater than that above 15 K, i.e., near or greater than
100 µm, which means the hydrodynamic transport may still
occur.

On the other hand, as the grid becomes denser, the exact
thermal conductivities (at 10 and 15 K) show rising trends
overall, which implies the ideal thermal conductivities (with
a dense-enough grid) should be near or greater than that with
N = 28. And therefore, the corresponding exact propagation
lengths with a dense-enough grid should be greater than the
current exact propagation lengths (see bold solid lines in
Fig. 7), which will lead to a more apparent hydrodynamic
behavior in the currently given temperature region (10–14 K).
From this perspective, the present results even estimate the
hydrodynamic behavior conservatively.

According to the above analyses, the poor convergence
at low temperatures does not change the conclusion that the
hydrodynamic behavior may occur at the present temperature
region, i.e., 10–14 K. The current numerical results at low
temperatures show at least the correct trend.

As a reference, we also show the convergence test results
of thermal conductivities with the boundary scattering of 100
µm in Fig. 10 because the thermal conductivities in Fig. 3 were
given under this condition. A more stable convergence can be

FIG. 11. Schematic of the mechanism of external magnetic field
suppressing magnon’s transport.

obtained after considering the boundary scattering, indicating
results in Fig. 3 should be credible under the MP-BTE method
in the present work.

APPENDIX C: HIGH-FIELD-SUPPRESSED
MAGNON TRANSPORT

In this section, we briefly analyze how strong mag-
netic fields suppress the magnon’s transport and ex-
tract the magnon’s contribution from the total thermal
conductivity.

Magnon dispersion at an easy-axis magnetic field can be
expressed as

εk (B) = ε0
k + gμBBS, (C1)

where g = 2 is the Landé g factor of the electron, μB is the
Bohr magneton, and B is the magnetic induction. The first
term of the right-hand side of the above equation, i.e., ε0

k ,
denotes the zero-field magnon dispersion. For bcc iron, the
magnon dispersion as shown in Fig. 2 is just the zero-field one.
The second term is the so-called Zeeman energy, replaced by
H in the main text. Therefore, the external field can raise the
magnon’s energy spectrum. Figure 11 shows the schematic for
this process.

Besides, notice that the magnon excitation follows the
Bose-Einstein distribution. At low temperatures (see the right-
hand side of Fig. 11), only low-energy magnons are excited,
while the high-energy magnons have negligible occupancies.
So, suppose a strong-enough magnetic field is applied to
increase magnons’ energies so that nearly no magnon can
be excited. In that case, magnons will hardly contribute to
thermal transport, and the total thermal conductivity will be
considered donated purely by phonons. In other words, the
difference between the thermal conductivities with and with-
out the external field can be approximately attributed to the
magnon’s thermal transport, i.e.,

κm ≈ κtotal(H = 0) − κtotal(H → +∞), (C2)

since phonons are considered unaffected by the external field.
This idea has been widely adopted in thermal measurements
of magnetic materials as a prob to detect the quantum trans-
port behavior of spin or magnon [104,105].

However, the above approximation is valid only if the
magnons are wholly frozen by the external field, which re-
quires low-enough temperatures or strong-enough magnetic
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fields. For example, T = 10 K and H = 100 meV are re-
quired in the bcc iron. At high temperatures (see the left-hand
side of Fig. 11), the original magnetic field cannot freeze
all magnons. And the magnons with relatively low energies
still have a palpable occupancy and therefore donate to the
total thermal conductivity. In this case, one will underestimate
the magnon’s contribution to the total thermal conductivity if
using Eq. (C2).

APPENDIX D: QUALITATIVE RELATIONSHIP BETWEEN
CURIE POINT AND TRANSITION TEMPERATURE

We provide a brief qualitative analysis of the relation-
ship between the Curie temperature (TC) and the magnon’s
thermal conductivity transition temperature (TM , i.e., the cor-
responding temperature of maximum thermal conductivity) in
ferromagnetic crystals.

Considering the nearest exchange interaction, the Curie
temperature of a periodic ferromagnetic system can be

approximately determined as [99]

TC = 2

3kB
ZJ, (D1)

where kB is the Boltzmann constant, Z is the coordination
number (Z = 8 for bcc iron), and J is the effective nearest
exchange-coupling constant (with energy units). On the other
hand, the maximum energy of magnon is dependent on J as
εmax = 2ZJ . So the Debye temperature (�) should be propor-
tional to J , i.e., � ∝ J . Moreover, the transition temperature
is usually positively correlated to the Debye temperature, i.e.,
TM ∝ �. Accordingly, we can approximately consider that
TM ∝ TC .

Note that the above qualitative analysis has adopted
many rough assumptions and approximations. Therefore,
the final relation may not always be proper, especially
for different materials with different crystal symmetries.
Besides, the specific scattering detail is also essential to
determine TM . But we can broadly consider that ferro-
magnetic materials with higher TC may typically also have
higher TM .
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