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Wetting critical behavior in the quantum Ising model within the framework
of Lindblad dissipative dynamics
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We investigate the critical behavior, both in space and time, of the wetting interface within the coexistence
region around the first-order phase transition of a fully connected quantum Ising model in slab geometry. For
that, we employ the Lindblad master equation formalism in which temperature is inherited by the coupling to a
dissipative bath, rather than being a functional parameter as in the conventional Cahn’s free energy. Lindblad’s
approach gives not only access to the dissipative dynamics and steady-state configuration of the quantum
wetting interface throughout the whole phase diagram but also shows that the wetting critical behavior can
be successfully exploited to characterize the phase diagram as an alternative to the direct evaluation of the free
energies of the competing phases.
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I. INTRODUCTION

Wetting is an interfacial phenomenon that concerns the
ability of liquids to maintain contact with solid or liquid
substrates. Specifically, the study of wetting focuses on un-
derstanding the relationship between bulk phase transitions
and surfaces. Indeed, a rich variety of phase transitions oc-
cur when bulk and surface degrees of freedom are coupled
[1–11]. Clearly, this problem is extremely vast and rich.
Wetting phenomena have been investigated in a variety of
systems ranging from classical ones, such as in liquid-vapor
phase transitions or binary liquid mixtures of linear alkanes
and methanol, to polymeric mixtures, superfluid 4He on thin
cesium substrates, liquid 3He on superfluid 4He, dilute ultra-
cold gases undergoing Bose-Einstein condensation, and many
others [12–19].

In this study, we focus on the dynamics and the equilib-
rium configuration of the wetting layer that can form within
the coexistence region accompanying a quantum first-order
phase transition [20–24]. Several attempts to disclose the wet-
ting phenomenon in the quantum realm have relied on the
quantum-classical mapping, i.e., on the idea that the properties
of d-dimensional quantum systems at zero temperature across
a phase transition correspond to those of classical systems in
higher dimensions [25]. Adopting a simple fully connected
quantum spin Ising model, the authors of Ref. [24] observed
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that the critical properties of wetting in the quantum case
indeed correspond to the classical ones in higher dimensions,
specifically d + 1 in that mean-field model; however, they
found that the singular behavior of quantum fluctuations is dif-
ferent from that of classical fluctuations at finite temperatures.
Commonly, the wetting phenomenon, even in the quantum
regime (see, e.g., Ref. [26]), has been described within the
Landau-Ginzburg framework, as the Cahn’s free-energy func-
tional [1]. There, temperature simply enters as a parameter
of the functional that controls the relative depths of the two
potential wells, whose crossing defines the first-order bulk
phase transition. In this work, instead, we investigate whether
the wetting phenomenon can be accessed by the dissipative
quantum dynamics in the presence of a thermal bath; dynam-
ics that we approximated via a Lindblad equation (LE) of
motion for the density matrix of an exactly solvable toy model.
In the Lindblad approach, the temperature is provided by the
bath, and thus it is not a parameter of the system quantum
Hamiltonian. We show that our approach is able to recover
the conventional wetting critical phenomenon for short-range
interactions [3].

Specifically, in this article we consider a slab geometry
constituted by L layers, which is a discrete version of the
model of Ref. [24]; each layer is modeled by a quantum Ising
model with N fully connected sites. In the thermodynamic
limit, N → ∞, the mean-field approximation becomes exact,
and the equilibrium state of the single-layer system can be
found by solving a set of self-consistency equations. The
single-layer model possesses already a nontrivial phase dia-
gram that, depending on the form of the spin-spin interactions,
can display first- or second-order quantum and thermal phase
transitions. Thanks to its simplicity, such a model has been
widely employed in the past [27–29], for instance, to study the
relaxation dynamics towards equilibrium in the presence of
dissipation [30–32]. We define the single-layer Hamiltonian
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such that it may undergo a first-order phase transition, and
set its parameters so that the single layer is in the coexistence
region. In addition, we couple each layer to its nearest neigh-
bor layers, as well as to a dissipative bath by means of the
Lindblad master equation (LE) [33–35]. The LE is the most
general Markovian, time-local generator for a system density
matrix; it is among the most popular master equations, and it
has been employed in various and different contexts [36–41].

To study wetting, which is an inhomogeneous phe-
nomenon, we fix inhomogeneous boundary conditions, i.e.,
the first (respectively, last) layer is kept fixed in the ordered
(respectively, disordered) phase of the coexisting region of
the phase diagram. Instead, we assume a Lindblad dissipative
dynamics for each layer in the bulk, with jump operators de-
fined through the instantaneous mean-field Hamiltonian. This
allows us to numerically investigate arbitrarily large system
sizes, and to explore the wetting phenomenon without resort-
ing to Cahn’s free energy functionals since the temperature
of the system is fixed by the bath. We show that, within
our model and the LE scheme, the wetting phenomenon
spontaneously emerges during the quantum dissipative dy-
namics; we are able to uncover details of the static and
dynamic properties of the wetting interface as a function of
the Hamiltonian parameters and the bath temperature. Our
results are in agreement with the conventional wetting critical
phenomenon for short-range interactions [3]. Even though the
mean-field nature of our model does not allow studying corru-
gated configurations of the interface [21], our analysis yields
a novel result not predicted by Landau-Ginzburg approaches.
Indeed, if one unphysically discards longitudinal fluctuations
in Cahn’s free-energy functional, thus the contribution of cap-
illary waves, and only considers the dynamics of the interface
center of mass, then the wetting critical phenomenon is not
accompanied by any critical behavior of the relaxation time,
as can be inferred by Refs. [4,5]. Unlike in Cahn’s approach,
we show that the Lindblad dynamics of our toy model does
predict a critical relaxation that, however, in real systems
would be hidden by the slower relaxation due to the critical
capillary waves.

The mean-field model introduced in this paper constitutes
a promising tool to address the role of quantum fluctuations
on wetting phenomena and can be potentially adapted to in-
vestigate other complex many-body phenomena in quantum
dissipative systems by changing, for instance, the boundary
conditions. Recently, appropriate variants of the toy model
proposed in this paper have been successfully applied to sev-
eral contexts, from the Mpemba effect to selective cooling
[30,31,42].

The paper is organized as follows. In Sec. II we present
the model Hamiltonian of the single-layer, fully connected
quantum Ising model and review its dissipative dynamics
yielded by the Lindblad equation. In Sec. III, we extend the
formalism discussed in the former section to a multilayer
system in which multiple copies of the single-layer system
are connected one to the other to form a slab of length L. Each
bulk layer is coupled to a dissipative bath while the states of
the first and last layers are kept fixed. Section IV is devoted to
the discussion of the relaxation and equilibrium properties of
the multilayer system. In particular, we analyze the behavior
of the layer-resolved equilibrium energy, order parameter, and

FIG. 1. Phase diagram of the single-layer model (2). In the region
labeled as F, there is only a ferromagnetic free-energy minimum, and
the Z2 symmetry is broken. Conversely, in region P there is only
a paramagnetic minimum. FP and PF regions present three distinct
minima: two are ferromagnetic, and one is paramagnetic. In FP, the
ferromagnetic minima are absolute minima; in PF, the paramagnetic
minimum is the absolute minimum. The F-P phase transition occurs
along the dashed line separating FP from PF, and it takes place
when the free energies cross. The solid lines between F and FP, and
between P and PF, are spinodal lines where an additional metastable
free energy minimum appears beside the stable one.

relaxation time. Finally, in Sec. V we summarize our results
and discuss possible future directions of our work.

II. SINGLE-LAYER SYSTEM

In this section, we briefly mention the properties of the sin-
gle layer when it is decoupled from all the others. In particular,
we discuss its phase diagram and show how we construct the
Lindblad jump operators to describe its relaxation dynamics.

A. The quantum spin model for the single-layer system

We model each layer as a quantum Ising model on an
N-site fully connected graph, described by the general Hamil-
tonian [27–29]

H = −hx

∑
i

σ x
i − N

m∑
n=2

Jn

(
1

N

∑
i

σ z
i

)n

, (1)

where m � 2 is an integer number, σα
i , with α = x, y, z, are

the Pauli matrices on site i = 1, . . . , N , hx is the transverse
magnetic field, and Jn are the n-spin exchange constants. In
the following, we concentrate on the case J2 �= 0, J4 �= 0, and
Jn �=2,4 = 0, for which the model (1) undergoes a first-order
phase transition [24,43]: increasing either the temperature T
or the transverse field hx, the system goes from an ordered,
ferromagnetic phase (F) to a disordered, paramagnetic one
(P).

In the following, we will express all energies in units of
J2 = J4 = 1. Thus, our single-layer system Hamiltonian reads

H = −hx

∑
i

σ x
i − 1

N

(∑
i

σ z
i

)2

− 1

N3

(∑
i

σ z
i

)4

. (2)

The phase diagram of the model (2) has been already studied
in the past [24,30,43]; it is illustrated in Fig. 1.

Thanks to the full connectivity of Hamiltonian (2), mean-
field approximation becomes exact in the thermodynamic
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limit N → ∞, as ensured by the vanishing of the covariance

〈
σα

i σ
β
j

〉 − 〈
σα

i

〉〈
σ

β
j

〉 → 1

N
−−−→
N→∞

0. (3)

It follows that the equilibrium Boltzmann distribution is
given by

ρ −−−→
N→∞

∏
i

ρi =
∏

i

e−βHi

Tr(e−βHi )
, (4)

where ρi is a positive definite 4 × 4 matrix with unit trace, and
the single site Hamiltonian Hi reads

Hi = −hx σ x
i − hz(m) σ z

i , (5)

with

hz(m) = 2mz + 4m3
z . (6)

m = (mx, my, mz ) indicates the Bloch vector, with compo-
nents

mα := 1

N

∑
i

〈
σα

i

〉
. (7)

Notice that the Bloch vector verifies |m| � 1, where the equal-
ity is fulfilled only by pure states, and that the single-site
density matrix can be written as ρi = 1

2 (1 + m · σ i ). Thanks
to the exact validity of the mean-field approximation, we can
consider a single spin at a time and drop the index i.

It is easy to show that, when the system is at equilibrium
with a bath at temperature T , its state is determined by a set
of self-consistency equations:

m = tanh βh(m)
[

cos θ (m), 0, sin θ (m)
]
, (8)

where

tan θ (m) = hz(m)

hx
, (9)

h(m) =
√

h2
x + hz(m)2 . (10)

B. Lindblad master equation for the single layer

The Lindblad master equation (LE) is the most general
Markovian master equation. It can be derived starting from a
microscopic Hamiltonian describing the interaction between
the system (S) and the bath (B)

H = HS + HB + αHint. (11)

HS and HB denote the system and the bath Hamiltonian,
respectively, Hint the interaction Hamiltonian, and α the
system-bath coupling strength. Under the Markov-Born ap-
proximation, i.e., assuming a weak coupling between the
system and the bath, α � 1, and assuming that the bath relax-
ation time is much smaller than the characteristic timescales
of the system, the system-bath density matrix is factorized at
any time as

ρS+B(t ) � ρS (t ) ⊗ ρB(0), ∀ t . (12)

Tracing out the bath degrees of freedom, it is possible to derive
an effective equation of motion for the reduced density matrix

of the system only that, in the standard Lindblad form, is given
by

ρ̇S (t ) = −i[HS, ρS (t )]

+
∑

λ

[γλ(2LλρS (t )L†
λ − {L†

λLλ, ρS (t )})

+ γ̄λ(2L†
λρS (t )Lλ − {LλL†

λ, ρS (t )})], (13)

with λ = 1, . . . , N2 − 1, where N is the dimension of the
Hilbert space of the system [34]. The first term on the right-
hand side is the Liouvillian which describes the coherent
evolution of the system. The second and third lines constitute
the Lindbladian term which describes the incoherent evolution
due to the interaction between the system and the bath. The
Lλ’s are the so-called “jump operators” that model the stochas-
tic interaction between the system and the bath. The coupling
strength γλ and γ̄λ are proportional to α2; their explicit form
strongly depends on the microscopic description of the en-
vironment through the bath correlation functions. It is worth
noticing that, while the LE is in general a first-order linear
differential equation for the reduced density matrix, in the
presence of a mean-field model (as in this paper) the reduced
density matrix becomes nonlinear giving rise to a nontrivial
behavior.

The LE is the most general dynamical Markovian map that
is trace preserving and completely positive (CPT or Kraus
map), i.e., it maps density matrices into density matrices.
In the following, as we are dealing with a mean-field toy
model and to remain as general as possible, we introduce
the LE within the latter perspective without restoring to any
particular microscopic model for the description of the bath
(see Refs. [44,45] for two recent microscopic derivations of
the LE; in contrast to the quantum optical derivation [34], in
Refs. [44,45] the LE is derived from a microscopic model
without performing the rotating-wave approximation so that
this derivation can be applied to any Markovian open quantum
system).

To describe the system-bath interaction we insert in
Eq. (13) a complete set of jump operators acting on the system
degrees of freedom. In particular, we introduce the energy-
conserving, pure-dephasing operators

Lλ(m,m) = |m〉〈m|, (14)

where |m〉 are the eigenstates of the system Hamiltonian HS ,
and dissipative jump operators that produce transitions be-
tween two different eigenstates:

Lλ(m,n) = |m〉〈n|, En < Em. (15)

At this point, we only require that the Boltzmann distribution
is a stationary solution of Eq. (13), i.e., the bath acts as a
dissipative bath at fixed inverse temperature β. It is easy
to verify that this implies a detailed balance condition on
the system-bath coupling strength in the form: γλ/γ̄λ = e−βελ

with ελ = Em − En � 0. Thanks to the freedom left by such a
condition, in the following we set

γ̄λ = 
 f (−βελ/2), (16)

with f (x) the Fermi-Dirac distribution function, and 
 the
overall system-bath coupling strength [46]. Let us note that
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the pure dephasing operators Lλ(m,m) automatically satisfy the
detailed balance condition, as they do not imply any energy
transfer; thus, they do not spoil the stationary solution given
by the Boltzmann distribution. For this reason, we resort to the
so-called “relaxation without pure dephasing” condition [47],
assuming γλ(m,m) = γ̄λ(m,m) = 0. Such a condition is satisfied
in a broad class of microscopic models (see Ref. [48] for a
detailed discussion) and allows us to compare the results in
this paper with previous results obtained on the same system
[30,31].

Reference [30] extensively discusses many possible ways
in which the Lindblad jump operators can be defined to cap-
ture the physics of the model (2). Here, we consider one
choice that, we will argue, allows us to correctly reproduce the
dynamics of the wetting interface in the multilayer system (see
Sec. IV), and recover the semiclassical results of Ref. [24].

Starting from a factorized density matrix, the full connec-
tivity of the model (2) ensures that it remains factorized at any
time:

ρS (t ) −−−→
N→∞

∏
i

ρi(t ), (17)

where ρi(t ) describes the time evolution of the spin i, coupled
to a bath at temperature T and in the presence of a time-
dependent magnetic field given by Eqs. (5) and (6):

h(t ) := h[m(t )] (18)

:= {hx, 0, 2mz(t ) + 4[mz(t )]3}, (19)

with

m(t ) = 1

N

∑
i

Tr[ρS (t )σ i], (20)

which is self-consistently determined by the system’s time
evolution. Notice that the mean-field nature of the model is
at the origin of the self-consistency of the dissipative dynam-
ics. Hence, we can formally define a time-dependent system
Hamiltonian as

Ht := −h(t ) · σ := −∣∣h(t )
∣∣ v3(t ) · σ, (21)

which is just a two-level system Hamiltonian with a time-
dependent magnetic field. From Eq. (15), we can write the
instantaneous Lindblad jump operators

L(t ) = |1〉〈0| = [v1(t ) − iv2(t )] · σ/2

:= v−(t ) · σ/2, (22)

and its Hermitian conjugate

L†(t ) = |0〉〈1| := v+(t ) · σ/2, (23)

where

v+(t ) ∧ v−(t ) = 2v3(t ), (24)

v+(t ) = [v−(t )]∗. (25)

The energy difference between the eigenvalues of the instan-
taneous Hamiltonian is simply ε(t ) = 2|h(t )|. Thus, γ̄ (t ) and
γ (t ) depend on time.

In the case v3(t ) = (0, 0, 1) = ẑ, Eqs. (22) and (23) reduce
to σ∓ up to an arbitrary phase factor corresponding to a free

rotation on the x-y plane. In general, due to the mean-field
nature of the system Hamiltonian (2), the magnetic field acting
on the layer changes magnitude and direction over time [see
Eqs. (18) and (19)]; the Lindblad jump operators change ac-
cordingly, following the instantaneous magnetic field on each
layer, and being the lifter/lowerer operators of the Hamilto-
nian at each time.

In turn, this yields a LE with time-dependent parameters,
where the expectation value of the spin operator is given by

ṁ(t ) = Tr[ρ̇S (t )σ] = −2h(t ) ∧ m(t )

− γ (t )

2
{4[v3(t ) + m(t )] − v−(t )[v+(t ) · m(t )]

− v+[v−(t ) · m(t )]}
+ γ̄ (t )

2
{4[v3(t ) − m(t )] + v−(t )[v+(t ) · m(t )]

+ v+(t )[v−(t ) · m(t )]}. (26)

It is worth noting that, in our approach, the instantaneous
Lindblad operators and the corresponding coupling strengths
are functions of the density matrix itself due to the mean-field
approximation. To guarantee that the Markovian approxima-
tion is fulfilled at any time t , we require an instantaneous
update of the Lindblad jump operators. In Ref. [30], it has
been shown that the Lindblad jump operators (22) and (23)
are not able to capture the long-time dynamics of the single-
layer system, which remains trapped at all times in the closest
stationary state, even if metastable. Indeed, in the presence
of a first-order phase transition, the system can exhibit more
than one coexisting phase, whether stable or metastable. In the
single-layer system considered here, for a LE with dissipative
operators (22)–(23), each phase has a different “basin of at-
traction” as a function of the initial condition, i.e., the system
is attracted by one of the possible minima depending on the
basin of attraction to which the initial condition belongs to.
In this case, to describe the full dynamics, both at short and
long times, and the relaxation to the true equilibrium state,
one needs to write the master equation as a sum of competing
terms, one for each phase (either stable or metastable). In this
way, both supercooling and the Mpemba effect emerge during
the dissipative dynamics. Fortunately, we will not need such
a complicated master equation to describe the relaxation and
equilibrium dynamics of the wetting layer, as will become
clear in the next sections.

III. MULTILAYER SYSTEM

In this section, we introduce the multilayer model for quan-
tum wetting that we are going to investigate in the following.
We discuss how we introduce the inhomogeneities at the
boundaries, and how we couple each layer in the bulk to a
bath to study the relaxation and equilibrium dynamics of the
wetting interface.

A. The quantum spin model for the multilayer system

Let us now consider a multilayer system composed of L
layers, where each layer is modeled by the Hamiltonian in
Eq. (2), and it is coupled to its nearest neighbor layers via
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FIG. 2. Graphical representation of the model. We consider a
multilayer system composed of L layers. The first and the last layers
are fixed: they are set to the ferromagnetic (F) and paramagnetic (P)
state, respectively. All the other layers are coupled to a heat bath at
temperature T , as schematized by the springs.

quadratic and quartic terms:

HT =
L∑

�=1

H� −
L−1∑
�=1

{
J̃2

N

(∑
i∈�

σ z
i

)( ∑
i∈�+1

σ z
i

)

+ J̃4

N3

( ∑
i∈�

σ z
i

)2( ∑
i∈�+1

σ z
i

)2 }
, (27)

where H� is the Hamiltonian (2) for layer �. In the follow-
ing, we set J̃2,4 = J2,4/2 = 1/2 so that the equilibrium phase
diagram of the homogeneous multilayer model (i.e., when
all layers are in the same state) reduces to the one of the
single-layer case in Fig. 1 with the presence of a coexistence
region where both the ferromagnetic (F) and paramagnetic (P)
phases are minima of the free energy.

In the thermodynamic limit, the mean-field single site
Hamiltonian for layer �, dropping the site index, reads

H∗ � = −hx σ x
� − (

mz
� + 2mz

�
3
)
σ z

�

− 1/2
(
mz

�−1 + mz
�+1

)
σ z

�

− (
mz

�−1
2 + mz

�+1
2
)
mz

� σ z
� . (28)

We see that when the multilayer system is in the homogeneous
case, i.e., all the layers are in the same state, Eq. (28) reduces
to the single-layer Hamiltonian of Eq. (5).

B. Lindblad master equation for the multilayer system

We study the dynamics of the wetting layer when the single
layer is within the coexistence phase illustrated in Fig. 1.
Within the coexistence phase, the single layer presents both
stable and metastable phases. In the FP region, the ferromag-
netic minima are stable (i.e., have a lower free-energy), and
the paramagnetic is metastable; viceversa in the PF region. To
model the presence of the wetting layer, we fix the first and
the last layers of the multilayer system in the ferromagnetic
(F) and paramagnetic (P) phase, respectively. All other layers
are coupled to a heat bath and are free to evolve in time. The
system is depicted in Fig. 2.

Following the same line of reasoning of Sec. II for the case
of a single layer, we can write the dissipative dynamics of the

full system considering a time-dependent magnetic field for
each layer � which is self-consistently determined by the sys-
tem dynamics. From Eq. (28), the time-dependent magnetic
field, accounting for both the intra- and interlayer interactions,
is

h�(t ) := |h�[m�(t ), m�−1(t ), m�+1(t )]|
× v3

�[m�(t ), m�−1(t ), m�+1(t )] (29)

:= {
hx, 0, mz

�(t ) + 2 mz
�(t )3

+ 1/2
[
mz

�−1(t ) + mz
�+1(t )

]
+ [

mz
�−1(t )2 + mz

�+1(t )2
]

mz
�(t )

}
. (30)

From Eq. (29), we can define the single-layer time-dependent
jump operators, similarly to Eqs. (22)–(23), the only differ-
ence being that both the magnitude and the direction of the
time-dependent magnetic field h�(t ) vary between layers. In
fact, for each layer �, we obtain a LE for the expectation
value of the magnetization similar to Eq. (26), in which
h(t ), v3(t ), v+(t ), v−(t ) depend on m�(t ), m�−1(t ), m�+1(t ).
Notice that the presence of the coupling between layers
gives rise to a set of coupled first-order nonlinear differential
equations that determine the wetting dynamics. Our imple-
mentation of the numerical solver for such a set of differential
equations is provided at Ref. [49].

IV. RESULTS

In this section, we discuss the results of the relaxation
dynamics and equilibrium configuration of the multilayer
quantum spin model described in Sec. III, where inhomo-
geneities are introduced across the boundaries of the system in
the presence of a first-order phase transition. In the following,
we always set T and hx within the coexistence region of the
single layer model (2). To study interface phenomena, we con-
sider a finite length L, multilayer system, as depicted in Fig. 2,
with the first and last layers, i.e., the boundaries, fixed in the F
and P state respectively. At equilibrium, we expect that when
T and hx are in the FP (PF) phase, the bulk of the system
lies in the F (P) phase while a small but finite region, i.e.,
the wetting region, forms near the last (first) layer of the slab.
In the following, we discuss the energy cost and thickness of
the wetting region as a function of the temperature and the
magnetic field. Moreover, we discuss the dependence of the
relaxation time on the bath coupling strength.

A. Energy

Let us start by looking at the relaxation dynamics in the
T � 0.07 (i.e., T ≈ 0) limit: the coexistence region extends
from hx � 2 to hx � 2.83, and the critical magnetic field sep-
arating the FP and PF phases is hc � 2.63113. At t < 0, the
system is prepared in its equilibrium minimum, i.e., all the
layers are in the F (P) phase for hx lower (higher) than hc. The
state of each layer is specified by the Bloch vector mF (mP)
self-consistently determined by Eqs. (8)–(10). At t = 0 we fix
the first and last layers into the F and P phase, respectively; at
the same time, each layer in the bulk is connected with its own
bath (see Fig. 2). Suddenly, the Bloch vector of each layer,
m�, starts to evolve in time while each layer exchanges energy
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FIG. 3. Layer-resolved time evolution of the energy for a system
of L = 50 layers for 
 = 0.2, in the FP phase (hx = 2.55, top panel),
and in the PF phase (hx = 2.65, bottom panel). In both cases, the
first layer is constrained into the F phase and the last layer into the
P phase. The dot-dashed line is the energy of the homogeneous F
phase (εF), and the dashed line is the energy of the homogeneous P
phase (εP). Only the layers closer to the corresponding metastable
boundary are explicitly shown as the energy of the layers in the bulk
overlaps with the energy of the stable minima, i.e., min[εF, εP]. The
label � of each layer is shown near each curve.

with its neighbors and with the bath to reach the new equilib-
rium configuration that minimizes the energy of the multilayer
system, compatibly with the inhomogeneity introduced via the
boundaries.

In Fig. 3 we plot the time evolution of the single-layer
energy, defined as

ε� = −hxmx
� − 1

2 mz
�

2 − 1
2 mz

�
4

− 1
4

(
mz

�−1 + mz
�+1

)
mz

�

− 1
4

[
(mz

�−1)2 − (
mz

�+1

)2]
mz

�
2, (31)

obtained numerically by integrating the nonlinear LE given
by Eqs. (26) and (29). We consider a bath coupling strength

 = 0.2 and magnetic field along x below, hx = 2.55 (top
panel), and above, hx = 2.65 (bottom panel), the critical value
hc. From now on, we refer with εF (εP) to the single-layer
energy of a homogeneous system with magnetization vector
mF (mP), i.e., εF ≡ ε�(m� = mF ∀�) (εP ≡ ε�(m� = mP ∀�)).

Notice that the single-layer energy has an intralayer
contribution plus an interlayer term. At t = 0, when the in-
homogeneities at the boundaries are created, all the layers
deep in the bulk of the system have the same energy as
in the stable homogeneous configuration. On the contrary, a
large energy contribution emerges from the interlayer term
at the metastable boundary, due to the discontinuity in the
magnetization between the boundary layer in the metastable

FIG. 4. Black line: energy per layer, ε�, of the homogeneous
system as a function of the order parameter for hx = 2.55 (FP, left
panel) and hx = 2.66 (PF, right panel). Blue dots: energy per layer
in a homogeneous system at fixed magnetization mz

�. Red dots:
equilibrium energy of the layers closer to the metastable boundary
in the presence of the wetting interface (i.e., corresponding to the
equilibrium values in Fig. 3). The red dotted line is a guide for
the eye, representing the (pseudo)potential for the inhomogeneous
system.

phase (� = L for the FP case and � = 1 for the PF one) and
its neighboring layer (see the brown curve in both panels of
Fig. 3). In the early stage of dynamics, to reduce the total en-
ergy, the order parameters of the layers around the metastable
boundary start to rearrange assuming intermediate values be-
tween mF and mP to make the discontinuity smoother. Doing
so, while the intralayer energy contribution increases, the in-
terlayer energy of the boundary drastically decreases driving
the system, at large t , into a new inhomogeneous equilibrium
configuration with the formation of a wetting interface.

At equilibrium, moving along the wetting interface, from
the metastable boundary towards the bulk, the single-layer en-
ergy ε� is a nonmonotonous function of the distance from the
boundary. Plotting the equilibrium values of ε� as a function of
the magnetization mz

� (see Fig. 3), we observe that the energy
increases and then decreases until it reaches the stable value
min[εF, εP] inside the bulk as if it were virtually climbing up
the (pseudo)potential barrier that separates the metastable and
stable phases at the boundaries. This interpretation becomes
clearer if we refer to the energy that each layer would have
in the homogeneous case at fixed mz

�, which we plot in Fig. 4
(blue dots) together with the equilibrium energies (red dots) of
the layers forming the wetting interface, same data of Fig. 3.
We note that the blue dots strictly follow the energy landscape,
climbing up the potential barrier that separates the metastable
minima from the stable one, while the red dots describe a new
energy landscape of the inhomogeneous system.

We emphasize that, with our choice of jump operators,
albeit the single-layer system would remain forever trapped
in the metastable phase [30], we do not observe the presence
of any metastable phase in the multilayer system which al-
ways thermalizes to the same state. Indeed, the profile of the
wetting region results independent of the initial state and the
system-bath coupling strength 
. The robustness of the steady
state has been tested for different physical initial conditions
and appears to be independent of them. For instance, if we
initialize the bulk layers in the metastable minimum, then
only the dissipation dynamics and the total relaxation time
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are affected but not the equilibrium configuration, which is
always the same state. The same happens if we start with an
inhomogeneous configuration where P and F regions alter-
nate. To further validate the absence of any metastable state in
the multilayer model, we have explicitly checked, for a three-
and four-slab model, that the self-consistency equations only
admit a single solution.

We also mention that, if we start in the FP phase and
initialize the bulk with domain walls between F+, i.e., mz

� > 0,
and F−, i.e., mz

� < 0, regions, then interfaces emerge with mz
�

switching from positive to negative passing through layers in
the disordered phase mz

P. Such an interface has exactly the
same shape as the wetting interface at the boundary between
the P and F phases but is now doubled around the central P
layer. Although these composite F± − P − F∓ domain walls
have an energy cost, they can move inside the system and
annihilate with each other. This behavior is similar to the
formation and propagation of solitons in trans-polyacetylene
chains [50]. Studying the dynamics of domain walls between
two equivalent stable minima in the coexistence region goes
beyond the scope of this work and will be discussed in a
forthcoming publication. This effect does not emerge in the
PF phase where the F± − F∓ domain walls are destroyed by
the bath in favor of the stable ordered phase P.

B. Thickness

The wetting layer extent is expected to increase in size
as the critical magnetic field hc is approached. Indeed, as
h → hc, one has |εF − εP| → 0. It follows that, to smooth
out the discontinuity, the system prefers to unpin more and
more layers at the boundary from the stable phase towards
the metastable one. In fact, the nearer we are to the critical
magnetic field, the lower the intralayer energy contribution is,
while the interlayer one becomes dominant. In the PF phase
(h > hc), we define the amplitude of the wetting interface due
to the F phase as

AF =
L∑

�=1

mz
�

mz
F

, (32)

while in the FP phase (h < hc) we define the wetting ampli-
tude due to the P phase as

AP =
L∑

�=1

(
1 − mz

�

mz
F

)
= L − AF. (33)

By looking at the wetting surface shown in Fig. 5, we observe
that, even for |hc − hx| ≈ 10−4, only a small finite number of
layers around the metastable boundary is involved, so that
the equilibrium configuration is not affected by the system
length L, i.e., AF/P � L. Clearly, in the case AF/P ≈ L the
system length must be increased accordingly to avoid finite
size effects. The data in Fig. 5 can be fitted by a two-parameter
function of the form

f (α, β ) = tanh (βL − α) − tanh (β� − α)

tanh (βL − α) − tanh (β − α)
, (34)

similar to the solitons bond-alternation domain walls in
polyacetylene [50] or the nonequilibrium stationary state oc-
cupation number profile of an interacting fermionic chain

FIG. 5. Layer-resolved equilibrium value of the order parameter
in the FP (top panel) and PF (bottom panel) phase for 
 = 0.2
and different values of the magnetic field along x, hx . Only the
eight nearest layers to the metastable boundary are shown. Top
panel: hx = 2.55 (blue circles), 2.6 (yellow squares), 2.628 (green
diamonds), 2.6295 (red triangles), 2.631 (purple inverted triangles).
Bottom panel: hx = 2.632 (blue circles), 2.635 (yellow squares), 2.64
(green diamonds), 2.7 (red triangles), 2.8 (purple inverted triangles).
The dashed lines correspond to the fit obtained through Eq. (34).

[51]. This behavior is substantially different from the expo-
nential decay expected for the second-order phase transitions
[52].

In the top panel of Fig. 6 we show the wetting amplitude A
as a function of the magnetic field hx for a system at finite tem-
perature T = 0.2. As already discussed, the wetting interfaces
increase approaching the critical magnetic field and diverge
at hx = hc, where the phase transition between the FP and PF
phases takes place. In agreement with the continuum limit dis-
cussed in Ref. [24], we find that the wetting thickness diverges
logarithmically as AF/P = aF/P − bF/P ln |hx − hc|, similarly as
in the classical case at the thermal phase transition [3]. In the
bottom panel of Fig. 6 we compare the wetting amplitude for
different temperatures ranging from T = 0 to T = 2. The x
axis is rescaled with respect to the corresponding hc(T ). The
behavior of A is similar at all temperatures: it presents a sharp
peak in correspondence of the critical value. Increasing T , we
observe the formation of a “stepped structure.” Its origin can
be attributed to two main factors. First, our model is discrete;
thus, each step in the behavior of A(hx ) signals that one more
layer has become part of the wetting interface. Second, at high
temperatures, upon increasing hx one approaches the critical
line in a nonperpendicular way, surfing in its neighborhood,
as can be seen from Fig. 1.

The results of Fig. 6 can be extended at any temperature
and any magnetic field within the coexistence region of the
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FIG. 6. Top panel: wetting amplitude A = min[AF,AP] of the
wetting region as a function of the transverse magnetic field hx

for T = 0.2 and 
 = 0.2 (blue curve). Logarithmic fit f (hx ) :=
a − b ln |hx − hc| with a = 0.75, b = 0.38 for hx < hc, and a = 1,
b = 0.43 for hx > hc (red dashed curve). Bottom panel: wetting
amplitude as a function of the transverse magnetic field hx/hc(T ) for
T = 0 (black dots), T = 0.2 (blue curve), T = 1.5 (orange curve),
T = 2 (green curve). All the curves are rescaled with respect to
hc(T ).

homogeneous system; see Fig. 1. In particular, the discussions
above remain valid by reinterpreting our results in terms of
free energy rather than energy at zero temperature [24]. In
Fig. 7, we report the wetting amplitude for all the (T, hx )
values corresponding to the coexistence region of the single-
layer phase diagram. Just by looking at the divergence of the
wetting amplitude A, we are able to recover FP-PF critical
line, as can be observed by comparing Fig. 7 with the single-
layer phase diagram in Fig. 1.

This result is nontrivial. To access the critical line that
separates the two metastable phases in a first-order phase

FIG. 7. A = min[AF,AP] of the wetting layer as a function of
the magnetic field and temperature, for 
 = 0.2.

FIG. 8. Layer-resolved equilibrium value of the order parameter,
normalized to the corresponding mz

F, in the FP (top panel) and PF
(bottom panel) phase, for 
 = 0.2 and different values of the trans-
verse magnetic field, hx . The markers represent the discrete model,
and the dashed lines the continuum limit within the semiclassical
approximation (see main text). Only the eight nearest layers to the
metastable boundary are shown. Top panel: hx = 2.55 (blue circles),
2.6 (yellow squares), 2.628 (green diamonds), 2.6295 (red triangles),
2.631 (purple inverted triangles). Bottom panel: hx = 2.632 (blue
circles), 2.635 (yellow squares), 2.64 (green diamonds), 2.7 (red
triangles), 2.8 (purple inverted triangles).

transition, standard approaches require solving self-consistent
equations of the form of Eqs. (8)–(10) and then comparing
all the free energy minima at a given value of the parameters
(such as temperature and magnetic field). This requires com-
puting, as soon as T �= 0, the entropy of the system, which is
often a cumbersome task. In addition, standard LE approaches
are only able to recover the F-FP and PF-P critical lines,
while failing to recover the FP-PF transition line within the
coexistence region [30]. On the contrary, in the multilayer
setup discussed in this paper, thanks to the inhomogeneities
introduced by the boundary conditions, it is possible to im-
plement the standard self-consistent LE approach to the full
phase diagram. Within the LE approach, the only required
ingredients are the instantaneous Hamiltonian eigenvectors
that define the Lindblad jump operators, see Eq. (26), at the
given bath temperature, see Eq. (16). It follows that the full
phase diagram at any finite T can be easily derived.

Before moving on to the next section, let us compare the
results obtained within the LE approach for the multilayer sys-
tem with the results obtained within the semiclassical analysis
on a continuum semi-infinite slab, see Eq. (35) in Ref. [24].
In Fig. 8, we plot, for different values of hx, mz

�/mz
F as a
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function of the layer index �, obtained within the LE approach
(dots), together with the same quantity computed within the
continuum limit formula [24] (dashed lines). We observe a
remarkable quantitative agreement between the results of the
two approaches as long as hx is not too close to hc. As
hx → hc, the wetting interface of the discrete model is thicker
than the continuum one (the leftmost in the top panel, the
rightmost in the bottom panel). Such disagreement simply
derives from the fact that the interface width is controlled
in the continuum limit by the stiffness term, second-order
expansion in the interlayer distance of the coupling among
layers, and that can well change quantitatively the results, but
not the critical behavior.

C. Time

In this section, we discuss the behavior of the relaxation
time τ as a function of the magnetic field hx for different
values of the bath coupling strength 
 and temperature T . The
relaxation time τ measures the time required by the system to
reach thermal equilibrium. From the practical point of view,
we define τ in the following way. For each layer, we compute
the order parameter mz(t ) as a function of time. The order
parameter of each layer tends to a stationary value for t → ∞.
We define τ as the time at which |mz(τ ) − mz(τ ′)| < 10−10,
∀ τ ′ > τ .

In the top panel of Fig. 9, we show τ (hx/hc(T )) for

 = 0.9 and four different values of the bath temperature,
T = 0.0, 0.2, 1.5, 2.0. While we observe no dependence of
τ on T for T � 0.8, an asymmetric behavior between the
ferromagnetic (hx < hc) and paramagnetic (hx > hc) phases
emerges and becomes more evident as the temperature in-
creases. Such a feature is due to the bending of the critical
line of the single-layer phase diagram shown in Fig. 1. Indeed,
at high temperatures upon changing hx we do not cross the
critical line in a perpendicular way, but surf around it.

In the bottom panel of Fig. 9, we show τ (hx/hc) at T = 0.2
and three different values of the bath strength 
. Far from hc,
the relaxation time is independent of hx and reaches a steady
value that, as intuitively expected, decreases for increasing
bath strength 
, i.e., a stronger bath dissipates faster. At any 


we observe a critical slowing down: the relaxation time has a
power-law divergence approaching hc, τ ∼ |hx − hc|−α , with
critical exponent α that is a function of the bath coupling
strength 
, α(
). We find α(0.2) = 1.4, α(0.5) = 1.8, and
α(0.9) = 2.1, respectively. A similar dependence of the criti-
cal exponent α on 
 has been already observed in the literature
(see, for example, Table II and Fig. 1 in Ref. [53], and Table
II in Ref. [54]) in the case of nondissipative baths. However,
to the best of our knowledge, not much is known about the
dependence of the relaxation time on 
 within dissipative
dynamics.

We observe that the above result escapes a Landau-
Ginzburg type of approach once longitudinal fluctuations in
Cahn’s free-energy functional are discarded. Indeed, in the
latter, when the wetting interface is assumed to be infinitely
stiff, the wetting critical phenomenon is not accompanied by
a critical behavior of the relaxation time. The reason is that
the unbinding of the wetting interface is not accompanied by
the softening of a continuous spectrum of excitations if one

FIG. 9. Top panel: relaxation time to reach the equilibrium con-
figuration for a system initialized in the F phase, if h < hc, and
P phase, if h > hc, as a function of hx , for 
 = 0.9, and T = 0
(black dots), T = 0.2 (blue/lower), T = 1.5 (orange/middle), T =
2 (green/upper). Bottom panel: as in the top panel, for T = 0.2, and

 = 0.1 (blue/upper), 0.2 (yellow/middle), and 0.5 (green/lower).
The first layer is constrained into the F phase and the last layer
into the P phase. Inset: relaxation time for a second-order phase
transition, where the critical magnetic field is hc = 2.

neglects capillary waves [4,5]. Such exclusion seems unreal-
istic in physical systems but can be legitimately assumed in
a model calculation as ours. Unlike in Cahn’s approach, the
Lindblad dynamics of our toy model does predict a critical
relaxation time that unsurprisingly depends on the system-
bath coupling. However, since τ ∼ |hx − hc|−α

, with α > 1,
the corresponding relaxation process decay faster than that
one provided by the critical behavior of the capillary waves,
and which is associated to a smaller exponent, αcw = 1/2
for short-range interactions [24]. That is comforting, since it
entails a critical dynamics following conventional hyperscal-
ing in physical systems, even in the presence of noncritical
dissipative channels that should always exist.

As a consequence of the dependence of α on 
, relaxation
time curves for different 
 intersect with each other for some
value of the magnetic field hx. It follows that for each value
of hx we can define an optimal dissipation strength 
 that
maximizes the system-bath energy exchange rate. Such a dis-
sipative optimal working point, represented by a minimum
of τ (
), as shown in Fig. 10 for four different values of
the magnetic field, is similar to the nonequilibrium optimal
working point that emerges in the nonequilibrium stationary
state of systems coupled with two baths [51,55,56]. Indeed,
when a system is coupled to two different baths that induce
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FIG. 10. Relaxation time to reach the equilibrium configuration
for a system initialized in the F phase, if h < hc, and P phase,
if h > hc, as a function of 
 for T = 0.2 and different values of
the magnetic field in the proximity of hc. The marks represent the
optimal working points (minima of the curve) for hx = 2.60 (blue
square), 2.62 (yellow rhombus), 2.62 (green triangle), and 2.66 (red
circle). The first layer is constrained into the F phase and the last
layer into the P phase.

a particle/energy flow, one observes a change in the mono-
tonicity of the nonequilibrium stationary current as a function
of the applied bias, which represents the optimal performance
of the bath.

The existence of an optimal working point is a con-
sequence of the presence, in dissipative dynamics, of two
timescales: an intrinsic timescale induced by the Hamiltonian
of the system which in our case is related to hx, and a dissipa-
tive timescale set by the bath strength 
. As long as 
 � hx,
increasing 
 increases energy exchange and tends to make
relaxation faster, i.e., reduces τ . When the two timescales are
comparable, we observe the presence of an optimal work-
ing point, where the system and the bath are in resonance
and the energy transfer is maximum. Finally, for some 
 �
hx, the bath becomes too strong: the bath dynamics tends
to temporarily trap the system into a steady state with respect
to the instantaneous h(t ), which is typically not the final
steady state, thus relaxation becomes slower for increasing

. From Fig. 10 we also notice that, upon moving towards
the critical line, the optimal working point moves to lower
values of the coupling 
. Moreover, we note that, albeit in our
discussion we made use of values of the coupling 
 of the
order of 10−1 for better plot rendering, the same behavior is
observed for lower values of the coupling, i.e., in the weak-
coupling regime where the LE is, in general, more physically
sound.

We verified the existence of an optimal working point also
in a single-layer system with second-order phase transition
like the one described by Eq. (1) for Jn = 0, ∀ n �= 2 (see also
Ref. [30]) as shown in the inset of Fig. 9. In such a way, we
support the idea that the presence of the optimal working point
is not a consequence of the inhomogeneities induced by the
fixed boundary condition but, rather, an intrinsic property of
the self-consistent dissipative dynamics.

We emphasize that the model investigated here constitutes
a simplified toy model for quantum wetting. Therefore, we
do not yet aim to actively control τ (
) in experimental appli-
cations. Nevertheless, we do not exclude the possibility that
this might be probed in experiments, involving, e.g., ultracold

atoms [57,58], by tuning the system-bath interaction α [see
Eq. (11)].

The results shown in Fig. 9 can be extended to the full
phase diagrams as done for the wetting amplitude A sug-
gesting that also the relaxation time can be used to extract,
numerically or experimentally, the critical line in the coexis-
tence region.

V. CONCLUSIONS

We have investigated the main static and dynamic features
of the wetting interface within the coexistence region of a
first-order transition, both quantum and thermal, when at the
surface the metastable phase is favored over the stable one
present in the interior of the bulk. For that, we have considered
a prototypical mean-field model that displays a first-order
phase transition both at zero and finite temperature, a fully
connected quantum Ising model with two and four spin ex-
change in slab geometry. Our work offers a new perspective
on an old topic, which is potentially wide though hindered by
the simple mean-field toy model that we investigate. Such a
new viewpoint could help to explore open questions on the
quantum wetting transition and its critical properties [26,59].
Indeed, instead of using a time-dependent Cahn’s free-energy
functional, as usually done in the literature, we have simulated
the dynamics through the Lindblad master equation, where
the temperature is directly inherited by the coupling to a
dissipative bath. In this way, we were able to study the wetting
phenomenon at any temperature and Hamiltonian parameters.
In particular, we have reproduced the known critical behavior
of the wetting interface length as the first-order transition is
approached [3]; also, we have identified a critical behavior
of the relaxation time with bath-dependent exponents and the
emergence in the parameter space of a dissipative optimal
working point where the relaxation time is minimum.

Our analysis suggests a way to characterize the phase di-
agram alternative to the direct comparison between the free
energies of the coexisting phases: Our approach exploits the
critical behavior in space and time of the wetting interface
upon approaching the phase transition. The reliability of our
approach in recovering physically sound results, combined
with its simplicity and versatility, could make it a precious
tool to investigate both equilibrium and nonequilibrium phase
transitions in open quantum systems, paving the way to search
for novel phases or phase transitions arising in spin models
[60,61] or junctions of interacting fermionic systems [62–68].

Moreover, to the best of our knowledge, detailed stud-
ies on the behavior of the relaxation time of the quantum
wetting interface within dissipative dynamics have not been
performed so far. In the future, it would be interesting to in-
vestigate the universal/nonuniversal behavior of the α critical
exponent in both first- and second-order phase transitions,
starting from simpler models without fixed boundary condi-
tions. In addition, it would be desirable to find a microscopic
(system+bath) Hamiltonian that gives rise to a Markovian
master equation similar to the one employed in this work.
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