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Influence of spin fluctuations on structural phase transitions of iron
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The effect of spin fluctuations on the α (bcc)-γ (fcc)-δ (bcc) structural phase transitions in iron is investigated
with a tight-binding (TB) model. The orthogonal d-valent TB model is combined with thermodynamic integra-
tion, spin-space averaging, and Hamiltonian Monte Carlo to compute the temperature-dependent free-energy
difference between bcc and fcc iron. We demonstrate that the TB model captures experimentally observed
phonon spectra of bcc iron at elevated temperatures. Our calculations show that spin fluctuations are crucial
for both the α-γ and γ -δ phase transitions but they enter through different mechanisms. Spin fluctuations impact
the α-γ phase transition mainly via the magnetic/electronic free-energy difference between bcc and fcc iron. The
γ -δ phase transition, in contrast, is influenced by spin fluctuations only indirectly via the spin-lattice coupling.
Combining the two mechanisms, we obtain both the α-γ and γ -δ phase transitions with our TB model. The
calculated transition temperatures are in very good agreement with experimental values.
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I. INTRODUCTION

Iron exhibits a rich and complex phase diagram with sev-
eral structural and magnetic phase transitions. The magnetism
of iron originates from the spin angular momentum of the
electrons. The effect of spin fluctuations on structural phase
transitions in iron, the focus of this paper, has been investi-
gated with a variety of theoretical methods, but a complete
understanding of the microscopic origin of the structural
phase transitions is still missing.

Hasegawa and Pettifor [1] were probably the first to give
a systematic investigation of the spin-fluctuation effect on the
phase diagram of iron. One of their main conclusions is that
spin fluctuations lead to different changes in magnetic free
energies with temperature in bcc and fcc iron and thus drive
the α (bcc)-γ (fcc)-δ (bcc) phase transitions of iron. As their
calculations were based on a single-band tight-binding model
and the coherent potential approximation, their results can be
interpreted only qualitatively. Indeed, their argument that the
spin fluctuations alone drive the γ (fcc)-δ (bcc) phase transi-
tion is not supported by recent more accurate calculations [2]
with density-functional theory (DFT) combined with dynam-
ical mean-field theory (DMFT). According to this work, the
magnetic free-energy contribution is responsible for the α

(bcc)-γ (fcc) but not the γ (fcc)-δ (bcc) phase transition. As
the spin fluctuations alone cannot give a consistent explana-
tion of α-γ -δ phase transitions, researchers included the effect
of atomic vibrations by also considering the vibrational free
energy. Confusingly, different methods give qualitatively dif-
ferent conclusions regarding the effect of atomic vibrations on
the phase transitions in iron. For example, DFT-based phonon

calculations showed that atomic vibrations tend to stabilize
fcc iron [3], while spin-lattice dynamics based on classical
interatomic potentials suggest that atomic vibrations tend to
stabilize bcc iron [4]. In fact, the atomic vibrations themselves
are strongly impacted by spin fluctuations [5–7] and cannot be
treated independently, which makes the dynamic spin-lattice
coupling a crucial factor for phase transitions of iron.

In this work, we compare the relative stability of bcc and
fcc iron in terms of the temperature-dependent free-energy
difference

�F (T ) = Ffcc(T ) − Fbcc(T ). (1)

We compute the contributions to the free-energy difference as
a sum of two contributions,

�F (T ) = �F elec(T ) + �F vib(T ). (2)

The magnetic/electronic contribution �F elec takes into ac-
count spin fluctuations. The vibrational contribution �F vib

is also strongly influenced by spin fluctuations through the
dependence of atomic forces on magnetism [5–9]. Here, we
compute both contributions to the free-energy difference in
the framework of an orthogonal d-valent tight-binding (TB)
model. We demonstrate that this physically transparent and
approximate treatment of the electronic structure is sufficient
to reveal the influence of spin fluctuations on both structural
phase transitions of iron. Within our approach we present a
comprehensive framework that captures both the α-γ and γ -δ
transitions on the same footing. Unlike previous approaches,
our framework provides a microscopic understanding of the
impact of spin fluctuations on the structural phase transitions

2469-9950/2023/107(10)/104108(9) 104108-1 ©2023 American Physical Society

https://orcid.org/0000-0002-2270-4469
https://orcid.org/0000-0003-0698-4891
https://orcid.org/0000-0002-6268-380X
https://orcid.org/0000-0001-7101-8804
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.104108&domain=pdf&date_stamp=2023-03-29
https://doi.org/10.1103/PhysRevB.107.104108


NING WANG et al. PHYSICAL REVIEW B 107, 104108 (2023)

of iron through the magnetic/electronic free-energy differ-
ence (α-γ ) or through the spin-lattice coupling (γ -δ).

In Sec. II we summarize the TB model for atom-atom,
atom-spin, and spin-spin interactions. In Sec. III we present
our approach to compute the vibrational contribution to the
free energy by spin-space averaging (SSA) [8] and Hamilto-
nian Monte Carlo [10–13] with a comparison to experimental
phonon spectra at elevated temperatures. In Sec. IV we
summarize the computation of the magnetic/electronic con-
tribution to the free energy by thermodynamic integration
along the Bain path. The total effect of both contributions is
presented and discussed in Sec. V, including a comparison
to the experimentally observed phase-transition temperatures.
We conclude our paper with a summary of the structural and
magnetic/electronic contributions to the free energy and how
their interplay determines the phase transitions of iron.

II. TIGHT-BINDING MODEL

A. Hamiltonian

In our tight-binding model, we assume that the motion
of the atomic and magnetic degrees of freedom (DOFs) is
one or more orders of magnitude slower than the hopping
of electrons between atoms. A simple justification of this ap-
proximation would be that electronic hopping has a timescale
of 10−15 s [14], which is much faster than the inverse phonon
frequency and the spin wave frequency. As the fast electrons
adiabatically follow the motions of the slow variables, i.e., the
electronic structure corresponds to the atomic and magnetic
configurations, the atomic and magnetic DOFs interact indi-
rectly via the electronic structure in addition to their direct
interactions. Since the direct ion-ion Coulomb interactions or
magnetic dipole-dipole interactions couple only the atomic
or magnetic DOFs in the lattice or magnetic subsystems,
respectively, the indirect interaction via the electronic struc-
ture works as the only mechanism to couple the lattice and
magnetic subsystems if spin-orbit coupling is neglected [15].
These DOFs and couplings can be fully represented by a
magnetic TB Hamiltonian.

The magnetic moments in iron originate from the spin
angular momenta of electrons; that is, the magnetic DOFs
are inherent in the electronic subsystem. Therefore, it is not
straightforward to define the slow magnetic DOFs. In tight
binding, however, an elegant treatment is available in terms
of the static-field approximation in the functional-integral
formalism proposed by Hubbard [16,17]. Using this approxi-
mation, we derive a magnetic TB Hamiltonian that enables us
to extract the slow magnetic DOFs, the local exchange fields,
from the electronic subsystem. We present the key results in
the following and give a detailed discussion in Appendix A.
In our TB framework, the potential energy is a function
of atomic positions r1, r2, . . . , rN and local exchange fields
h1, h2, . . . , hN ,

Epot({ri, hi}) = Eband({ri, hi}) +
∑

i

1

Ji
h2

i

− 1

2

∑
i

(
Ui − 1

2
Ji

)
q2

i + Epair({ri}), (3)

with N being the number of atoms in the supercell. Ji and
Ui are the exchange parameter and the Coulomb parameter
of atom i, and qi is the atomic charge. The term Epair is an
empirical pairwise function of atomic positions that accounts
for all the other contributions. Eband is the electronic band
energy for the single-electron effective Hamiltonian

Ĥeff =Ĥ(0) + 2
∑

i

hiŜi +
∑

i

μin̂i, (4)

where Ŝi is the spin operator at atom i that interacts with
the local exchange field hi at the same atom and connects
to the electronic structure via the occupation operators [see
Eq. (A7)]. Similarly, the number operator n̂i interacts with
the local Coulomb field μi. Ĥ(0) in Eq. (4) represents the
Hamiltonian of the noninteracting electrons in the overlapping
free-atom-like potentials. It is usually expressed in second
quantization,

Ĥ(0) =
∑

σ

∑
iα jβ,iα �= jβ

tαβ
i, j ĉ†

iασ ĉ jβσ +
∑

iα

E0
iαn̂iα, (5)

with ĉ†
iασ (ĉiβσ ) being the creation (annihilation) operator for

the atomic orbital α (β) at atom i ( j) in the spin-σ channel,
tαβ ′
i, j being the hopping integral between the atomic orbital α

of atom i and the atomic orbital β of atom j, E0
iα being the on-

site level of the free atom, and n̂iα being the number operator
for the atomic orbital α of atom i. The hopping integral tαβ ′

i, j
is parameterized as a function of distance between atoms i
and j within the two-center approximation [18]; that is, the
influence of further atoms k on the interaction of atoms i and
j is neglected.

With Eq. (3) we can define the magnetic partition function
as an integral over spin space,

Zmag({ri}) =
∫ ∏

i

dhiexp[−βEpot({ri, hi})], (6)

where we take into account both collinear and noncollinear
magnetic excitations.

In our model, the magnetic and atomic subspaces are cou-
pled via the band energy Eband in Eq. (3), which represents
the electronic structure of a given atomic and magnetic con-
figuration (see also the work by Drautz and Pettifor [15]).
This coupling is the key difference between our model and
those depending on classical or semiempirical spin-lattice
coupling [4,19,20].

B. Computational details

The numerical TB calculations presented in the following
were performed with the BOPfox program [21] using the
method of Methfessel and Paxton [22] to sample the Brillouin
zone. We use a parametrization of the TB Hamiltonian for Fe
that was originally developed as a magnetic bond-order po-
tential by Mrovec et al. [23]. This orthogonal d-valent model
can also be evaluated within a TB framework and provides a
robust description of the electronic and magnetic structure of
iron. In particular, it captures important properties at T = 0 K
like the phonon spectra of bcc and fcc iron (see the Supple-
mental Material of Ref. [23]) and complex deformations [24]
as well as the magnetic phase transition of bcc iron at elevated
temperature [25].
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FIG. 1. Unit cells of the bct, bcc, and fcc lattices along the Bain
path with the order parameter k = c/a.

The parameters Ū = U − 1/2J and J in Eq. (3) were cho-
sen to be 3.6 and 0.8 eV, respectively, based on LDA + DMFT
(LDA = local density approximation) calculations from Be-
lozerov and Anisimov [26]. The thermal expansion is taken
into account by interpolating/extrapolating the experimental
lattice parameters of bcc and fcc iron measured at various
temperatures [27].

The thermodynamic integration is carried out along the
Bain path indicated in Fig. 1 as a simple model of a dis-
placive structural phase transition between bcc and fcc. We
use an order parameter k that refers to the c/a ratio of the
body-centered tetragonal (bct) unit cell with k = 1 for bcc and
k = √

2 for fcc.
The influence of spin-orbit coupling is neglected in this

work as the differences in the magnetic anisotropy energy
(MAE) are expected to be less than 1 μeV/atom for the cubic
bcc and fcc lattices. Even MAE values along the Bain path
of Fe of up to 0.1 meV/atom [28] are an order of magni-
tude smaller than the free-energy differences computed in the
following.

III. VIBRATIONAL CONTRIBUTION
TO THE PHASE TRANSITION

A. Thermal averaging in spin space

To take into account the effect of magnon-phonon coupling
in the calculations of the vibrational free-energy difference,
we employ the SSA scheme [8]. We note that classical spin
vectors in the original SSA scheme are replaced by the local
exchange fields in this work. Based on the approximation
that magnetic excitations have a faster timescale than atomic
vibrations, we can define the mean atomic force on atom i at
finite temperature as

F̄i = 1

Zmag

∫ ∏
i

dhiFi({hi})exp[−βEpot ({hi})]. (7)

The mean atomic force is then used together with the small-
displacement scheme [29] to calculate the phonon densities
of states of bcc and fcc iron at finite temperature, gk=1(ε, T )
and gk=√

2(ε, T ), respectively. The phonon density of states
becomes temperature dependent due to the thermal averaging
in Eq. (7) for different magnetic temperatures at fixed atomic
positions. The vibrational free-energy difference is evaluated

FIG. 2. Phonon spectrum of bcc iron at magnetic temperatures of
(a) 773 and (b) 1743 K computed in this work (lines) and observed
by experiment [30] (dots).

according to

�F vib(T ) =
∫ ∞

0
F ho(ε, T )[gk=√

2(ε, T ) − gk=1(ε, T )]dε,

(8)

where F ho(ε, T ) is the free energy at temperature T of the
quantum harmonic oscillator,

F ho(ε, T ) = ε

2
+ 1

β
ln[1 − exp(−βε)], (9)

with an oscillation frequency of ω = ε/h̄. The thermal av-
erages in spin space in Eq. (7) [and also in Eq. (15)] are
computed numerically with the Hamiltonian Monte Carlo
method as described in Appendix B.

B. Vibrational free-energy difference

Using spin-space averaging with the TB Hamiltonian for
iron, we computed the phonon spectrum of bcc iron at dif-
ferent temperatures. In Fig. 2 we compare our results to
the experimental phonon spectrum measured by Neuhaus
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FIG. 3. Calculated vibrational free-energy difference between
fcc and bcc phases of iron as a function of temperature obtained with
SSA forces. Negative values correspond to stable fcc.

et al. [30] at 773 and 1743 K. We find good agreement with
the experimental data for the considered temperatures given
that we use a simple TB model that includes only d electrons.
In particular, our calculations reproduce the strong phonon
softening in bcc iron with increasing temperature. This effect
was successfully captured earlier but only with DFT [5] or
DFT+DMFT [6,7] methods that are much more sophisticated
and computationally expensive than the tight-binding model
used in this work. This confirms that our approach with an or-
thogonal, d-valent TB model and the chosen parametrization
for iron is sufficient for a reliable treatment of iron at elevated
temperatures.

From the phonon spectrum of bcc and fcc iron at different
temperatures, gk=1(ε, T ) and gk=√

2(ε, T ), we obtain the free-
energy difference �F vib(T ) with Eq. (8). Our results in the
temperature range of 300–1700 K are shown in Fig. 3. We find
that the vibrational free-energy difference first decreases in the
low-temperature range with increasing temperature and then
starts to increase at around 700 K. It continues to increase with
increasing temperature and changes from a negative value to
a positive value at around 1500 K. This sign change indi-
cates a structural phase transition from fcc to bcc at around
1500 K. As this phase transition is obtained by considering
only �F vib(T ), we conclude that the vibrational contribution
to the free energy from SSA forces stabilizes fcc iron for
temperatures below 1500 K, while it tends to stabilize bcc iron
at temperatures above 1500 K.

IV. MAGNETIC/ELECTRONIC CONTRIBUTION
TO THE PHASE TRANSITION

A. Thermodynamic integration of the free-energy difference

The magnetic/electronic free-energy difference, �F elec in
Eq. (2), is computed by thermodynamic integration from bcc
iron to fcc iron along the Bain path indicated in Fig. 1. With
the order parameter k as the c/a ratio of the bct unit cell, we
obtain

�F elec =
∫ √

2

1

∂F elec

∂k
dk, (10)

with the integral running from bcc (k = 1) to fcc (k = √
2).

Here we consider only the magnetic excitations described
by the local exchange fields, i.e., F elec = −kBT ln(Zmag),
where Zmag is defined in Eq. (6). The derivative of the
magnetic/electronic free energy with respect to the order pa-
rameter becomes a thermal average in the spin space,

∂F elec

∂k
=

〈
∂Epot

∂k

〉
. (11)

We next show that this term can be expressed in terms of the
stress tensor.

By writing the supercell at a given order parameter k along
the volume-conserving Bain transformation as

C =

∣∣∣∣∣∣∣
V

1
3 k− 1

3 0 0
0 V

1
3 k− 1

3 0
0 0 V

1
3 k

2
3

∣∣∣∣∣∣∣,
we can express an infinitesimal deformation of the supercell
in terms of the order parameter k,

δC =

∣∣∣∣∣∣∣
− 1

3V
1
3 k− 4

3 δk 0 0
0 − 1

3V
1
3 k− 4

3 δk 0
0 0 2

3V
1
3 k− 1

3 δk

∣∣∣∣∣∣∣.
The infinitesimal deformation of the supercell can alterna-
tively be expressed in terms of the strain tensor ε as

δC = ε C, (12)

which by substitution leads to

ε

δk
=

∣∣∣∣∣∣
− 1

3 k−1 0 0
0 − 1

3 k−1 0
0 0 2

3 k−1

∣∣∣∣∣∣.
With this we can write the derivative of the potential energy
with respect to the order parameter k in terms of the strain
tensor,

∂Epot

∂k
=

∑
α,β

∂Epot

εαβ

εαβ

∂k

= − 1

3k
V (σ11 + σ22 − 2σ33), (13)

where in the last expression we used the relation

∂Epot

∂εαβ

= V σαβ. (14)

Inserting Eq. (13) in Eq. (11), we obtain the derivative of the
magnetic/electronic free energy with respect to the Bain-path
order parameter k as

∂F elec

∂k
= − V

3kZmag(k)

∫ ∏
i

dhi[σ11(k, {hi}) + σ22(k, {hi})

− 2σ33(k, {hi})]exp[−βEpot(k, {hi})], (15)

where Zmag(k) represents the magnetic partition function at
the given c/a ratio, V is the volume of the supercell, and σ11,
σ22, and σ33 are the diagonal components of the stress tensor.
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FIG. 4. Calculated magnetic/electronic free-energy profiles
along the Bain path at different temperatures.

B. Magnetic/electronic free-energy difference

Using thermodynamic integration, we computed the
magnetic/electronic contribution to the free-energy difference
using the TB Hamiltonian and a 3 × 3 × 3 bct supercell of
iron containing 54 atoms. The large distance to the periodic
images in this supercell provides a sufficient variety of the
spin degrees of freedom for robust spin-space averaging.
The resulting magnetic/electronic free-energy profiles along
the Bain path are shown in Fig. 4 for temperatures of 300, 700,
1100, and 1500 K. We find that bcc iron is energetically most
stable at low temperature compared to other c/a ratios. This
is in line with the fact that bcc iron is the stable state of iron at
low temperatures and pressures. With increasing temperature
the spin fluctuations decrease the magnetic/electronic free-
energy difference F mag

fcc − F mag
bcc and reduce the barrier between

bcc and fcc iron.
For the highest temperature in Fig. 4 the

magnetic/electronic free-energy difference is negative,
which marks a phase transition from bcc to fcc iron. By
sampling the magnetic/electronic free-energy difference in
the temperature range from 300 to 1700 K we can identify a
phase-transition temperature of ≈1400 K, as shown in Fig. 5.

FIG. 5. Calculated magnetic/electronic free-energy difference
between fcc and bcc phases of iron as a function of temperature.

FIG. 6. Histograms of the electronic density of states of bcc and
fcc iron at different magnetic temperatures. The electronic density
of states of 1000 magnetic configurations were calculated at each
temperature.

As we considered only �F elec(T ) here, we can conclude
that the magnetic/electronic contribution to the free-energy
difference tends to stabilize bcc iron for temperatures below
1400 K, while it tends to stabilize fcc iron at temperatures
above 1400 K.
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FIG. 7. Comparison of the electronic (orange), vibrational
(blue), and total free-energy differences (green) between bcc and
fcc iron plotted as a function of temperature. For comparison we
also include CALPHAD calculations [32] with the SGTE database [33]
(black). The gray box in the total free-energy difference panel is the
zoom region for Fig. 8.

This structural phase transition from bcc to fcc can be
understood in terms of the temperature-dependent change in
the electronic structure due to spin fluctuations. In order to
visualize this effect, we generate 1000 spin configurations by
sampling spin space at different temperatures with Hamilto-
nian Monte Carlo. For each spin configuration, the electronic
DOS is obtained numerically by a TB calculation. The DOSs
of all spin configurations are combined for each temperature
and plotted as a histogram in Fig. 6 for bcc and fcc iron at the
different temperatures.

Comparing the different temperatures, we see that the
influence of the spin fluctuation on the electronic DOS is
considerably stronger for bcc iron than for fcc iron. This can
be attributed to the collapse of magnetic ordering in bcc iron in
the considered temperature range. Furthermore, the electronic
DOSs of bcc and fcc iron are noticeably different at low tem-
perature but become similar at high temperature. This explains
why the magnetic/electronic contribution to the free-energy
difference that is obtained by integrating the electronic DOS
is small in the high-temperature regime. A similar result was
reported by Alling et al. [31] based on DFT calculations.
Besides magnetic excitations, the authors in that work also
considered lattice vibrations and found that lattice vibrations
can make the electronic DOSs of bcc and fcc iron even closer.
Our observation is in line with the deduction based on experi-
ments that the magnetic/electronic contribution is small in the
γ (fcc)-δ (bcc) phase transition [30].

V. TOTAL FREE-ENERGY DIFFERENCE

The combined effects of the spin fluctuations on the free-
energy difference are obtained by adding the vibrational
contribution shown in Fig. 3 and the magnetic/electronic con-
tribution shown in Fig. 5 to the total free-energy difference

FIG. 8. Computed total free-energy difference near phase tran-
sitions (zoom of gray box in Fig. 7) and comparison to CALPHAD

calculations [32] with the SGTE database [33].

shown in Fig. 7. A positive value �F tot(T ) > 0 indicates a
stable fcc structure, whereas a negative value �F tot(T ) < 0
corresponds to a stable bcc structure.

For temperatures below ≈900 K, the gain of the ex-
change energy due to the ferromagnetic ordering signif-
icantly lowers the internal energy in bcc iron, and the
magnetic/electronic contribution plays a dominant role for the
total free-energy difference. At temperatures above ≈900 K,
the magnetic/electronic contribution decreases to the same
energy scale as the vibrational contribution, and the compe-
tition of the two contributions leads to the structural phase
transitions α (bcc)-γ (fcc)-δ (bcc) that are observed in experi-
ment. These findings show that the magnetic excitations alone
can drive only the α (bcc)-γ (fcc) phase transition and not the
γ (fcc)-δ (bcc) phase transition. The latter is mainly driven
by vibrational excitations. Therefore, our work supports the
findings based on disordered-local-moment (DLM) ab initio
molecular dynamics [31], DFT+DMFT [2,6,34], and experi-
ment [30].

We obtain a α (bcc)-γ (fcc) phase-transition temperature
of around 1050 K and a γ (fcc)-δ (fcc) phase-transition
temperature of around 1600 K. These results from our TB
calculations are in good agreement with the corresponding
experimental values [27] of 1189 K for and 1662 K. This is
also visible in the good agreement with the results of CALPHAD

calculations [32] shown in Fig. 8. The calculations were car-
ried out using the Thermo-Calc software [35] with the SGTE
database [33] that was optimized to reproduce experimental
data in the whole temperature range.

VI. CONCLUSION

Iron changes its crystal structure from α (bcc) to γ

(fcc) to δ (bcc) with increasing temperature. We applied
a magnetic, orthogonal, d-valent TB model to clarify the
influence of spin fluctuations on these structural phase tran-
sitions. The interplay between spin fluctuations and atomic
vibrations was included by computing the effect of spin fluc-
tuations on phonons using a spin-space-averaging scheme
and spin-space sampling by Hamiltonian Monte Carlo. The
magnetic/electronic contribution to the free energy was de-
termined by thermodynamic integration along the Bain path
between bcc and fcc. In this way we were able to compute the
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temperature-dependent vibrational and magnetic/electronic
contributions to the phase transitions of iron within a consis-
tent framework at the TB level.

Our computed temperature-dependent vibrational and
magnetic/electronic contributions to the free energy of bcc
and fcc iron show that spin fluctuations influence the α-γ
and γ -δ phase transitions via different mechanisms. The first
mechanism, the influence of spin fluctuations on the magnetic
free energy, decreases the free energy of bcc iron relative to
that of fcc iron with increasing temperatures and impacts the
α-γ phase transition. The second mechanism, the spin-lattice
coupling, increases the free energy of bcc iron relative to that
of fcc iron and impacts the γ -δ phase transition.

By adding the vibrational and magnetic/electronic con-
tributions to the free-energy difference we can reproduce
the experimentally observed sequence of structural phase
transitions. In the low-temperature regime (T < 900 K), the
difference of the magnetic/electronic contribution between
the phases plays the dominant role and is much larger than
the difference of the vibrational contribution. In this region
bcc iron is stabilized by the large exchange-energy gain of
the ferromagnetic ordering. In the high-temperature range
(T > 900 K), the difference of the magnetic/electronic con-
tribution decreases to the same energy scale as the difference
of the vibrational contribution due to the loss of ferromagnetic
ordering in bcc iron. In this temperature range, the difference
of the magnetic/electronic contribution decreases from a pos-
itive to a negative value, while the difference of the vibrational
contribution increases from a negative to a positive value. This
competition leads to the α (bcc) to γ (fcc) to δ (bcc) phase
transition in iron.

Our framework with a magnetic TB Hamiltonian can hence
explain the microscopic origin of the structural phase transi-
tions in iron. The sequence of phase transitions is correctly
captured with phase-transition temperatures of around 1050
and 1600 K, in good agreement with experiment.
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APPENDIX A: DERIVATION
OF THE MAGNETIC HAMILTONIAN

In the following, we give a formal derivation of the mag-
netic Hamiltonian given in Sec. II A. In principle, the
many-electron system can be accurately described by the
Hamiltonian below in second quantization [36]:

Ĥ = Ĥ(0) + V̂ ,

V̂ = 1

2

∑
σσ ′

∑
il

∑
i′l ′

∑
mm′

∑
pp′

V mpp′m′
ill ′i′ ĉ†

imσ ĉ†
l pσ ′ ĉl ′ p′σ ′ ĉi′m′σ ,

V mpp′m′
ill ′i′ = e2

∫∫
drdr′ 1

|r − r′|Wm(r − Ri )Wp(r′ − Rl )

× Wp′ (r′ − Rl ′ )Wm′ (r − Ri′ ), (A1)

where Ĥ (0) is the noninteracting part of the Hamiltonian that
contains no electron-electron interactions and V̂ is the interac-
tion Hamiltonian that describes electron-electron interactions.
Wm(r − Ri ) represents the mth Wannier orbital at site i. In our
work, we replace the Wannier-orbital basis by the orthogonal
atomic-orbital basis and denote this treatment as tight-binding
approximation.

The interaction Hamiltonian V̂ contains both interatomic
and intra-atomic contributions. If we neglect the interatomic
contributions and consider only intra-atomic electron-electron
interactions, the interaction Hamiltonian V̂ is simplified [36]:

V̂ ≈ 1

2

∑
i

∑
σ

{∑
mm′

Ui,mm′ n̂imσ n̂im′−σ

+
∑
m �=m′

[(Ui,mm′ − Ji,mm′ )n̂imσ n̂im′σ

−Ji,mm′c†
imσ cim−σ c†

im′−σ cim′σ ]

}
. (A2)

Ui,mm′ and Ji,mm′ are the Coulomb and exchange integrals and
are defined as

Ui,mm′ = V mm′m′m
iiii ,

Ji,mm′ = V mm′mm′
iiii . (A3)

The orbital-resolved Coulomb and exchange integrals in
Eq. (A2) are difficult to handle. A frequently used simplifi-
cation is to replace Ui,mm′ and Ji,mm′ by their average values Ui

and Ji and to simplify the interaction Hamiltonian as

V̂ ≈ 1

2

∑
i

∑
m,m′

∑
σ

Uin̂imσ n̂im′−σ

+ 1

2

∑
i

∑
m �=m′

∑
σ

(Ui − Ji )n̂imσ n̂im′σ

− 1

2

∑
i

∑
m �=m′

∑
σ

Jiĉ
†
imσ ĉim−σ ĉ†

im′−σ ĉim′σ . (A4)

A further simplification is to drop out the last term in Eq. (A4)
within the diagonal density approximation [37]. Then the in-
teraction Hamiltonian becomes

V̂ ≈1

2

∑
i

∑
m,m′

∑
σ

Uin̂imσ n̂im′−σ

+ 1

2

∑
i

∑
m �=m′

∑
σ

(Ui − Ji )n̂imσ n̂im′σ

≡1

2

∑
iσ

Ui n̂iσ n̂i−σ + 1

2

∑
iσ

(Ui − Ji )n̂iσ n̂iσ

− 1

2

∑
imσ

(Ui − Ji )n̂imσ , (A5)
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where we employed the identities below from the first to the
second line on the right-hand side,

n̂iσ =
∑

m

n̂imσ ,

(n̂imσ )2 = n̂imσ . (A6)

The second identity is valid due to the Pauli principle.
We next choose the quantization axis at site i along a

chosen direction ei and use the identities

eiŜi = 1

2
(n̂i↑ − n̂i↓),

n̂i = n̂i↑ + n̂i↓ (A7)

to reformulate the interaction Hamiltonian (A5) as

V̂ ≈1

2

∑
i

(
Ui − 1

2
Ji

)
(n̂i )

2 −
∑

i

Ji(eiŜi )
2

− 1

2

∑
iσ

(Ui − Ji )n̂iσ

≡1

2

∑
i

Ūi(n̂i )
2 −

∑
i

Ji(eiŜi )
2 − 1

2

∑
iσ

(Ui − Ji )n̂iσ .

(A8)
Here we introduced the spin operator Ŝi and the new
parameter Ūi = Ui − 1

2 Ji. The last term does not contain
quadratic contributions, and from now on we group it into
the noninteracting-electron Hamiltonian Ĥ(0). We obtain a
simplified many-electron Hamiltonian:

Ĥ ≈ Ĥ(0) −
∑

i

Ji(eiŜi )
2 + 1

2

∑
i

Ūi(n̂i )
2, (A9)

where the last term corresponds to a quantized treatment of the
Coulomb interaction that is replaced by a mean-field treatment
in our model. We fully follow the approximations introduced
by Hubbard [16,17] to treat the second term. The treatments
based on the Hubbard-Stratonovich transformation and the
static approximation were discussed in detail in his original
papers and also shown in [38], which leads to the tight-binding
model in this work.

APPENDIX B: HAMILTONIAN MONTE CARLO

Hamiltonian Monte Carlo (HMC) combines Monte Carlo
and molecular dynamics and has proven to be an effi-
cient method to sample complex energy landscapes [10–13].

In this paper, we employ HMC to sample the spin space
{h1, h2, . . . , hN }. The local exchange field hi here is a three-
dimensional vector, different from the unit spin vector in
our previous work [25]. It allows us to employ conventional
molecular dynamics to generate proposal states in HMC, as
compared to the auxiliary spin dynamics in [25].

In our HMC implementation we first introduce an auxiliary
momentum variable pi for every local exchange field hi. The
auxiliary momentum variables p1, p2, . . . , pN and the local
exchange fields h1, h2, . . . , hN together define a state X in
phase space. We then define the auxiliary Hamiltonian as

H (X ) =
N∑

i=1

p2
i

2m
+ Epot({hi}), (B1)

with the potential energy Epot defined in Eq. (3) and the
auxiliary mass m required in HMC. The HMC trajectory is
then generated by the following procedure:

(i) Starting from a current state XI , perform a Gibbs sam-
pling for the momentum variables and generate a new state X̄I

by randomly choosing new values of the momentum variables
pi according to their Gaussian distribution,

ρ(p1, . . . , pN ) =
N∏

i=1

(
β

2πm

)3/2

exp

{
−β

N∑
i=1

p2
i

2m

}
. (B2)

(ii) Run molecular dynamics for a trajectory length L from
the initial state X HD(0) chosen as X̄I using the equations of
motion for Hamiltonian dynamics

dhi

dt
= pi

mi
,

dpi

dt
= −∂Epot

∂hi
. (B3)

The final state of the molecular-dynamics trajectory is denoted
as X HD(L).

(iii) Negate the momentum variables of X HD(L) to obtain
the proposed state X̄I+1 for a Metropolis update. Discard-
ing the momentum part results in a deterministic generation
X̄I → X̄I+1 and is necessary to obtain a symmetric generation
probability.

(iv) Calculate the Metropolis acceptance ratio

p(X̄I → X̄I+1) = min{1, e[βH (X̄I )−βH (X̄I+1 )]}, (B4)

and accept the proposed state X̄I+1 as the next state XI+1 of the
Markov chain with the probability p.

(v) Repeat the steps above to generate a Markov chain.
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