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The gradual ferromagnetic spin reorientation in hexagonal close packed cobalt (hcp-Co) phase between 230 ◦C
and 330 ◦C reported for a Co single crystal [Bertaut et al., Solid State Commun. 1, 81 (1963)] suggests that this
phase could not have a hexagonal symmetry. This hypothesis is verified positively by synchrotron radiation
diffraction and neutron diffraction on polycrystalline powder cobalt. The analysis of diffraction data has been
done by using a specific set of Bragg peaks, which are not sensitive to the stacking faults present in abundance in
hcp-Co. The crystal structure of the hcp-type ordered areas of cobalt is described by the monoclinic symmetry
with the magnetic space group C2′/m′. In this monoclinic crystal structure the former hexagonal [001] axis
is no longer perpendicular to the hexagonal layers. The hexagonal [001] and [010] axes make an angle equal
α ≈ 90.10(1) ◦, while the angle between in-plane [100] and [010] axes equals γ ≈ 120.11(1) ◦. The monoclinic
symmetry provides an approximate description of the crystal structure of the stacking faulted hcp-Co areas
coexisting with fcc-Co areas.

DOI: 10.1103/PhysRevB.107.104104

I. INTRODUCTION

Cobalt is an extensively studied material with a layered-
type structure, which can crystallize in two different or-
derings: the hexagonal-close-packed (hcp-Co) and the face
centered-cubic (fcc-Co) [1]. The microstructure of the hcp
and fcc phases of cobalt and similar layered materials was
studied in the past decades by x-ray diffraction [2–6], neutron
diffraction [7–9], and electron microscopy [10–13]. Electron
microscopy studies show the presence of partial dislocations,
which sometimes delimit domains of hcp-Co embedded in the
fcc-Co matrix or vice versa, domains of fcc-Co embedded in
a hcp-Co matrix [14,15]. The hcp-Co phase is associated with
numerous stacking faults while the fcc-Co phase has consid-
erably less stacking faults, as shown, e.g., in [2–9,16]. Two
domains of hcp-Co stacked one above the other with a stack-
ing fault in between are usually delimited by a small interface
region of a few fcc-Co layers as shown, e.g., in [2,11,12]. The
average hcp domain consists of 20 to 40 hexagonal layers be-
fore the next stacking fault occurs [6,8]. The crystal structure
of fcc-Co has to be considered while analyzing the crystal
structure of hcp-Co phase, because they are often clustered
together in the same grains of cobalt.

The ferromagnetic spin reorientation process motivates
the revisit of the symmetry and the crystal structure of
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hcp-Co. Single crystal magnetization [17], single crystal neu-
tron diffraction [18,19], and elastic properties measurements
[20,21] show that between 230 ◦C and 330 ◦C the ferromag-
netically aligned Co magnetic moments in hcp-Co single
crystals gradually rotate from a direction parallel to [001]
towards a direction perpendicular to [001]. Above 330 ◦C the
magnetic moments remain perpendicular to [001] up to about
400 ◦C when the hcp-Co transforms to the fcc-Co [22]. In this
paper the crystallographic planes and directions refer to the
hexagonal system; when other systems are used it is given
explicitly.

The crystal structure of the hcp-Co areas is assigned to
the hexagonal space group P63/mmc (no. 194). The ferro-
magnetic mode 00F with magnetic moments parallel to the
hexagonal [001] axis (below 230 ◦C) is compatible with the
hexagonal symmetry as discussed in [23]. The magnetic space
group P63/mm′c′ [24,25] is compatible with the mode 00F
[23]. Ferromagnetic orderings with moments perpendicular
to [001] are not compatible with any magnetic space group
derived from P63/mmc [24]. The gradual magnetic moment
reorientation requires a ferromagnetic ordering of mode F0F,
which is compatible with monoclinic symmetry [23]. The
ferromagnetic ordering observed in hcp-Co above 230 ◦C can
be described by a monoclinic subgroup of P63/mm′c′. The
hypothesis about the monoclinic symmetry drawn from obser-
vations of the magnetic properties of hcp-Co single crystals
are studied in this paper with polycrystalline powder sam-
ples of cobalt. We use synchrotron radiation (SR) powder
diffraction and neutron powder diffraction with one Co
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sample, which is almost pure hcp-Co and another Co sample
with about fcc:hcp molar ratio circa 18%:82%.

II. MATERIALS AND METHODS

In this study two commercial powder Co samples were
used: the first labeled as HCP-Co (provided by Acros, Lot
A0414657) is almost hcp-pure and the second, labeled as
MIX-Co (provided by Alfa-Aesar, Lot 23997) is a mixture of
phases with the molar ratio fcc:hcp = 18%:82%. The HCP-Co
sample was divided in parts for use in neutron diffraction and
synchrotron radiation (SR) diffraction measurements. Please
note that we use the symbol with capital letters HCP-Co for
the sample label and the symbol with lowercase letters hcp-Co
for the hexagonal-close-packed phase of cobalt in general.

The first part of the HCP-Co sample was used for neutron
powder diffraction measurements at RT using the instrument
D2B at the Institut Laue-Langevin in Grenoble, France. The
measurements were done at RT with long counting times to
obtain high statistical accuracy. The sample was placed in
an 8-mm-diameter vanadium container, the neutron wave-
length was 1.5946 Å and the instrument was set in high
intensity mode, i.e., using α1 and α2 fully open and α3 = 5′.
The angular range was 10 ◦ < 2θ < 162.5 ◦ corresponding to
0.11 Å−1 < Q < 1.24 Å−1, where the scattering vector is
defined as Q = 2 sin(θ )/λ.

The second part of the HCP-Co sample was used for
neutron powder diffraction measurements at the instru-
ment SPODI [26] at the Heinz Maier-Leibnitz Zentrum in
Garching, Germany. Measurements were performed with the
HCP-Co sample placed in an 8-mm-diameter vanadium con-
tainer at several temperature values between RT and 380 ◦C.
The neutron wavelength was 1.5468 Å, and the instrument
was in high intensity mode collimation, i.e., using α1 and
α2 fully open and α3 = 10′. The angular range was 10 ◦ <

2θ < 157 ◦ corresponding to 0.11 Å−1 < Q < 1.26 Å−1. The
temperature control was obtained using an ILL-type furnace.

SR diffraction measurements were done at the pow-
der diffraction beamline BL04-MSPD [27] of the ALBA
synchrotron in Cerdanyola del Valles, Spain. The powder
HCP-Co and MIX-Co samples were sealed in 0.5-mm diam-
eter borosilicate capillaries and transmission geometry was
used. The operating wavelength was refined using a NIST
standard silicon sample, NIST SI640D. Powder diffraction
patterns were collected using the one-dimensional silicon
based position-sensitive detector MYTHEN [28]. This setup
allows fast data acquisition with better statistical accuracy as
compared with the multi-analyser detector (MAD) setup [29]
at the expense of angular resolution [30]. The instrumental
resolution was estimated by measuring the SR powder diffrac-
tion pattern of Na2Ca3Al2F14 (NAC) reference standard [31].

The first session of measurements at MSPD beamline was
done using a wavelength of λ = 0.41301(4) Å at the angular
range 2.4 ◦ < 2θ < 72 ◦ (corresponding to 0.10 Å−1 < Q <

2.84 Å−1) with the HCP-Co and MIX-Co at RT. This wave-
length gives access to a large Q range and gives an optimal
sample absorption.

The second session of measurements at MSPD beamline
was done using a wavelength of λ = 0.41357(6) Å at the
angular range 2.4 ◦ < 2θ < 82 ◦ (corresponding to 0.1 Å−1 <

FIG. 1. In-plane atomic positions in the hexagonal A (solid line),
B (dashed line), and C (dotted line) layers (adapted from [2]). The
hexagonal unit cell is depicted with solid lines.

Q < 3.17 Å−1). The MIX-Co sample was measured at tem-
peratures 25, 100, 150, 200, and 250 ◦C. Temperature control
was obtained by using a cryostream 700+ series model from
Oxford Cryosytems flowing thermalized N2 gas on the sample
in situ.

III. RESULTS

A. Stacking of atomic layers in hcp-Co and fcc-Co areas,
simplified model vs more realistic model

The hcp and fcc structures of cobalt are described as two
different stacking arrangements of the atomic hexagonal lay-
ers drawn in Fig. 1: hcp is equivalent to an ABABAB...type
stacking while fcc to an ABCABC...type stacking [2,3]. The
in-plane atomic coordinates in hexagonal setting are A(0, 0),
B( 1

3 , 2
3 ), and C( 2

3 , 1
3 ).

In the simplified model the cobalt crystallites can be de-
scribed with set of well arranged layers, which fulfill the
assumptions:

(i - simplified). The hexagonal layers have very few defects,
i.e., the arrangement shown in Fig. 1 extends over large in-
plane distances and there are small in-pane microstrains.

(ii - simplified). The hcp-type ordering can exist for less
than 20–40 layers [2,6] and then a change of the layers’ order-
ing (i.e., the stacking fault) must occur. The fcc-type ordering
can be observed, e.g., for a few hundreds of layers. In both
hcp and fcc areas the layers are well ordered at long in-plane
distances.

(iii - simplified). The inter-layer d-spacing has the same
value for any stacking sequence, i.e., the same for hcp-type,
fcc-type order as well as in the vicinity of stacking faults.

This simplified model is often used by researchers for an-
alyzing and simulating hcp-Co diffraction patterns, e.g., Frey
et al. [8] and Sławiński et al. [16].

In a more realistic model of the crystal structure of cobalt
it can be assumed that the previous simplified assumptions
should be changed as follows:

(i - realistic). The hexagonal layers have numerous in-
plane defects as shown by electron microscopy studies, e.g.,
[10–13]. It means that the arrangement shown in Fig. 1
extends over distances much smaller than in the simplified
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model. There may be also considerable in-plane microstrains,
which are larger than in the simplified model.

(ii - realistic). The stacking faults in the hcp-type arrange-
ment are expected as in the simplified model, however please
note the larger number of in-plane defects.

(iii - realistic). The inter-layer d-spacing for fcc-type order
is larger by about 0.5% than for hcp-type order, so one can
expect some microstrain along the [001] axis that is larger than
in the simplified model.

B. Bragg peaks insensitive to stacking faults

In this simplified model of the crystal structure of cobalt
one can expect two types of Bragg peaks: sensitive to stacking
faults and not-sensitive to stacking faults. For the AB layers’
sequence the Co atoms are located at A(0, 0, 1

4 ) and B( 1
3 , 2

3 , 3
4 )

and their contribution to the structure factor is proportional to
[1 + exp(iφ)] where

φ = 2π

{
h

3
+ 2k

3
+ l

2

}
= 2π

{
h − k

3
+ k

}
+ π l. (1)

For the AC layers’ sequence we have A(0, 0, 1
4 ) and

C( 2
3 , 1

3 , 3
4 ), so we obtain

φ = 2π

{
2h

3
+ k

3
+ l

2

}
= 2π

{
−h − k

3
+ h

}
+ π l. (2)

For the BC layers’ sequence we have B( 1
3 , 2

3 , 1
4 ) and

C( 2
3 , 1

3 , 3
4 ), so we obtain

φ = 2π

{
h − k

3

}
+ π l. (3)

In all three cases the values of φ calculated in Eqs. (1)–(3) are
multiples of 2π if

h − k = 3n1, (4a)

l = 2n2, (4b)

where n1 and n2 are both integers. With these conditions
fulfilled for all possible sequences (excluding the same lay-
ers as nearest neighbors) every layer contributes to the
structure factor with the same value, e2π iN = 1 (with N in-
teger). The Bragg peaks with indices that fulfill Eqs. (4a)
and (4b) will be named as stacking-faults-insensitive, or
shortly as “insensitive” peaks—because their structure factor
is not affected by the stacking faults, as mentioned, e.g.,
by Edwards and Lipson [2]. The Bragg peaks, which do
not fulfill Eqs. (4a) and (4b) are broadened and/or asym-
metric due to stacking faults as explained in [2]. In this
study we will use the following insensitive peaks of the hcp-
Co phase model (sorted with decreasing d-spacing values):
(002), (110), (112), (004), (114), (302), (006), (220).

C. Some limitations of the stacking-faults-insensitive
peaks approach

The conditions given in Eqs. (1)–(4b) are too simplified for
real cobalt samples. The coexistence of intertwined hcp-type
and fcc-type domains with limited in-plane size may lead to
an increase of anisotropic microstrains and to the broadening
of the peaks labeled as “insensitive”.

FIG. 2. Selected parts of neutron diffraction pattern of HCP-
Co (a) and SR diffraction patterns of HCP-Co (b) and MIX-Co
(c) samples at RT. The peaks due to hcp and fcc phase models are
marked with “H” and “C” symbols, respectively. The stacking faults
insensitive peak (002) is marked with (*). The very weak C(200)
peak is shown with an arrow in panel (b). The scattering vector
Q = 2 sin θ/λ, where 2θ is the scattering angle.

Another warning is related to the use of the terms hcp-Co
phase and fcc-Co phase. In polycrystalline cobalt samples
the stacked layers arranged in hcp-type and fcc-type order
coexist in the same polycrystalline grains and the layers of
fcc-type can increase the microstrain of the neighboring hcp-
type layers (or vice versa), see e.g., [9]. Therefore the term
phase is not completely appropriate. The powder diffraction
measurements provide an oversimplified approximate model
obtained by averaging over many intertwined areas, which
contribute to Bragg peaks usually attributed to the hcp and
fcc phases.

D. Comparison of neutron and synchrotron radiation
diffraction patterns of the cobalt samples

Representative parts of the neutron and SR powder diffrac-
tion patterns of the HCP-Co and MIX-Co samples are shown
in Fig. 2. The scattering vector Q is used as a common scale
for easier visualization. The intensity is given in arbitrary units
in which the highest peak has its maximum value 100. The
diffraction patterns of the HCP-Co sample in Figs. 2(a) and
2(b) show one symmetric and narrow “insensitive” H (002)
peak and two peaks: H (100) and H (101) affected by stacking
faults, i.e., H (100) is asymmetric with a broad right side while
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H (101) is symmetric and broad. There is also one narrow and
symmetric peak of the fcc-Co phase C(200). The HCP-Co
sample has the fcc:hcp molar ratio 2.5%:97.5% and only few
separated weak fcc peaks can be observed, see e.g., the C(200)
near Q = 0.565 Å−1 marked with the arrow in Fig. 2(b). The
sample HCP-Co can be considered as a collection of many
stacking faulted hcp-Co domains separated by a small amount
of fcc-Co domains.

The relatively high and almost flat background in the
neutron diffraction pattern of HCP-Co [Fig. 2(a)] is due
to the incoherent neutron scattering of the cobalt sample
and the vanadium container [32]. The difference of peak-
to-background ratios between neutron and SR diffraction
patterns is due to the unfavourable ratio of the coherent and
incoherent scattering lengths of cobalt: b(coh) = 2.49 fm and
b(inc) = –6.2 fm [32]. The hcp-Co areas at RT have a fer-
romagnetic ordering with magnetic moments directed along
[001], so the H (002) Bragg peak has no magnetic neutron
scattering contribution while both H (100) and H (101) have
some.

The SR diffraction pattern of MIX-Co samples shows the
molar ratio fcc:hcp about 18%:82%, see Fig. 2(c). Please note
that the cubic C(111) and hexagonal H (002) peaks are sepa-
rated because the average ABCABC and ABABAB interlayer
distances for fcc-Co and hcp-Co differ by about 0.5%, see e.g.,
[33–35].

E. Analysis of shapes of stacking-faults’ sensitive Bragg peaks

The well-established methodology of stacking faults mod-
els, see e.g., the book by Warren [36], was applied to the SR
diffraction patterns of MIX-Co and HCP-Co samples. In this
model two types of stacking faults are assumed: deformation
faults with probability αST and growth faults with probabil-
ity βST . The deformation faults add two local fcc stacking
sequences, e.g., ...ABABCACACA..., where the local fcc se-
quences are (ABC) and (BCA). The growth faults add only
one local fcc sequence, e.g., ...ABABCBCBC.., i.e., (ABC)
is the only local fcc sequence. These two stacking fault types
bring different contributions to the x-ray diffraction pattern
[36].

The calculations have been done with the programme
FAULTS [37] assuming the hexagonal and monoclinic sym-
metry of the hcp-type areas. The parameters of the monoclinic
symmetry model are given in Sec. III G. We found a good
agreement for the sensitive peaks with both models and the
same probabilities αST = 0.0067 and βST = 0.03, i.e., simi-
lar values to those found for powder cobalt samples in [6].
These probabilities correspond to an average column length
of the hcp-type area 1/(αST + βST ) ≈ 27 layers (thickness
55 Å). The model shows satisfactory agreement for the stack-
ing faults sensitive peaks, e.g., H (202), H (104), H (203), see
Fig. 3. Both HCP-Co and MIX-Co samples with different fcc
contents (2.5% and 18%) and different microstrains, however,
show similar shapes of the stacking faults sensitive peaks, see
Fig. 3. The same model of stacking faults, both in hexagonal
and monoclinic symmetry works well for both samples.

The main difference between the two patterns is due to the
Bragg peaks of the fcc-Co phases, see e.g., C(222),C(400)
present in MIX-Co and almost absent in HCP-Co. The model

FIG. 3. Selected parts of the SR powder diffraction patterns mea-
sured for the MIX-Co (solid line) and HCP-Co (open circles) are
shown in upper plots. The only stacking faults insensitive peak is
(004) while the remaining peaks are stacking faults sensitive. The
SR powder diffraction pattern calculated for a hexagonal model of
stacking faults with the probabilities αST = 0.0067 and βST = 0.03
(see text) is shown in the lower plot (solid line). The stacking faults
sensitive peakshapes calculated with FAULTS using the monoclinic
model (not shown) are hard to distinguish from the hexagonal model
results. The upper plots were shifted vertically for visualization.

implemented in FAULTS assumes infinitely wide layers with
ideal hexagonal planes and the same d-spacing along [001] for
both hcp-Co and fcc-Co phases.

F. Analysis of the shapes of stacking-faults’ insensitive
Bragg peaks

We have analyzed the SR diffraction patterns of the cobalt
samples limited to the hcp-Co stacking faults insensitive
peaks. The analysis was done in the following steps.

(i) The observed I (2θ ) profiles of insensitive peaks due to
the hcp-Co areas and the profiles of separated peaks due to
the fcc-Co areas were fitted by the pseudo-Voigt function by
using the program WinPlotr [38]. These fits provide the raw
values of the integral breadths βRAW (2θhkl ), i.e., not corrected
for instrumental resolution. The corrected integral breadths
are calculated as β(2θ ) = {βRAW (2θ )2 − βNAC (2θ )2} 1

2 , where
βNAC (2θ ) is interpolated from integral breadths measured with
the Na2Ca3Al2F14 reference standard [31] [see Fig. 4(c)].

(ii) The resolution corrected integral breadths β(2θhkl ) of
selected sets of insensitive peaks: [(002);(004);(006)] as well
as [(110);(220)] has been analyzed by a Williamson-Hall plot
[39] providing information about the average coherent do-
main size and average microstrain in out-of-plane and in-plane
directions.

(iii) The SR powder diffraction patterns limited to insen-
sitive peaks only were analyzed by the Rietveld method by
using the program Jana2006 [40] assuming both hexagonal
and monoclinic structure models.

The integral breadths of the “insensitive” peaks from
hcp-Co and peaks from fcc-Co observed with SR powder
diffraction for MIX-Co sample are shown in Fig. 4(a) and
for the HCP-Co sample in Fig. 4(b). It was possible to fit
the profile of only 3 to 4 peaks due to the fcc-Co phase,
especially in the HCP-Co sample where the amount of fcc-Co
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FIG. 4. Integral breadths βRAW (in radians) of the hcp-Co insen-
sitive peaks and fcc-Co peaks observed in the SR diffraction patterns
of MIX-Co (a) and HCP-Co (b). The hexagonal and cubic indices
are shown. In (c) only the hcp-Co insensitive peaks from MIX-Co
and HCP-Co samples are compared with the integral breadths of the
Na2Ca3Al2F14 reference standard [31] (estimation of the instrumen-
tal resolution). Panel (c) is shown to compare the peaks due to the
hcp-Co that were already shown in MIX-Co (a) and HCP-Co (b).
The lines are shown to guide the eye.

is only 2.5% and the fcc-Co peaks are broad. Figure 4(c)
compares the integral breadths of insensitive peaks from hcp-
Co observed for MIX-Co and HCP-Co, i.e., it shows the
same data as in Figs. 4(a) and 4(b) but without the fcc-Co
peaks for easier visualization. The peakwidths of the reference
sample for instrumental resolution Na2Ca3Al2F14 are shown
in Fig. 4(c). Each panel in Figs. 4(a), 4(b), and 4(c) share the
same horizontal 2θ scale but the vertical scales are different.
The data from panels (a) and (b) is repeated in panel (c) but in
a different scale.

The relatively large differences of integral breadths of in-
sensitive (00l ) and (hh0) peaks from HCP-Co sample agree
with the monoclinic model calculations with the programme
FAULTS. The model calculations are compared with experi-
mental data in Fig. 5.

The microstrains (ε) and coherent domain sizes (D) are
calculated from the observed subset of peaks, which show a
linear dependence of their β(2θ ) cos(θ ) vs sin θ . We use the

FIG. 5. Observed integral breadths βRAW (in radians) of the hcp-
Co insensitive peaks observed in HCP-Co (a) are compared with the
results of model calculations with both monoclinic and hexagonal
symmetry (b) by the program FAULTS (see text).

Williamson-Hall type linear fit [39],

β(2θ ) cos θ = 4ε sin θ + Kλ

D
= A sin θ + B, (5)

so the microstrain and the coherent domain size are given by

ε = A

4
D = Kλ

B
, (6)

where A and B are linear function parameters from
Williamson Hall fit and K is the Scherrer’s constant set to
K = 0.9 [41].

For the MIX-Co sample, shown in Fig. 4(a) with (fcc:hcp
ratio 18%:82%) the integral breadth of the fcc-Co peaks and
of hcp-Co insensitive peaks show a similar linear behavior
indicating relatively low microstrains in areas with both hcp
and fcc order. The Williamson Hall plot gives the micros-
train εMIX

hcp ≈ εMIX
f cc = 0.127(4)% and coherent domain size

DMIX
hcp ≈ DMIX

f cc = 670(100) Å. This is much more than the
average 55 Å of the hcp-type areas estimated with the pro-
gramme FAULTS in Sec. III E. This is due to stacking fault
insensitive peaks being obtained by summing over multiple
hcp-Co and fcc-Co domains in each crystallite as explained in
Sec. III B.

The observed linear increase of integral breadths with
small slope indicates that both hcp-Co and fcc-Co areas are
less strained in the MIX-Co sample than in the HCP-Co
sample.

For the HCP-Co sample shown in Fig. 4(b) the situation is
different. The integral breadths of the fcc-Co peaks are large,
as compared with the fcc-Co peaks from MIX-Co sample,
and they show a steep increase vs 2θ indicating larger mi-
crostrains. A Williamson-Hall fit for the fcc-Co peaks gives
the microstrain εHCP

f cc = 0.73(4)% and coherent domain size
DHCP

f cc = 500(60) Å.
The peakwidths of insensitive peaks of the hcp-Co phase

do not show a linear sin θ behavior, but there are considerable
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FIG. 6. Williamson-Hall plots for (00l ) and (hh0) peak fami-
lies of the HCP-Co sample. Formulas of linear functions obtained
through least squares method for (00l ) peaks and linear extrapolation
for (hh0) peaks are shown in the plot and are expressed in the unit of
degrees.

hkl-dependent differences. The (00l ) group of peaks are nar-
row indicating a low microstrain and large coherent diffracting
domains along the hexagonal direction [001]. The group of
broader (hh0) peaks indicate larger microstrains within the
hexagonal layer (001) planes. The widths of the peaks in-
dexed as (hh0) provide the average over three equivalent
directions in the (001) plane, i.e., ±(h, h, 0); ±(2h, h̄, 0), and
±(h, 2h̄, 0). The out-of-plane layers’ spacing is more regular
than the in-plane atomic arrangement inside the hexagonal
layers.

In order to quantitatively describe the observed peak broad-
ening of the insensitive peaks from SR diffraction patterns we
have performed a Williamson-Hall plot analysis [39] for the
group of narrower (00l ) peaks and the group of broader (hh0)
peaks. The Williamson-Hall plot for the HCP-Co sample is
shown in Fig. 6. The slope of the obtained lines is substantially
larger for the (hh0) than for (00l ), i.e., the in-plane micros-
train is larger than in the perpendicular [00l] direction. The
y-intercept values for fitted lines are very close to zero corre-
sponding to large coherent domain sizes in both directions.

Equations (6) were used for a fit for the three points of
the (00l ) family and for a solution of the set of two linear
equations for the two points (110) and (220). In both cases one
obtains values of Ahkl and Bhkl with their uncertainties. The
final values are ε00l = 0.171(5)%, εhh0 = 0.305(7)%, D00l =
3900(1000) Å, and Dhh0 = 6600(2000) Å for HCP-Co. The
estimated crystallite sizes have large uncertainties but the
difference of microstrains ε00l and εhh0 is significant.

G. Temperature dependence of the hcp-Co and fcc-Co
lattice parameters

The SR powder diffraction patterns of HCP-Co and MIX-
Co samples at RT and the MIX-Co sample measured at
temperatures between RT and 250 ◦C have been analyzed
using Rietveld refinement [42,43] by using the program
Jana2006 [40]. For the hcp-Co phase only the insensitive
Bragg peaks were used in the refinement. The hcp-Co phase
[hexagonal space group P63/mmc and Co atoms at position
(2c)] and the fcc-Co phase [cubic space group Fm3̄m and Co
atoms at position (4a)] were assumed in the refinements. The

refinement was satisfactory and the resulting hexagonal ah, ch

and cubic ac lattice parameters are presented in Table I. The
interlayer d spacing equals dhcp = ch/2 and d f cc = ac/

√
3 in

hcp-Co and fcc-Co, respectively. The relative difference of
interlayer spacing,(


d

d

)
⊥

= d f cc − dhcp

dhcp
= 2ac√

3ch

− 1, (7)

where ⊥ indicates perpendicular to the layers, was reported in
early works on cobalt to be equal 0.57% [34], 0.55% [33], and
0.48% [35] at RT, i.e., not far from our values, i.e., 0.488(5)%
for MIX-Co and 0.614(5)% for HCP-Co, see Table I. The
values of (
d/d )⊥ decrease with temperature as shown in
Table I. The nearest-neighbor in-plane distance is equal lhcp =
ah and l f cc = ac/

√
2 in hcp-Co and fcc-Co, respectively. The

relative difference of nearest-neighbor in-plane distances is
calculated as(


d

d

)
‖

= l f cc − lhcp

l f cc
= 1 −

√
2

ah

ac
, (8)

where ‖ indicates parallel to the layers’ surface, is also shown
in Table I.

The lattice constants observed for both hcp and fcc areas
in the HCP-Co and MIX-Co samples differ. Please note that
the fcc-Co (occupying only 2.5% in the HCP-Co sample) is
highly strained, as shown by broad peaks in Fig. 4(b) and the
interlayer misfit (
d/d )⊥ is larger than in the MIX-Co sample
(where the fcc-Co occupies 18%).

The temperature dependence of both hexagonal ah(T ),
ch(T ) and cubic ac(T ) lattice parameters is linear as shown,
e.g., in [1,35] and their relative differences, e.g., (
d/d )⊥
and (
d/d )‖ tend linearly towards zero with temperature (see
Table I, plot not shown), i.e., at higher temperatures the misfits
try to relax. The relative difference of interlayer distances in
hcp-to-fcc cobalt (
d/d )⊥ was reported earlier, e.g., [33–35]
while the much smaller (
d/d )‖ intralayer distance differ-
ence values were not reported so far for cobalt, to the best of
our knowledge.

H. The monoclinic and hexagonal models of the crystal
structure of hcp-Co

The hkl-selective peak broadening of insensitive peaks
shown in Fig. 4 can be explained by a monoclinic deformation
of the crystal lattice. This is consistent with the magnetic
spin reorientation effect reported in hcp-Co single crystal
[18,19]. We tried to verify this hypothesis by performing
Rietveld analysis of the SR diffraction patterns by using the
program Jana2006 [40] with only insensitive peaks included.
The H(002) and C(111) peaks were excluded from the refine-
ments due to overlap.

The usual hexagonal close-packed structure (space group
P63/mmc) will be denoted as “undistorted” and the mon-
oclinic (space group C2/m) as “distorted”. The lattice
parameters and unit-cell vectors of undistorted and distorted
hcp-Co will be denoted with superscripts 0 and 1, respectively.

The hcp-Co structure can be described in the hexagonal
space group P63/mmc with the generators in Seitz notation:
{3+

001|000}, {2001|00 1
2 }, {2110|000}, {1̄|000}. If we remove the

two rotations around [001]: {3+
001|000} and {2001|00 1

2 } we
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TABLE I. Values of lattice constants of the hcp-Co and fcc-Co phases determined from SR powder diffraction measurements on the
HCP-Co and MIX-Co samples at different temperatures. The relative differences of out-of-plane [Eq. (7)] and in-plane distances [Eq. (8)] is
also shown.

temp. ah ch ac (
d/d )⊥ (
d/d )‖
Sample [ ◦C] [Å] [Å] ch/ah [Å] [%] [%]

HCP-Co 25 2.50760(6) 4.07350(16) 1.62446(7) 3.5494(12) 0.614(36) +0.088(35)
MIX-Co 25 2.50811(6) 4.07432(16) 1.62446(7) 3.54568(12) 0.488(5) −0.037(4)
MIX-Co 100 2.51099(5) 4.08039(13) 1.62501(6) 3.54989(11) 0.458(4) −0.034(4)
MIX-Co 150 2.51269(5) 4.08406(14) 1.62537(6) 3.55235(12) 0.437(5) −0.032(4)
MIX-Co 200 2.51445(5) 4.08783(13) 1.62574(6) 3.55491(12) 0.416(5) −0.030(4)
MIX-Co 250 2.51632(5) 4.09181(14) 1.62611(6) 3.55765(13) 0.396(5) −0.027(4)

obtain the set of generators of the monoclinic space group
C2/m. The group-subgroup relation between P63/mmc and
C2/m gives the following relations between the hexagonal
unit cell vectors: a0

h, b0
h, and c0

h and the monoclinic unit-cell
vectors a0

m, b0
m, and c0

m,

a0
m = b0

h − a0
h, (9a)

b0
m = b0

h + a0
h, (9b)

c0
m = c0

h, (9c)

where the subscripts “h” and “m” refer to the hexagonal and
monoclinic settings, respectively. The Co atoms are located at
the sites (2c) [point group 6̄m2] of the space group P63/mmc:
at ( 1

3 , 2
3 , 1

4 ) and ( 2
3 , 1

3 , 3
4 ). In the monoclinic symmetry the Co

atoms are at the site (4i) [point group m] of the C2/m space
group. This site has two free positional parameters x, z and
the atoms are located at: (x, 0, z), (x̄, 0, z̄), ( 1

2 + x, 1
2 , z), ( 1

2 −
x, 1

2 , z̄). In all Rietveld refinements these parameters were
fixed at x = 2/3 and z = 1/4 to match exactly the coordinates
of the hexagonal structure. Please note that the insensitive
peaks cannot be used to determine x and z, see Eqs. (4a) and
(4b).

In order to compare easier the undistorted hexagonal struc-
ture and the distorted monoclinic structure we will use the
pseudohexagonal setting of the monoclinic structure. The
pseudohexagonal vectors a1

h, b1
h, and c1

h can be obtained by
taking reverse transformation of Eqs. (9a)–(9c) and changing
all the superscripts from 0 to 1,

a1
h = 1

2

(
b1

m − a1
m

)
, (10a)

b1
h = 1

2

(
b1

m + a1
m

)
, (10b)

c1
h = c1

m. (10c)

The pseudohexagonal lattice parameters fulfill the following
equations:

a1
h = b1

h, (11a)

α1
h + β1

h = 180◦, (11b)

which can be derived by calculating scalar products a1
ha1

h,
b1

hb1
h as well as a1

hc1
h and b1

hc1
h using Eqs. (10a)–(10c). Please

note that the pseudohexagonal setting is a primitive cell choice
for base-centered monoclinic structures. The relations be-
tween lattice constants in monoclinic and pseudohexagonal

settings of the distorted structure, derived from Eqs. (10a)–
(10c) are given by

a1
h = b1

h = 1

2

√(
a1

m

)2 + (
b1

m

)2
, (12a)

c1
h = c1

m, (12b)

cos α1
h = cos

(
π − β1

h

) = a1
m cos β1

m√(
a1

m

)2 + (
b1

m

)2
, (12c)

cos γ 1
h =

(
b1

m

)2 − (
a1

m

)2

(
b1

m

)2 + (
a1

m

)2 . (12d)

The mutual arrangement of the hexagonal, pseudohexago-
nal, and monoclinic axes is shown in Fig. 7. The distortions
from hexagonal symmetry of the hcp-Co areas are expected
to be small because the variation of the peakwidths shown
in Fig. 4 are also relatively small. It can be assumed that
with three small distortion parameters, which fulfill δα

α
� 1,

δγ

γ
� 1 and δa

a � 1, we get

a1
h = b1

h = a0
h + δa, (13a)

FIG. 7. The hexagonal (a0
h, b0

h, c0
h ) pseudohexagonal (a1

h, b1
h,

c1
h ), and monoclinic (a1

m, b1
m, c1

m ) axes shown in two projections
(a) perpendicular to the hexagonal c∗

h reciprocal lattice vector and
(b) perpendicular to the monoclinic b∗

m reciprocal lattice vector. The
z = 1/4, 3/4... are the coordinates of atomic planes and they are
the same in all three settings. Solid lines mark the base of the
hexagonal unit cell and hexagonal axes, dashed lines are used for
the pseudohexagonal vectors, and the dashed-dotted lines denote
the monoclinic axes. The δγ /2 and δβm angles were significantly
enlarged for visualization. The distance between adjacent planes is
denoted as d002 in (b) with the same 002 indices in all three settings.
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TABLE II. Lattice constants and angles refined from the SR powder diffraction pattern of the HCP-Co sample using only “insensitive”
peaks (see text) using Rietveld method with use of the hexagonal (column 1) and monoclinic (columns 2 and 5) models. In the hexagonal model
Co atoms are at positions (2c) of P63/mmc while in monoclinic model in positions (4i) of C2/m (for details see Sec. III H). The refinement
quality indicators wRp are given in the bottom row. The results of refinements for the best monoclinic model with both δα 
= 0 and δγ 
= 0
(see text) are shown in both pseudohexagonal (column 4) and monoclinic (column 5) settings.

No. 1 2 3 4 5

Hex
Ps-hex Ps-hex Ps-hex

MonoModel
P63/mmc

α−fix α−free α−free
C2/mγ−free γ−fix γ−free

a [Å] 2.50807(10) 2.50946(11) 2.50828(10) 2.50973(10) 4.34924(22)
b [Å] = a = a = a = a 2.50578(11)
c [Å] 4.07431(17) 4.07416(16) 4.07455(16) 4.07474(15) 4.07474(15)
α [◦] 90 90 90.1247(33) 90.1115(29) 90
β [◦] 90 90 89.8753(33) 89.8884(29) 90.1287(32)
γ [◦] 120 120.1090(33) 120 120.1036(32) 90
wRp [%] 10.71 10.02 9.82 9.11 9.11

c1
h = c0

h

sin(90◦ + δα)
= c0

h + O(δα2) ≈ c0
h, (13b)

α1
h = 90◦ + δα, (13c)

β1
h = 90◦ − δα, (13d)

γ 1
h = 120◦ + δγ . (13e)

The pseudohexagonal angle α1
h between c1

h and b1
h is equal to

(90◦ + δα) and it means that δα is a measure of the inclination
of the former hexagonal [001] axis with respect to the lines of
atoms arranged along b1

h in the former hexagonal layer. On
the other hand the pseudohexagonal angle γ 1

h = 120◦ + δγ

describes a deformation of the atomic layer itself.

I. Rietveld refinements of SR diffraction patterns of hcp-Co
assuming the monoclinic symmetry

In the first step of Rietveld refinements, the undistorted
hexagonal crystal structure described by the space group
P63/mmc was used, giving a relatively good refinement qual-
ity parameter wRp, see Table II (column 1) for HCP-Co

sample and Table III (column 1) for MIX-Co sample. In the
next steps, the monoclinic crystal structure with the mono-
clinic symmetry (space group C2/m) was used. For better
visibility of data presentation we have used the pseudohexago-
nal setting defined by Eqs. (10a)–(12d). The model assuming
a deformed (NON-hexagonal) layers, which are perpendicu-
lar to the hexagonal [001] axis, i.e., α = β = 90 ◦ and γ =
120 ◦ + δγ is shown in column 2 of Table II and Table III. The
model assuming hexagonal layers, which are NOT perpen-
dicular to the hexagonal [001] axis, i.e., α = 90 ◦ + δα, β =
90 ◦ − δα, and γ = 120 ◦ is shown in column 2 of Table II and
Table III. Both these models give better agreement than the
hexagonal one. The best agreement is obtained for the model
of NON-hexagonal layers, which are NOT perpendicular to
the hexagonal axis, i.e., δα 
= 0 and δγ 
= 0, as shown in
columns 4 and 5 of Table II. These two columns refer to
the same model given in pseudohexagonal and monoclinic
settings, respectively. For better visualization the wRp min-
imum as a function of the angular deviations δα and δγ is
shown with the color map in Fig. 8. The color map shows
the results of 100 refinements with fixed values of δα and δγ .

TABLE III. Lattice constants and angles refined from the SR powder diffraction pattern of the MIX-Co sample using only “insensitive”
peaks (see text) using Rietveld method with use of the hexagonal (column 1) and monoclinic (columns 2 and 5) models. In the hexagonal model
Co atoms are at positions (2c) of P63/mmc while in monoclinic model in positions (4i) of C2/m (for details see Sec. III H). The refinement
quality indicators wRp are given in the bottom row of the table. The results of refinements for the best monoclinic model with both δα 
= 0
and δγ 
= 0 (see text) are shown in both pseudohexagonal (column 4) and monoclinic (column 5) settings.

No. 1 2 3 4 5

Hex
Ps-hex Ps-hex Ps-hex

MonoModel
P63/mmc

α−fix α−free α−free
C2/mγ−free γ−fix γ−free

a [Å] 2.50806(5) 2.50898(7) 2.50812(6) 2.50889(8) 4.34671(17)
b [Å] = a = a = a = a 2.50682(18)
c [Å] 4.07451(15) 4.07453(14) 4.07446(15) 4.07467(15) 4.07467(15)
α [◦] 90 90 90.0939(33) 90.0804(36) 90
β [◦] 90 90 89.9061(33) 89.9196(29) 90.0928(37)
γ [◦] 120 120.0732(33) 120 120.0544(43) 90
ac [Å] 3.54565(12) 3.54577(11) 3.54548(11) 3.54567(11) 3.54567(11)
wRp[%] 15.83 15.35 15.09 14.95 14.95
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FIG. 8. (Left panel) Values of the fit quality indicator, wRp vs angular deviations δα and δγ obtained for the HCP-Co sample. (Right
panel) Plot of the one-dimensional cuts with the value of wRp along the lines: δα = 0(�); δγ = 0(�); δα = δγ (•). The angle deviation is δγ

for (�), δα for (�) and δα = δγ for (•).

The refined angular distortion parameters δα = 0.111(3)◦ and
δγ = 0.104(4)◦ are larger than their statistical errors and this
result supports the hypothesis of a monoclinic distortion of the
averaged crystal structure of the hcp-Co areas.

J. Neutron diffraction studies of the spin reorientation
in the hcp areas of cobalt

The monoclinic symmetry proposed above is compatible
with the magnetic phenomena: the ferromagnetic ordering
of hcp-Co can be described by the magnetic space group
C2′/m′. This space group allows a continuous ferromagnetic
spin reorientation, as discussed, e.g., in [44]. The Co atoms
are allowed to have a ferromagnetically ordered magnetic
moments: M = [M0

x , 0, M0
z ], i.e., in the plane perpendicular

to the unique monoclinic axis b1
m. It means that the ferro-

magnetic ordering is described in monoclinic symmetry with
the magnetic mode F0F instead of a 00F mode in hexagonal
symmetry as explained in [23]. The gradual spin reorientation
by any angle is possible in agreement with magnetization [17]
and neutron diffraction results, e.g., [18,19].

In the neutron diffraction study with instrument D2B we
tried to determine the direction of the Co magnetic moments
at RT. We performed Rietveld refinement using only the peaks
insensitive to the stacking faults, similarly as with SR diffrac-
tion data described earlier. The neutron diffraction pattern
contains only four insensitive peaks—(002), (110), (112),
and (004) thus limiting the information we can extract with
this approach.

In order to refine the direction of the magnetic moments
we used the P1 magnetic space group instead of the space
group P63/mmc. The lattice constants were constrained a = b
and the angles α = β = 90◦, γ = 120◦ were fixed. The atoms
were placed at ( 1

3 , 2
3 , 1

4 ) and ( 2
3 , 1

3 , 3
4 ) positions with an initial

magnetic moment along the c-axis. The unit cell has the same
metric as the hexagonal one, but the magnetic space group
allows any direction of the magnetic moment. After obtaining
a stable solution we started to gradually change the polar
angle φm between the magnetic moment and the hexagonal
c axis and we refine the magnetic moment length and the
Debye-Waller factor keeping the angle φm fixed for each of

the refinements. The resulting refinement with φm = 10 ◦ is
shown in Fig. 9. The unfavourable values of the scattering
lengths b(coh) and b(inc) seriously limit the possibilities of
neutron diffraction studies of cobalt.

The results of refined magnetic moment vs φm and the
refinement quality indicator wRp are shown in Fig. 10. With
the neutron powder diffraction data one can determine the
magnetic moment direction with an accuracy of about ±10 ◦.
Our fit gives a value of the Co magnetic moment 0.86(5)μB.
Earlier studies by Bertaut et al. [19] reported a value of
〈S2〉 = 0.703 μ2

B at 236 ◦C. For RT one can expect a magnetic
moment larger by a few percent than

√
0.703μB = 0.84μB,

which is close to our refined value. The wRp parameter is
changing slightly with the direction of the magnetic moment.
There is an anticorrelation: for increasing φm the value of Uiso

decreases while Mtot increases. In fact we use four magnetic
and stacking-faults-insensible peaks only (see Fig. 9), so this
is not enough to obtain a reliable value of both Mtot and
the Debye-Waller factor Uiso. SR powder diffraction peaks
give Uiso values about 0.01 Å2 but these are obtained with a
fit using about 10 peaks and we cannot compare them with
Uiso obtained from neutron diffraction in Fig. 10. Fits with

FIG. 9. Neutron powder diffraction pattern of HCP-Co sample
measured with instrument D2B at RT. The refinement was done with
the four peaks “insensitive” to stacking faults (see text). The grey
sections were excluded from refinements. The difference curve is
shown at the bottom.
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FIG. 10. The values of refined magnetic moment in directions
parallel (a) and perpendicular (b) to hexagonal c axis vs the angle
φm between spin direction and the c axis. [(c)–(e)] Show the total
magnetic moment, the isotropic displacement factor Uiso and the
refinement quality indicator wRp.

the monoclinic symmetry were not successful because of the
limited number of insensitive peaks in the neutron diffraction
pattern.

In the neutron diffraction study with instrument SPODI
we tried to study the spin-reorientation process in hcp-Co.
The measurements with HCP-Co sample at SPODI started
with an unexpected effect. After the first measurements at
RT the temperature was increased to 380 ◦C in order to go
surely above the spin reorientation transition. Unfortunately
at this high temperature the metastable hcp phase started to
decompose and about 15% of the sample volume changed
irreversibly from hcp to fcc. This transition took place in a
relatively short time of a few minutes. Next, the temperature
was reduced to 330 ◦C and the measurements were run in the
cycle by cooling in steps from 330 ◦C down to 100 ◦C and
next by warming in steps up to 330 ◦C. At the end the sample
was cooled down and the measurement at RT was repeated.
The amount of fcc-to-hcp content did not change during the
cycling between 330 ◦C and 100 ◦C.

The statistical accuracy accessible in the temperature-
dependent measurements at SPODI was not enough to
determine the magnetic moments direction with a precision
better than ±10 ◦. In order to visualize the main effects we

show the measured temperature dependence of the (002)
and (100) Bragg peaks in Figs. 11(a) and 11(b), respec-
tively. These Bragg peaks contain both nuclear and magnetic
contributions. The (002) peak is insensitive, while the (100)
has contributions due to the stacking faults, see e.g., Fig. 2.
The present results are compared with results from Bertaut
et al. [18] for (002) in Figs. 11(a) and 11(c) respectively,
while for (100) in Figs. 11(b) and 11(d), respectively. Both
experiments show a gradual change of the intensity ratios,
which can be interpreted as a sign of a spin reorientation in
the Co single crystal [18] across about 
T = 80 ◦C while in
powder HCP-Co the spin-reorientation starts at about 100 ◦C,
and finishes around 300 ◦C, see Fig. 11.

From our neutron powder diffraction data we can confirm
that there is a spin-reorientation process in our powder HCP-
Co sample, but the process takes place in a wider temperature
range than in the single crystal as reported by Bertaut et al.
[18,19]. It is, however, not possible to confirm if the magnetic
moments are exactly parallel to the hexagonal [001] at 100 ◦C
nor exactly perpendicular to [001] above 300 ◦C. It was also
not possible to confirm or refute the hypothesis of the mon-
oclinic symmetry of the averaged crystal structure of hcp-Co
ordered areas using the neutron powder diffraction data from
D2B and SPODI.

K. Model of the atomic layers in monoclinic (pseudohexagonal)
hcp-Co phase model

Let us look at the nearest-neighbor interatomic distances
in the monoclinic lattice of the hcp-Co phase model. A
schematic plot of the monoclnic (formerly: hexagonal, now
pseudohexagonal) A and B layers is given in Fig. 12. The
atoms in the A layer A0, ...A6 are located in the draw-
ing plane, i.e., at z = 1/4: A0 at (0, 0, 1

4 ), A1 at (1, 1, 1
4 ),

A2 at (0, 1, 1
4 ), and so on. The atoms in the B layer (left

panel) are located at z = −1/4, i.e., below the A layer at
B1( 1

3 ,− 1
3 ,− 1

4 ), B2( 1
3 , 2

3 ,− 1
4 ), B3(− 2

3 ,− 1
3 ,− 1

4 ). The atoms
in the C layer (right panel) are located at z = 3/4, i.e., above
the A layer at C1(− 1

3 , 1
3 , 3

4 ),C2(− 1
3 ,− 2

3 , 3
4 ),C3( 2

3 , 1
3 , 3

4 ). Ci is
the image of Bi by inversion centered at A0. The hexagonal
and pseudohexagonal coordinate systems defined by vectors
(a0

h, b0
h, c0

h ) and (a1
h, b1

h, c1
h ) [see Eqs. (9) and (10)] have the

same common origin, see also Fig. 7. The unique monoclinic
axis b1

m = [010]m is parallel to both,

b1
m ‖ (

a0
h + b0

h

) ‖ (
a1

h + b1
h

)
(14)

as shown in Fig. 12 with the dashed line. The unique mon-
oclinic plane (010)m is drawn with the dash-dotted line. We
assume that the fractional atomic coordinates of all atoms in
A, B, and C layers remain constant. We consider the difference
in atomic positions between the hexagonal and pseudohexag-
onal structure models due to a change of the crystallographic
axes as given by Eqs. (9) and (10). In Fig. 12 it is assumed
that the lengths of the hexagonal and pseudohexagonal lattice
parameters are the same, i.e., a0

h = b0
h = a1

h = b1
h and c0

h = c1
h

but the pseudohexagonal angles change from 90 ◦ and 120 ◦.
The pseudohexagonal c1

h axis rotates within the unique mono-
clinic plane towards atom B1 in Fig. 12, see also Eqs. (9) and
(10) with Fig. 7. In the refined structural model for hcp-Co
the pseudohexagonal angles α, β, and γ change by about
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FIG. 11. Temperature dependence of the Bragg peaks measured with neutron diffraction for powder HCP-Co sample in the present study
using instrument SPODI peak (002) (a) and peak (100) (b). Similar results obtained from neutron diffraction on a Co single crystal by Bertaut
et al. [18,19] are shown: peak (002) (c) and (100) (d).

0.11 ◦ and it is hardly visible on a drawing. For visualization
purposes, Fig. 12 is drawn with δα, δβ, and δγ about 10 ◦. The
shifts of the atomic positions are shown with arrows. Please
note that the shifts have also a small vertical component whose
sign is given as + or − in Fig. 12.

The distance from A0 to neighbor atoms within the
monoclinic plane, d (A0B1) = d (A0C1) are different from
the distances to the atoms outside this plane, d (A0B2) =
d (A0B3) = d (A0C2) = d (A0C3). In the usual way of explain-
ing the partial dislocation in the hcp-fcc boundary region, see
e.g., [14,15], each atom from the A layer has three equivalent

FIG. 12. Schematic presentation of the arrangement of atoms
seen from top of the A and B layers (left panel) and A and C layers
(right panel). The Co atoms represented by open circles (A, solid
lines; B, dotted lines; and C, dashed lines) are shown at their posi-
tions in the hexagonal lattice. The vectors indicate how these atoms
move on changing to the pseudohexagonal, i.e., monoclinic crystal
structure model. The symbol + or 0 or − next to the vector shows if
the vector points below or above (see text). The unique monoclinic
axis b1

m (dash-dotted line) and the monoclinic plane (010)m (dotted
line) are shown.

neighbors in the B layer and three equivalent neighbors in
the C layer. If the pseudohexagonal system proposed here
describes the hcp-Co and fcc-Co domains then there may be
a preference for the partial dislocation to be directed either
along the monoclinic axis or within the monoclinic plane. If
the proposed monoclinic model works, then we can expect
that the maximal inclination of the layers with respect to the
hexagonal [001] axis occurs within the monoclinic plane, i.e.,
along the line C1 − A0 − B1.

If this model works well, then one can suppose that the
maximally inclined layers, may preferentially be directed
along the unique monoclinic plane direction (dotted line).
This hypothesis could explain why multiple dislocations often
choose one preferred direction in the cobalt grain as it was
often reported, e.g., in [11,12].

IV. SUMMARY

The present study confirms that the more realistic crystal
structure model provides a better description of the observed
diffraction data as compared with the simplified model.

The initial hypothesis that the averaged crystal structure of
the hcp-Co areas is not hexagonal but monoclinic has been
confirmed by SR powder diffraction and neutron diffraction.
This is in agreement with the observed temperature driven
reorientation [18,19] of the ferromagnetic moments of cobalt.
During such a reorientation the magnetic moments should be
confined to a plane, which is perpendicular to the unique mon-
oclinic axis, see e.g., [44]. The argument about monoclinic
symmetry of crystals with a continuous spin reorientation [44]
is valid for single-phase systems. The cobalt crystallites do not
fulfill these assumptions because they are not single phase.
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Besides the symmetry of the crystal structure, there are
interesting observations related to the microstrains. Both
MIX-Co sample (fcc:hcp = 18%:82%) and HCP-Co sample
(fcc:hcp = 2.5%:97.5%) show broad stacking-faults-sensitive
hcp-Co peaks with very similar shapes for both samples, see
Fig. 3. The remaining peaks, which are (nominally) insen-
sitive to stacking faults show considerably different widths
for both samples, see Fig. 4. It means that the two samples
have a different distribution of microstrains. Surprisingly, the
MIX-Co sample shows both hcp-Co and fcc-Co with low
microstrains ε ≈ 0.13%, while the HCP-Co sample shows
large microstrains for the fcc-Co: ε ≈ 0.73% and hcp-Co:
εhh0 ≈ 0.30% (along [110]) and ε00l ≈ 0.17% (along [001]).
It means that the presence of a smaller amount of the fcc-
Co areas induces larger microstrains in the hcp-Co areas.

Besides the different fcc contents and different microstrains
both MIX-Co and HCP-Co samples show similar monoclinic
lattice parameters and similar type of stacking faults. These
observations show the need for a revisit of the quantitative
models of stacking faults in cobalt.
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