
PHYSICAL REVIEW B 107, 094521 (2023)

Theoretical analysis of anisotropic upper critical field of superconductivity in nodal-line semimetals
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We study the properties of the upper critical field of superconductivity in nodal-line semimetals in a continuous
model, which has a nodal line on the kz = 0 plane. Using the semiclassical Green’s function method, we calculate
the upper critical field for the two limiting cases: the dirty limit with many impurities and the clean limit with
few impurities. The results show the large anisotropy of the magnitude of the upper critical field and the unusual
temperature dependence. The obtained results are compared with recent experimental data of PbTaSe2.
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I. INTRODUCTION

In the standard systems, electron bands avoid band cross-
ing because of band repulsion. However, some symmetry
protects the band crossing of the conduction and valence
bands. Materials that exhibit such kinds of nonaccidental
band crossings are called topological semimetals [1]. Three-
dimensional topological semimetals are classified into two
types according to the dimension of the crossing, i.e., whether
the band crossing appears as a point (zero dimensional) or
as a line (one dimensional). The former includes gapless
Dirac and Weyl semimetals. Unusual phenomena, such as
anomalous Hall effect and spin Hall effect that occur in these
systems have been vigorously studied both theoretically and
experimentally [2–9]. Some of these phenomena, especially
those common to the Dirac and Weyl semimetals, are due
to their linear dispersion near the Fermi surface. On the
other hand, semimetals with one-dimensional band crossings
are called nodal-line semimetals [10–15]. Their band struc-
tures can be interpreted as Dirac points and Dirac cones
aligned along a line [16]. Therefore, some features of the
Dirac semimetals are inherited in the nodal-line semimetals.
In addition, the nodal line can be of various shapes. There-
fore, the nodal-line semimetals are expected to have more
degrees of freedom and richer physics than the Dirac and
Weyl semimetals. In fact, they are known to induce peculiar
behaviors in orbital magnetism and thermoelectric effect, for
instance [17,18].

PbTaSe2 and SnTaS2 are proposed to be nodal-line
semimetals [19–23], which exhibit s-wave superconductiv-
ity [24–28]. Interestingly, the superconductivity of PbTaSe2

shows a large anisotropy and a peculiar temperature depen-
dence of the upper critical field as follows [29]: (1) The
upper critical field parallel to the ab plane is several times
larger than that parallel to the c axis. (2) The upper critical
field decreases linearly as the temperature increases when
the field is parallel to the c axis. (3) The critical field
increases slowly near the superconducting transition temper-
ature. SnTaSe2 also exhibits similar properties to (1) and (3)
[25]. It is known that the behavior of Hc2 is highly dependent
on the structure of the Fermi surface. Therefore, we can expect

unconventional behavior of the upper critical field originating
from the peculiar shape of the Fermi surface of nodal-line
semimetals.

In this paper, we theoretically study the upper critical field
of superconductivity in nodal-line semimetals. The quasiclas-
sical Green’s functions allow the Gor’kov equations to be
rewritten in simpler forms, such as the Eilenberger equa-
tions and the Usadel equations [30–32]. These equations make
it possible to obtain the upper critical field numerically
[33,34]. Using these methods, we clarify the anisotropy and
the temperature dependence of the upper critical field in the
two cases: the dirty limit and the clean limit. We will show that
the obtained results are consistent with the above experimental
results (1)–(3).

II. MODEL

In real nodal-line semimetals, the nodal lines can form
some complicated shapes. However, in the following, we in-
vestigate a simple model of a circular nodal-line semimetal
as a first step and find the peculiarity of the upper critical
field (Hc2) in this model. We believe that this model suffi-
ciently captures the essence of superconductivity in nodal-line
semimetals.

We use the following simple effective model Hamiltonian
describing the nodal-line semimetal:

H = H0 + H ′, (1)

where H0 is the kinetic-energy Hamiltonian and H ′ is the two-
body attractive interaction Hamiltonian. We assume that H0 is
given by

H0(k) =
(

a1(k2
⊥ − m2) bkz

bkz −a2(k2
⊥ − m2)

)
, (2)

where k2
⊥ = k2

x + k2
y , kx, ky, and kz represent dimensionless

wave numbers, a1, a2, and b are constants and m is a di-
mensionless constant. In the following, we take a1 as a unit
of energy. Diagonalizing Eq.(2), the energy dispersion is
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obtained as

E±(k) = a1 − a2

2
(k2

⊥ − m2)

±
√(

a1 + a2

2

)2

(k2
⊥ − m2)2 + b2k2

z . (3)

E+ and E− bands intersect when kz = 0, and their intersection
forms a circular nodal line on the kx − ky plane of kz = 0. For
a certain Fermi energy εF > 0 (the red dotted line of Fig. 1),
the corresponding Fermi surface has a doughnutlike struc-
ture as shown in the inset of Fig. 1(a). On the kx − ky plane
(kz = 0), this Fermi surface is composed of two circles with
radii k⊥ = kmin

⊥ and kmax
⊥ , which are shown by the red circles

in Fig. 1(a). (kmin
⊥ =

√
m2 − εF/a2 and kmax

⊥ =
√

m2 + εF/a1.)
As |kz| increases, the two circles shrink and finally merge at
k⊥ = m when |kz| = εF/b. Figure 1(b) shows the band disper-
sion at kz = 0, 4.0 for a2/a1 = 3.0, b/a1 = 1.0, and m = 3.0.
In this parameter set, we find the asymmetric band dispersion
against the zero energy line. Therefore, we call the parameter
settings for Fig. 1(a) [Fig. 1(b)] the symmetric (asymmetric)
model.

III. METHOD

Since the Fermi surface has a doughnutlike structure and is
composed of two circles for a fixed kz, we divide the Fermi
surface into two branches A and B as shown in Fig. 1(c).
Branch A is the part of the Fermi surface with kmin

⊥ � k⊥ � m
and branch B with m � k⊥ � kmax

⊥ . The two branches meet
on the line k⊥ = m when |kz| = εF/b. We assume that the
superconductivity occurs in the very vicinity of each branch of
the Fermi surface. To take account of the electronic states on
the Fermi surface, we use the semiclassical Green’s functions
defined by [30,35]

ǧα
(
R, kα

F; iωn
) =

(
ĝα

(
R, kα

F; iωn
)

f̂ α
(
R, kα

F; iωn
)

f̂ α†
(
R, kα

F; iωn
)

ĝα
(
R, kα

F; iωn
)
)

=
∫

dξk

π
ρ̌z

∫
dτ

∫
dreiωn (τ−τ ′ )e−ikα

F ·r

×
(

Ĝα (r1, τ ; r2, τ
′) F̂α (r1, τ ; r2, τ

′)
F̂α†(r1, τ ; r2, τ

′) ˆ̃Gα (r1, τ ; r2, τ
′)

)
,

(4)

where α represents the branch A or B, ρ̌z = diag(1̂,−1̂), R =
(r1 + r2)/2 is the center of mass coordinate, r = r1 − r2 is the
relative coordinate, ξk = εk − μ is the energy measured from
the chemical potential, τ represents the imaginary time, and
ωn = (2n + 1)πkBT is the fermionic Matsubara frequency.
Here, Ĝα and F̂α are the normal and anomalous Green’s
functions in the form of a 2×2 matrix in the Nambu-Gor’kov
space. In addition, G̃ is defined as −〈ψ†ψ〉, similar to the
normal Green’s function. The 4×4 matrix ǧα is normalized
as (ǧα )2 = −1̌.

Considering the equation of motion for Ĝα and F̂α in
the standard mean-field approximation, we can obtain the
equation of motion for the quasiclassical Green’s function ǧα

[30,31]. We assume that the coherence length is much larger
than the Fermi wavelength near the upper critical field Hc2,

FIG. 1. (a) Band dispersion of Eq. (3) with a2/a1 = b/a1 = 1.0
and m = 1.0 in the cases of kz = 0 and kz = 0.5. The band crossing
(nodal line) appears when kz = 0. An example of the Fermi energy
level εF is shown by the red dotted line. When kz = 0, the Fermi
surface is composed of two circles with radii k⊥ = kmin

⊥ and kmax
⊥ ,

which are shown by the red circles. The inset shows the Fermi surface
for εF/a1 = 0.2. (b) Band dispersion of with a2/a1 = 3.0, b/a1 =
1.0, and m = 3.0 in the cases of kz = 0 and kz = 4.0. The inset shows
the Fermi surface for εF/a1 = 1.0. (c) Top view of the Fermi surface.
Two branches A and B are divided by the red circle representing k⊥ =
m when |kz| = εF/b. k⊥ satisfies kmin

⊥ � k⊥ � m for branch A and
m � k⊥ � kmax

⊥ for branch B. The green dotted lines correspond to
k⊥ = kmin

⊥ and k⊥ = kmax
⊥ .
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and then the spatial variation of the gap function is small. In
fact, since Hc2 ∼ 1000 Oe and the lattice constant in PbTaSe2

discussed in Sec. V is approximately 0.3 nm, the product
of coherence length and Fermi wave number is estimated
to be kF ξ ∼ kF

√
h̄φ/2|e|Hc2 ∼ 200 � 1, which justifies our

assumption. Using this assumption, we obtain[(
iωn + evα

kα
F
· AR

)
ρ̌z − �̌α

(
R, kα

F

) − �̌α
(
kα

F, iωn
)
,

ǧα
(
R, kα

F, iωn
)] + ivα

kF
· ∇Rǧα

(
R, kα

F, iωn
) = 0, (5)

which is called Eilenberger equation [30]. Here, AR is the
vector potential at R, e < 0 is the electron charge, vα

kα
F

is the
Fermi velocity at kα

F, and [ , ] represents the commutation
relation. The 4×4 matrix �̌ represents the self-energy, and
�̌ represents the gap function, which satisfies

�̌α
(
R, kα

F

) =
(

0 �̂α
(
R, kα

F

)
[
�̂α

(
R, kα

F

)]∗
0

)
. (6)

The gap equation is

�̂α = 2πT
ωD∑

ωn>0

∑
β

λαβ

〈
f̂ β

(
R, kβ

F ; iωn
)〉

kβ

F
, (7)

where ωD is the Debye frequency, and 〈· · · 〉kα
F

represents the
average over the Fermi surface of the corresponding branch.
λαβ are coupling constants defined by N0Vαβ where N0 is
the total density of states and Vαβ is the attractive interaction
between α and β branches. The interbranch coupling is also
(α 
= β ) included in this formalism. In the following, to esti-
mate the upper critical field Hc2, we introduce the two limits:
the dirty limit and the clean limit.

For the case of dirty limit, assuming that the quasiclassi-
cal Green’s function is almost isotropic and introducing the
anisotropy by expanding to the first order of the Fermi velocity
in Eq. (5), f̂ α is given by solving the following equation called
the Usadel equation [32]:⎛

⎝2ωn −
∑
μ,ν

Dα
μν�μ�ν

⎞
⎠ f̂ α

(
R, kα

F; iωn
) = 2�̂α, (8)

where Dα
μν ∝ 〈vα

μvα
ν 〉kα

F
are the intraband diffusivity tensors,

� = ∇ + 2π iA/φ is the covariant derivative operator, where
φ is the magnetic flux quantum. We take the Landau gauge
A = Hxμeν (μ 
= ν), e.g., μ = x and ν = y if the magnetic
field is oriented in the z direction. Assuming f̂ α ∝ �̂α , we
obtain f̂ α = �̂α/(ωn + KDα ) with K = πH/φ and Dα =√

Dα
μμDα

νν . Here, we have assumed Dα
κλ = 0 when κ 
= λ.

As mentioned in the Introduction, we study the upper
critical field of s-wave superconductivity in the nodal-line
semimetals. Therefore, we assume

�̂α =
(

0 �α

−�α 0

)
. (9)

Then, the gap equation Eq. (7) together with Eq. (8) can be
calculated as

�α =
∑

β

λαβ�β

[
ln

2γωD

πT
− U

(
KDβ

2πT

)]
, (10)

where U (x) = �(x + 1/2) − �(1/2), and � is the �

function. In the above calculation, we have used the equa-
tion

∑ωD
ωn>0 2πT/(ωn + X ) = ln(2γωD/πT ) − U (X/2πT )

for X > 0. Using the matrix P(d )
αβ =[ln(2γωD/πT )

− U (KDβ/2πT )]λαβ − δαβ , Eq. (10) becomes

P(d )
αβ �β = 0. (11)

Here, (d ) represents the dirty limit. To obtain a nonzero solu-
tion �β , the self-consistent equation is given by

det P(d ) = 0. (12)

In the dirty limit, Hc2 is obtained by solving Eq. (12).
Next, we discuss the case of clean limit. Assuming

� � kBTc, Eq. (5) becomes[(
iωn + evkα

F
· AR

)
ρ̌z − �̌α

(
R, kα

F

)
ǧα

(
R, kα

F, iωn
)]

+ ivkα
F
· ∇Rǧα

(
R, kα

F, iωn
) = 0. (13)

In order to estimate the upper critical field Hc2 efficiently
for the clean limit, we use an approximation introduced by
Brandt, Pesch, and Tewordt (BPT) [36], which is a method to
calculate the free energy of multiband superconductivity. The
BPT approximation consists of the following three approxi-
mations: (1) The spatial variation of � forms an Abrikosov
lattice. (2) The magnetic flux density B is spatially uniform.
(3) The quasiclassical Green’s function ĝα (R) is spatially uni-
form. These assumptions are valid when the external magnetic
field is near the upper critical field. Using the BPT approxima-
tion, the free energy of the multiband s-wave superconductor
is generally given as

� = (B − H )2

8π
+

∑
αβ

[ρ (0),αβ + ρα (T, B)δαβ ](�α )∗�β

+ O(|�|4), (14)

with

ρα (T, B) = Nα

〈
ln

T

Tc
+ 2πT

∞∑
n=0

{
1

ωn

+ 2
√

π�

vα
⊥

W

(
2iωn�

vα
⊥

)}〉
kα

F

, (15)

where � = (2|e|B)−1/2, v⊥ is the Fermi velocity perpendicu-
lar to the magnetic field, Nα is the density of states of the αth
branch at the Fermi surface, and W(z) = exp(−z2)erfc(−iz)
is the Faddeeva function. ρ (0),αβ = (λ−1)αβ − Nαρcδαβ is
the coefficient of (�α )∗�β in the free energy when B = 0.
Therefore, ρc in ρ (0),αβ is determined from the condition
det ρ (0) = 0.

Since the gap function � is equal to zero at the critical
point H = Hc2, the equation to obtain Hc2 by BPT is given by

det P(c) = 0, (16)

where P(c)
αβ = ρ (0),αβ + ρα (T, B)δαβ .
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FIG. 2. Temperature dependence of the upper critical field for
the symmetric model with a1 = a2 = b = m = 1.0. The behavior of
Hc2,x at the dirty and clean limits is very similar, and the lines in the
graph overlap.

IV. RESULTS

Figure 2 shows the temperature dependence of the upper
critical field for the symmetric model with a2/a1 = b/a1 =
1.0 and m = 1.0 in the dirty limit (dotted lines) and the
clean limit (dashed lines). Here, we set the coupling constants
as λAA = 1.0, λBB = 0.8, λBA = 0.2, and λAB = 0.2, and the
Fermi energy εF = 0.1. As shown below, the obtained results
are almost independent of the values of these coupling con-
stants. The upper critical field, where the magnetic field is
perpendicular and parallel to the plane (xy plane) in which
the nodal line resides, is denoted by Hsym

c2,z and Hsym
c2,x.

In the same manner, Fig. 3 shows the temperature depen-
dence of the upper critical field for the asymmetric model
with a2/a1 = 3.0, b/a1 = 1.0, and m = 3.0 in the dirty limit
(dotted lines) and the clean limit (dashed lines).

FIG. 3. Temperature dependence of the upper critical field for
the asymmetric model. Experimental data on the upper critical field
in PbTaSe2 [29] are also included for comparison.

There are several characteristic behaviors of Hc2.
(1) The critical field is larger when the direction of the

external magnetic field is in the x direction, i.e., when the
magnetic field is parallel to the nodal line (orange lines). This
trend is common for both the clean limit and the dirty limit.
On the other hand, in the asymmetric model, the magnitude
of the anisotropy is approximately three times larger than in
the symmetric model. These behaviors are mainly due to the
anisotropy of the Fermi velocity, as discussed later.

(2) The temperature dependence of Hc2,z in the clean limit
is different from the other cases. At low temperatures Hc2,z

varies linearly, which is unusual in the s-wave superconduc-
tivity.

(3) In the asymmetric case (Fig. 3), Hc2 has a convex
downward region, which does not appear in the symmetric
model. In other words, Hc2 increases slowly with decreasing
temperature. This is a property common to both clean and
dirty limits.

Note that the above results are for the case with εF/a1=0.1.
Although we do not show the results, we find that the be-
haviors of Hc2 do not change unless εF changes significantly.
We think that the above unconventional properties are mostly
originating from the shape of the Fermi surface of the nodal
line as in Fig. 1, so the band crossing is not necessarily
required. Furthermore, our numerical calculations show that
the magnitude of coupling between branches has little effect
on the qualitative behavior. In fact, changing the ratio λAB/λAA

or λBA/λAA from 0 to 1 changes the upper critical field by less
than 10%. From this, we conclude that the qualitative behavior
remains unchanged even if we change the coupling constant.

V. ANALYSIS OF THE BEHAVIORS OF Hc2 AND
COMPARISON WITH THE EXPERIMENTS

In what follows, we identify the origins of features (1)–(3),
respectively.

(1) The anisotropy of the upper critical field Hc2,x/Hc2,z is
proportional to the ratio

√〈v2
x 〉/〈v2

z 〉. In fact, the anisotropy
of the Fermi velocity is

√〈v2
x 〉/〈v2

z 〉 � 1.66 for the symmetric
model. This magnitude corresponds to the magnitude of the
anisotropy of Hc2 as shown in Fig. 2. As shown in Fig. 3, the
anisotropy is more pronounced in the asymmetric model. This
will be because m is three times larger than the symmetric
model. As m increases, the Fermi velocity in the x direction
increases, and, consequently, the critical field in the x direction
also increases. In fact,

√〈v2
x 〉/〈v2

z 〉 � 7.12 for the asymmetric
model. To see this more in detail, we show m dependence of
the ratio H asym

c2,x /H asym
c2,z in Fig. 4. We find that as m increases,

the ratio H asym
c2,x /H asym

c2,z also increases, irrespective of the dirty
and clean limit. Thus, the anisotropy of the critical field or the
Fermi surface is mainly determined by the parameter m. It in-
creases linearly with m in the dirty limit, whereas it increases
gradually in the clean limit. This will be due to the fact that
Hc2,z in the clean limit is larger than Hc2,z in the dirty limit in
the low-temperature region because of the linear-temperature
dependence of Hc2,z as discussed in (2) below.

(2) The linear-T dependence of Hc2,z in the clean limit with
the symmetric model (blue dashed line in Fig. 2) is understood
as follows. In the s-wave superconductivity, we can prove that
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FIG. 4. The anisotropy of the upper critical field of the asymmet-
ric model H asym

c2,x /H asym
c2,z at T = 0.

dHc2/dT = 0 at T → 0 in generic cases. This holds when we
can assume �T/v⊥ is small, where � = (2|e|B)−1/2 and v⊥
is the Fermi velocity perpendicular to the magnetic field. In
a simple spherical Fermi surface, there are only two points
where v⊥ is zero. In the average over the Fermi surface, these
points do not affect the result dHc2/dT |T =0 = 0. However,
in the present nodal-line model, when the magnetic field is
applied along the z direction, the set of points on the Fermi
surface where v⊥ is zero forms lines parallel to the nodal line.
Therefore, the temperature region in which the assumption
that �T/v⊥ is sufficiently small does not hold is wider than
in a simple Fermi surface. As a result, the critical field shows
a linear temperature dependence down to low temperatures
(see some details in the Appendix). On the other hand, the
linear temperature dependence does not appear in the dirty
limit. This difference may be due to the fact that the anisotropy
is weakened by impurity scattering in the dirty limit, which
makes it difficult to see the anisotropy that appears in the clean
limit. In the asymmetric model (Fig. 3), similar behaviors are
observed. However, it seems that the linear temperature region
in Hc2,x is larger than in the symmetric case. This will be
because the curvature of the Fermi surface increases with the
increase in m, and the region of small v⊥ becomes larger.

(3) We also found that the introduction of asymmetry with
respect to the nodal-line plane changes the behavior of the
critical field near the transition temperature. This could be
explained by the difference in Fermi velocities between the
branches. Indeed, numerical calculations with dirty limit show
that the value of d2Hc2/dT 2 at T = Tc is negative when
0.63 < DA/DB < 1.6 and positive otherwise. In the symmetry
model, DA/DB � 0.81 (when the magnetic field is in the z
direction) and DA/DB � 0.91 (when the magnetic field is
in the x direction) for the symmetric model, DA/DB � 8.87
(z direction) and DA/DB � 3.97 (x direction) for the asym-
metric model. Thus, the difference in the Fermi velocity
between the branches produces Hc2 that is convex downward.

Experimental results of PbTaSe2 [29] are also shown in
Fig. 3 (solid lines with circles), which we think are consistent
with the present theoretical results in the following points.

(1) The experimental data show a large anisotropy in Hc2.
Specifically, Hc2 is larger when the magnetic field is parallel to

the nodal line. Such anisotropy is consistent with the behavior
of our asymmetric model.

(2) Although there is no experimental data at low temper-
atures when the field is perpendicular to the nodal line (i.e.,
Hc2,z, solid blue circles in Fig. 3), it seems that Hc2,z is linear
near T = 0. This behavior is consistent with our model. For
Hc2,x, the experimental data (solid orange circles in Fig. 3)
also show the linear behavior at low temperatures, which
differs from that predicted by the present theory. However,
we think that this point can be understood in the framework
of the present theory if we extend the theory as follows.In this
paper, we considered a situation in which the nodal line is
completely on a plane perpendicular to some reciprocal lattice
vector (z axis). However, in actual materials, there exists a tilt
and the nodal line lies on a plane not perfectly perpendicular
to some reciprocal lattice vector. Due to this tilt, even when
the magnetic field is in the x direction, the region where
v⊥ is zero is not zero dimensional but one dimensional. We
speculate that this causes the linearity of the upper critical
field at low temperatures. To fit the experimental results com-
pletely, numerical methods with a material dependent model
Hamiltonian will be necessary.

(3) The experimental data have convex downward behavior
near the transition temperature, which is unusual for Hc2. This
tendency is consistent with the present theory.

VI. CONCLUSION

In this paper, we analyzed the temperature and Fermi
energy dependence of the upper critical field for a typical
model of s-wave nodal-line superconductors using the method
of semiclassical Green’s functions. The above analysis was
performed for two different limits, the dirty limit with many
impurities and the clean limit with few impurities. As a result
of the calculations, the following characteristics were found
for the upper critical magnetic field: (1) the anisotropy in the
direction of the magnetic field, (2) linear behavior of Hc2,z at
low temperatures, and (3) convex downward behavior near the
critical temperature. The above behaviors are different from
those of ordinal s-wave superconductors but are consistent
with those of experimental data of nodal-line superconduc-
tors. This suggests that the model used in this paper as well as
the semiclassical Green’s function is useful in the analysis of
superconductivity in nodal-line semimetals.
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APPENDIX: ABOUT THE LINEAR DEPENDENCE

First, we show the proof of dHc2/dT = 0 near T = 0 in
the clean limit. Considering the total derivative of Eq. (16),
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we obtain

∑
α

Nα

〈
16�2

v2
⊥

T

Tc
dT +

(
−8�2

v2
⊥

T 2

T 2
c

+ 3

)
dB

B

〉
kα

F

= 0. (A1)

Here, assuming �T/v⊥ is small, we performed a Taylor ex-
pansion in terms of �T/v⊥. It is clear that with the limit of
T → 0, dB must approach zero. Therefore, we can conclude
dHc2/dT = 0.

However, when v⊥ is small, even if the temperature is
low enough, the condition that �T/v⊥ is small does not
hold. In such a case, the above calculation is not valid.
In fact, assuming �T/v⊥ is large, we obtain dHc2/dT �
−16π2T 2/7ζ (3)|e|v2

⊥. v⊥ varies according to its position on
the Fermi surface, and (A1) includes averaging over the Fermi
surface. Therefore, this argument is not rigorous. However,
we can at least conclude that the temperature region, in which
the gradient dHc2/dT is small, becomes narrower when the
region, in which v⊥ is small becomes larger. This explains the
linear-T dependence of Hc2,z near T = 0 in the clean limit.
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