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Josephson junction scheme for observing the non-Abelian statistical
properties of Majorana fermions
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Since Majorana zero mode (MZM) was proposed applicable for topological quantum computing, the past
two decades have witnessed a growth of theoretical and experimental advances. Here we propose a Josephson
junction setup consisting of intrinsic topological superconductors, and show that with the exchange operation
of two MZMs, the single-electron tunneling current will reverse sign as a result of its non-Abelian statistics,
which can be further utilized to read out the initial qubit of the system. This work offers a way to demonstrate
the non-Abelian statistical properties of MZMs.
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I. INTRODUCTION

Majorana fermions, first introduced as a solution of Dirac
equations which satisfies the symmetric form of electrons and
positrons by Majorana in the 1930s [1], remain as one of
the central questions in modern physics. Unlike electrons and
positrons, the antiparticles of Majorana fermions are exactly
themselves. It has not been confirmed in particle physics since
this exotic particle was predicted, while it is speculated that
neutrinos might be this kind of fermions, and more works in
future experiments are needed. In superconducting systems,
the intrinsic particle-hole symmetry facilitates the emergence
of Majorana fermions, and based on this, multiple theoretical
proposals [2–6] and experimental candidates have been made
in a large amount of works [7–18].

The reason that such states are of great interest stems
from their intrinsically nonlocal nature and exotic exchange
properties as one of the most promising approaches to realize
topological quantum computing. The fermionic state which
encodes the quantum information formed by two Majorana
zero modes (MZMs) can develop into a highly delocalized
one, and accordingly it can immune most types of deco-
herence. The exchange property is originated from their
non-Abelian statistics, first proposed in two-dimensional (2D)
systems by Read and Green [19], implying that a pairwise
exchange operation in two dimensions can distinguish the
initial and final state by a unitary-matrix instead of a scalar
phase factor. The exchange of anyons can be described by the
interlacing of their world lines in a space-time diagram, so-
called “braiding,” the operation that can implement quantum
gates, leading to Majorana fermions that could be promis-
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ing candidates to perform fault-tolerant quantum evolutions,
which is one of the essential issues in topological quantum
computation [20–22]. To show the existence of MZMs, most
of the experiments are based on the observation of one local
MZM through tunneling experiments [23–25] or zero bias
conductance peak [8,26–28]. Whereas, the direct evidence
that can verify MZMs is their non-Abelian statistics, which
means the adiabatic operations, such as the slowly adiabatic
exchange of quasiparticle positions, can bring the system from
one ground state to another, instead of acquiring a phase factor
in Abelian cases. However, it still remains elusive to find a
measurable physical quantity to clearly characterize it under
exchange operations, which limits the potential of MZMs in
future application of quantum computation.

We propose a setup to show this remarkable non-Abelian
property of Majorana fermions in intrinsic topological su-
perconductors that can be relatively easy to implement in
experiment. A crucial evidence of MZMs is the zero bias
conductance peak (ZBCP) that has been observed in the vortex
core on the surface of FeTexSe1−x [14,28,29]. Although some
other non-Majorana factors such as Kondo effect, coherent
Andreev reflection, and disorder-induced zero-energy states
may also induce a ZBCP, they can be excluded and the MZMs
are most possibly identified in experiments [10,30–32], man-
ifesting a highly simplified single-material platform to realize
MZMs. Most importantly, since each MZM is bound to the
cores of vortices, this enables us to manipulate the MZMs
via moving the vortices, and the manipulation of an individ-
ual vortex can be manipulated by heat [33], magnetic force
[34,35], or strain-induced scanning local probe microscopies
[36]. In iron-based superconductors, to avoid intermediate
quasiparticle poisoning during the coherent transport of the
vortex, the allowed timescales for this kind of braiding oper-
ation range from adiabatically slowup to nanoseconds, where
more details will be given below.
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FIG. 1. A schematic setup of a superconductor-insulator-
superconductor (SIS) Josephson junction. Each intrinsic topological
superconductor contains MZMs at the location of Abrikosov vortices
on its surface, four of which are indicated by γ1, γ2, γ3, γ4. γ1 and γ2

are close enough to couple with each other, and so are γ3 and γ4.
The two superconducting films are connected with the same super-
conducting wires away from the junction, completing an S-I-S circuit
with supercurrent. A flux � by a solenoid is penetrated through the
semiring.

II. TESTING THE NON-ABELIAN STATISTICS
THROUGH JOSEPHSON CURRENT

Fractional Josephson effect was first predicted by Kitaev
[37], who proved that the MZMs can carry the Josephson
current with a 4π -periodic current-phase relation I ∝ ± sin φ

2 ,
half of the conventional Josephson junction, where φ is
the Josephson phase and the plus/minus sign represents the
fermionic parity defined by the two MZMs. The fractional ac
Josephson effect in a hybrid semiconductor-superconductor
InSb/Nb nanowire junction was taken as strong evidence of
the existence of MZMs [7]. The sign of the current can be used
to detect the fermion parity which encodes the qubit informa-
tion. However, the braiding operation in a one-dimensional
(1D) system is still difficult to implement in experiment. In-
stead, we propose a SQUID-like Josephson junction setup for
this purpose as shown in Fig. 1.

The system consists of two topological superconductor
films, which are deposited on the surface of an insulator form-
ing a superconductor-insulator-superconductor (SIS) junction,
and in the presence of an out-of-plane magnetic field, we
presume that there are four MZMs in four spatially well-
separated Abrikosov vortex cores. Two of them on each side
of the superconductor can hybridize to each other through
the insulator forming a single-electron state, which allows the
tunneling of the single electron through the junction. The two
superconducting films are connected via a half-ring forming
a “hole” between the SIS and the ring, made by the same
superconductor, threading a flux � by a solenoid through the
hole (see Fig. 1), which can be used to tune the phase dif-
ference φ = φ1 − φ2 between the two superconductors. Since
we have the Bogoliubov–de Gennes (BdG) Hamiltonian of
FeTe0.55Se0.45 [38], then similar to Eq. (B1), the Hamiltonian
of this Josephson junction can be written as

HBdG

=

⎛
⎜⎝− h̄2

(
k2

x +k2
y

)
2m − μ + U0δ(x) �β

pF
(px + ipy)

�β

pF
(px − ipy)

h̄2
(

k2
x +k2

y

)
2m + μ − U0δ(x)

⎞
⎟⎠,

(1)

where U0 represents a barrier potential at the interface be-
tween the upper and lower superconductors, and β refers to
the upper or lower one, �U = �0eiφ1 and �L = �0eiφ2 , with
�0 the bulk gap of the superconductor. It is theoretically
expected that the s± bulk superconductivity of FeTe0.55Se0.45

single crystals endows Dirac surface states with s-wave su-
perconducting pairing through the proximity effect in k space
[39], leading to effective spinless px + ipy superconductivity
on the surface [40]. As a result, the normal Josephson current
in our system reads (i.e., the Cooper-pair current)

IN = Is + Ip. (2)

Here we take the pairing symmetry of the bulk state as s wave
approximately for convenience, and according to Appendix B,
the normal Josephson current Isx and Ipx can be obtained in the
1D Josephson junction SIS based on s-wave superconductors
and p-wave superconductors separately:

Isx = e�0D sin φ

h̄
√

1 − D sin2 φ

2

,

Ipx = e�0

h̄

√
D sin(φ/2), (3)

where D = 4
Z2

0 +4
is the transmission coefficient of the barrier

in Josephson junction with Z0 = 2mU0

h̄2kF
. We select the coordi-

nate axis x perpendicular to the Josephson junction plane, by
assuming that the interface between the two superconductors
is smooth enough, the electron momentum components ky and
kz, parallel to the junction plane, is a conserved good quantum
number. Then the 2D or 3D problem separates into a set of 1D
solutions in the x direction labeled by the indices ky and kz. As
for the px + ipy wave in our system, the Fermi momentum kF

is replaced by their x components kx =
√

k2
F − k2

y ; therefore

the transmission coefficient D of the barrier becomes ky de-
pendent:

D(ky) = 4

Z2(ky) + 4
, (4)

with Z (ky) = Z0
kF√
k2

F −k2
y

. Consider that the number of propa-

gating channels of the x−y plane is Ny = W kF/π [41], where
Wy is the length in the y direction of the Josephoson junction.
So under the zero temperature approximation, we have −kF �
ky � kF, which means the corresponding ky in the nth channel
can be written as kny = −kF + 2πn

Wy
. Therefore the Josephson

current in the junction based on the px + ipy superconductors
should be written as a function of kny, which reads

Ip =
Ny∑

n=0

Ipx(kny). (5)

The same procedure may be easily adapted to obtain Is in
a three-dimensional isotropic s-wave superconductor in our
system:

Is =
Ny∑

n=0

Nz∑
m=0

Isx(kny, kmz ), (6)
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with Nz = WzkF

π
Ny and kmz = −kF + 2πm

Wz
, where Wz is the

length in the z direction of the Josephoson junction.
Now the fractional Josephson current induced by the MZM

tunneling should be taken into account too. Among the four
MZMs, γ1 and γ2 (γ3 and γ4) pair up to form a fermionic
state with energy E12 (E34) and occupancy n̂12 (n̂34) which are
defined as

n̂12 = d̂†
1 d̂1,

n̂34 = d̂†
2 d̂2, (7)

where d̂1 is the annihilation operator of the fermionic state
with the transformation

d̂1 = 1
2 (γ1 + iγ2),

d̂2 = 1
2 (γ3 + iγ4). (8)

Combining the fact that the superconducting order param-
eter is the product of the wave function of two electrons,
and a MZM is the linear superposition of an electron
and a hole, the phase of a MZM is half of the super-
conducting phase, which means from Eq. (8) we can ob-
tain γ1 ∝ (d̂1eiφ1/2 + d̂†

1 e−iφ1/2), γ2 ∝ 1
i (d̂1eiφ2/2 − d̂†

1 e−iφ2/2).
Therefore the coupling Hamiltonian of γ1 and γ2 can be
given by H	12 ∝ iγ1γ2 = i(d̂1eiφ1/2 + d̂†

1 e−iφ1/2) 1
i (d̂1eiφ2/2 −

d̂†
1 e−iφ2/2) = cos φ

2 (2d̂†
1 d̂1 − 1). As a result, considering the

effect of superconducting phase difference, the coupling
Hamiltonian of all four MZMs in our system can be written
as

H	 = cos

(
φ

2

)
(i	1γ1γ2 + i	2γ3γ4), (9)

where 	1 and 	2 are the corresponding coupling strengths.
Substituting Eq. (8) into it, we have

H	 = cos

(
φ

2

)
[	1(2d̂†

1 d̂1 − 1) + 	2(2d̂†
2 d̂2 − 1)]. (10)

It is supposed that the four MZMs are spatially well sep-
arated, which means E12, E34 ≈ 0. And the conservation of
parity is also assumed, i.e., the occupation of ground state
can only be even or odd, and cannot change from one to
another under adiabatic operations. Without loss of general-
ity, the initial parity of our system is presumed to be even
(for the odd parity case, the calculation is similar and the
results remain unchanged); therefore, there are two fermionic
states stemming from the four MZMs. By combining the two
fermionic states together, we have two degenerate ground
states: |012034〉 and |112134〉. For simplicity we will omit the
subscripts in the following discussion. Then the state of these
four MZMs should be a superposition of the above ground
states as |ψ〉 = α|00〉 + β|11〉, which means, every time we
conduct a current measurement, the state will collapse into
|00〉 or |11〉, leading to the single-electron current (i.e., the
fractional Josephson current induced by the MZM tunneling
[37])

IMZM = 2e

h̄

d〈H	〉
dφ

= ±2e

h̄
(	1 + 	2) sin

φ

2
∝ sin

φ

2
, (11)

where 〈H	〉 is the expectation value for 〈00|H	|00〉 or
〈11|H	|11〉. Obviously the current exhibits a 4π periodicity

with φ, and ± depends on the system states (|00〉 or |11〉). The
derived 4π periodicity is similar to that in the 1D Josephson
system [42]. Although theoretically we can read out the qubit
by measuring the direction of IMZM, there may be still some
difficulties in experiments, such as to separate IMZM from IN

[consisting of Is and Ip; see Eq. (2)] and extra dc current signal.
Hence to distinguish them more intuitively in experiment, we
consider one more step that brings γ1 around γ3 and back
to its original position in the end. In other words, we first
measure the current with keeping the MZMs immobile, and
then measure the current again after circulating γ1 around
γ3. After the first measurement, we suppose the state of this
system collapses into |00〉. According to the definition of the

exchange operator of MZMs [20], B13 =
√

i
2 (1 + γ1γ3), and

from Eq. (8) we know that γ1 and γ3 can be written as d̂1 + d̂†
1

and d̂2 + d̂†
2 , thus we have

|00〉 → B2
13|00〉 = iγ1γ3|00〉

= i(d̂1 + d̂†
1 )(d̂2 + d̂†

2 )|00〉 = i|11〉, (12)

which means, after this circling operation (exchange them
twice), the state |00〉 is tuned into state |11〉, so that the direc-
tion of the fractional Josephson current through this Majorana
channel will be reversed according to Eq. (11), implying that
we can detect an increase of total current measurement, which
uniquely stems from their non-Abelian statistics. As for the
other circumstance, i.e.. |11〉 is taken as the initial state, then
the braiding operation will lead our system to a |00〉 state,
resulting in a decrease in total current.

III. ESTIMATION OF THE SIZE AND TRANSMISSION
COEFFICIENT OF THE JOSEPHSON JUNCTION

As we have discussed above, the difference of the frac-
tional Josephson current after the braiding operation is the
very observable quantity that can verify the non-Abelian
statistics of MZMs in our system. Now due to the fact that the
total current I = IMZM + IN is the physical quantity we can
measure in experiments, and the Cooper-pair tunneling will
not be affected by the braiding operation of MZMs, we can
detect the change of state |00〉 → |11〉, through the difference
of total current between the first current measurement and
the second after the braiding operation (for simplicity we set
	1 = 	2 = 	):

�I = 4e

h̄
(	1 + 	2) sin

φ

2
−

[
−4e

h̄
(	1 + 	2) sin

φ

2

]

= 8e

h̄
	 sin

φ

2
= 2IMZM. (13)

Furthermore, to clearly distinguish the difference of IMZM

between two total-current measurements, the relative magni-
tudes of these two are qualitatively calculated in the following.
When the distance between two vortices is much larger than
the superconducting coherence length R � ξ , the wave func-
tion of MZM located at one vortex core is exponentially small
at the core region of the other vortex [see in Eq. (A17)]. In this
case, the vortices can be regarded as independent. When they
are closer, but still remain a weak-coupling state, the effect
of coupling between the MZMs must be taken into account,
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leading to an energy splitting of the original degener-
ate ground states |00〉 and |11〉. The splitting energy in
FeTe0.55Se0.45 may be exploited by [38,43]

	 ≈ −2�surface

π3/2

cos
(
kFR + π

4

)
√

kFR
exp

(
−R

ξ

)
, (14)

where ξ is the superconducting coherent length, kF is the
Fermi momentum of the surface Dirac cone in a general
px + ipy superconductor system, and �surface is the supercon-
ducting gap of the surface state. As for the Dirac surface
state of FeTe0.55Se0.45, we have �surface = 1.8 meV, kF =
0.2 nm−1, ξ = νF/�surface = 13.9 nm [40,44]. Then as we
have discussed above, we can reasonably assume that the ratio
of �I and I should satisfy

r = �I

I
= �I

IMZM + Ip + Is
� 0.1 (15)

to make �I large enough compared with I to become observ-
able in experiments, which produces the relation [combining
Eqs. (11) and (13)]

Ip + Is � 19IMZM. (16)

Here we assume R = 90 nm = 6.47ξ , and with Eq. (A17),
we can obtain |�(r)|2 ∝ 10−6, i.e., the wave function of this
MZM is approximately small enough at the core region of the
other, suggesting that the precondition for the establishment
of Eq. (14) is fulfilled, and thus the magnitude of IMZM can be
evaluated with Eqs. (14) and (11). As for Ip and Is, involving
the summation of all currents with all possible ky, so as to
simplify the evaluation, the maximum currents Imax

p and Imax
s

are taken into account. Obviously once the relation

Imax
s + Imax

p � 19IMZM (17)

is fulfilled, Eq. (16) will automatically hold. Based on this
fact, with Eqs. (3) and (4), we can find that, with the minimum
momentum |ky|min, i.e., ky = 0, Ipx will take the maximum
value as Imax

px = Ipx(ky = 0) = e�0
h̄

√
D sin φ

2 . Further consid-
ering the relation in Eq. (5), we can obtain the maximum of Ip

approximately with

Imax
p < NyImax

px = WykFe�0

π h̄

√
D sin

φ

2
. (18)

As for Is, with the limitation D 	 1 in Eq. (3):

Isx ≈ e

h̄
�0D sin φ, (19)

and similarly we have

Imax
s < NyNzI

max
sx = 2WyWzk2

Fe�0

π2h̄
D sin φ. (20)

Now we substitute the results of Eqs. (18) and (20) into
Eq. (17), leading to

WykFe�0

π h̄

√
D sin

φ

2
+ 2WyWzk2

Fe�0

π2h̄
D sin φ � 19IMZM,

(21)

where the superconducting gap of the bulk state of
FeTe0.55Se0.45, �0 ≈ 3 meV [40], thus we can obtain an es-
timation as follows:

1.88Wy

√
D + 0.24WyWzD � 0.17, (22)

FIG. 2. A schematic of a Majorana qubit that hosts four spatially
separate MZMs. γ1 and γ2, and γ3 and γ4 are paired separately. The
red wavy lines indicate the coupling between them.

which is the very relation that should be satisfied to ensure
that the change of the Majorana-induced fractional Josephson
current �I between two measurements can be observable in
experiment. In addition, in the limit of Wz → 0, we have

Wy

√
D � 0.09 nm. (23)

For example, if the width of the y direction of the juntion Wy ∼
1 μm, as a result, the transmission coefficient of the barrier
should be D � 9.5 × 10−3 at most.

IV. READING OUT A QUBIT AND TESTING
NON-ABELIAN FUSION RULES

Furthermore, we study the way of reading out an arbitrary
qubit through projective measurements based on this setup as
shown in Fig. 2. Four MZMs are spatially well separated in
the beginning, hence the initial state is |ψi〉 = α|00〉 + β|11〉.
Next γ1 and γ2, and γ3 and γ4 are put close to make them
weakly coupled as a consequence of the wave-function over-
lapping to lift the double degeneracy between the two states
of |00〉 and |11〉. Finally a Josephson current measurement is
implemented; then we restore the system to its original state
and repeat the above steps several times, and hence there will
be a probability of |α|2 to obtain IMZM as 4e

h̄ 	 sin φ

2 or |β|2
as − 4e

h̄ 	 sin φ

2 , indicating that we can read out the basic state
(|00〉 or |11〉) of the initial qubit through the magnitude of the
total Josephson current:

I =
{

IN − 4e
h̄ 	 sin φ

2 → |00〉(|α|2)

IN + 4e
h̄ 	 sin φ

2 → |11〉(|β|2),
(24)

In view of the above results, the proposal of testing the non-
Abelian fusion can also be achieved as shown in Fig. 3. Four
MZMs are coupled to each other initially and different ways of
separation will lead to different final states [45]. For the upper

FIG. 3. The proposal for testing the non-Abelian fusion of
MZMs. Initially, all four Majoranas are coupled with each other. The
upper and lower paths correspond to different ways of adiabatically
decoupling the Majoranas, leading to different final states.

094518-4



JOSEPHSON JUNCTION SCHEME FOR OBSERVING THE … PHYSICAL REVIEW B 107, 094518 (2023)

path and the lower one, the corresponding final state would
be |012, 034〉 and |013, 024〉 = 1√

2
(|012, 034〉 − i|112, 134〉) re-

spectively, and therefore they can be distinguished by the
qubit-readout procedure we have discussed above: the upper
path results in a 4π Josephson current as 4e

h̄ 	 sin φ

2 with a
probability of 100%, while the lower one leads to a current as
4e
h̄ 	 sin φ

2 or − 4e
h̄ 	 sin φ

2 with probability of 50%, respectively.

V. DISCUSSION AND SUMMARY

The above setup bases itself on preparing a topological
superconducting system containing only four MZMs in ex-
periments; therefore it may be realized in a superconducting
island. However, we may also propose an alternative exper-
imental scheme to implement our current measurement, in
which a dual-probe scanning tunneling microscope (STM)
setup is required. In this case, the restriction of a four-MZM
system may be released. Two connected STM probes are in
alignment with γ1, γ2 and two more the same with γ3, γ4

(four STM probes are needed in total), forming two indepen-
dent circuits with the Josephson current as current resources,
respectively, which can avoid not only the interference of
MZMs in other vortices, but also the difficulty of growing
normal metal leads at both ends of the Josephson junction in
experiments. Furthermore, due to the relation φ = 2π�/�0,
where the magnetic flux quantum �0 = hc/2e, and the fact
that the magnetic field B applied in the ring in Fig. 1 should be
weak enough to have less influence on the existence of MZMs
compared with the one that can host MZMs, which is about
0.5 T [14], hence by assuming B � 0.5 T and φ = 4π at least
owing to the period of the fractional Josephson current, we
can easily come to the conclusion that the magnitude of the
ring’s area should at least be around 10−1 μm2.

In general, taking advantage of the fact that MZMs can be
hosted in vortices in intrinsic topological iron-based supercon-
ductors as discussed before, we propose a feasible scheme to
read out the qubit information encoded in the MZMs through
projective measurements on a Josephson junction, instead of
measuring the precise 4π Josephson current, which in reality
is commonly affected by unknown factors, this setup allows us
to reveal the system’s state through the reverse of the MZM-
induced component of Josephson current that arises from the
non-Abelian statistics of Majorana fermions, leading to the
verification of the existence of MZMs. The results derived
above are from the non-Abelian statistics of the MZMs so
that the arrived at conclusions may not be changed by some
possible nontopological subgap states.

Moreover, we identify the relationship of the transmission
coefficient D and the size of the Josephson junction Wy and Wz

to ensure we can distinguish the current difference between
two measurements. We further show that an arbitrary Majo-
rana vortex qubit can be read out after a series of projective
measurements based on our setup, offering an experimentally
promising possibility of showing the existence and their braid-
ing statistics of Majorana fermions.
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APPENDIX A: THE SOLUTION OF THE BdG EQUATION
OF SPINLESS px + ipy SUPERCONDUCTOR

The mean-field BCS Hamiltonian of the spinless px + ipy

superconductor is defined as

HBCS =
∫

d2r ψ̂†(r)

(
− h̄2∇2

2m
− μ

)
ψ̂ (r)

+ ih̄

pF

∫
d2r �(r)

∂ψ̂†(r)

∂ z̄
ψ̂†(r) + H.c., (A1)

where the superconducting gap �(p) = �0
pF

(px + ipy), z =
x + iy. z̄ is the complex conjugate of z. The BdG equation can
be written as

HBdG =
⎛
⎝ − h̄2∇2

2m − μ ih̄
pF

{
�(r), ∂

∂ z̄

}
ih̄
pF

{
�∗(r), ∂

∂z

}
h̄2∇2

2m + μ

⎞
⎠. (A2)

Hence, we have

HBdG

(
un(r)
vn(r)

)
= En

(
un(r)
vn(r)

)
. (A3)

The Hamiltonian HBdG is invariant under transformation:
σ1HBdGσ1 = −H∗

BdG. This symmetry implies that if � =
(un, vn)T is a solution of Eq. (A3) with eigenvalue En, then
σ1�

∗ = (v∗
n , u∗

n )T must be a solution with the eigenvalue −En.
Thus, for a zero-energy state, we have the constraint u = v∗.
From Eq. (A3), we have(

− h̄2∇2

2m
− μ

)
un(r) + ih̄

pF

{
�(r),

∂

∂ z̄

}
vn(r) = un(r)En.

(A4)
By transforming the formula from the Cartesian coordinates
to cylindrical coordinates, we can obtain

− h̄2

2m

(
1

r

dun(r)

dr
+ d2un(r)

dr2
+ 1

r2

d2un(r)

dϕ2

)
ei(ϕ−π/4)

− (h̄2)

(
i

mr2

dun(r)

dϕ
− un(r)

2mr2

)
ei(ϕ−π/4) − μun(r)ei(ϕ−π/4)

− h̄

2pF
f (r)ei(ϕ−π/4)

(
dvn(r)

dr
+ i

r

dvn(r)

dϕ
+ 1

r
vn(r)

)

− h̄
ei(ϕ−π/4)

2pF

(
d

dr
+ i

r

d

dϕ

)
[ f (r)vn(r)]

= un(r)ei(ϕ−π/4)En. (A5)

where un(r) = un(r, ϕ) = un(r)ei(ϕ−π/4), vn(r) = vn(r, ϕ) =
vn(r)ei(ϕ−π/4). As for zero mode, En = 0, un(r) = v∗

n (r), and
considering that we are looking for a solution to this equa-
tion in terms of a spherically symmetric real function u(r), we
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can simplify it into

− h̄2

2m
u′′

n −
(

h̄2

2mr
+ f (r)

h̄pF

)
u′

n

+
(

h̄2

2mr2
− f (r)

2h̄pFr
− 1

2h̄pF

df (r)

dr

)
un = μun, (A6)

where u′′
n = d2un

dr2 and u′
n = dun

dr . Using the transformation

un(r) = χ (r) exp

(
− 1

h̄vF

∫ r

0
dr′ f (r′)

)
, (A7)

and substituting it into Eq. (A6), we get

χ ′′(r) + 1

r
χ ′(r) +

(
2mμ

h̄2 − m f 2(r)

pFvF h̄2 − 1

r2

)
χ (r) = 0,

(A8)
where the symbol of prime means derivation with respect to
r. Since the order parameter of the superconductor

�(r) = f (r)eiφ, (A9)

where

f (r) = �0 tanh

(
r

ξ

)
, (A10)

and r 	 ξ , here we assume that �0 	 εF, which is typical for
weak-coupling superconductors, hence

2mμ

h̄2 − m f 2(r)

pFvF h̄2 = 2mμ

h̄2 − m

pFvF h̄2 �2
0 tanh2

(
r

ξ

)
≈ p2

F

h̄2 .

(A11)

Therefore

χ ′′(r) + 1

r
χ ′(r) +

(
p2

F

h̄2 − 1

r2

)
χ (r) = 0, (A12)

and using the transformation r̃ = kFr, and pF = h̄kF, we have

χ ′′(r̃) + 1

r̃
χ ′(r̃) +

(
1 − 1

r̃2

)
χ (r̃) = 0. (A13)

It is a Bessel equation, and its solution is

χ (r̃) = AJ1(r̃), (A14)

i.e.,

χ (kFr) = AJ1(kFr), (A15)

then

u(r, ϕ) = AJ1(kFr) exp

[
i(ϕ − π/4) − 1

h̄vF

∫ r

0
dr′ f (r′)

]

= v∗(r, ϕ), (A16)

so

�(r) =
(

un(r)
vn(r)

)

= AJ1(kFr) exp

[
− 1

h̄vF

∫ r

0
dr′ f (r′)

](
ei(ϕ−π/4)

−ei(ϕ−π/4)

)

(A17)

with the normalization constant A. Although A is not relevant
to our calculation, its expression can be found in Ref. [38].
This result will be used to estimate the distance of two MZMs
denoted by R, which can be used in the further calculation of
the IMZM.

APPENDIX B: THE JOSEPHSON CURRENT

Considering a 1D SIS Josephson junction with a p-wave
superconducting coupling, the Hamiltonian of the junction
can be written as

H =
(
HI(kx ) HS(kx )

H∗
S(kx ) −HI(kx )

)

=
⎛
⎝ h̄2k2

x
2m − μ + U0δ(x) �β

kx
kF

�∗
β

kx
kF

− h̄2k2
x

2m + μ − U0δ(x)

⎞
⎠. (B1)

We search solutions of the form

ψβ = eβκx[Aβ (uβ,+; vβ,+)T eikFx + Bβ (uβ,−; vβ,−)T e−ikFx],

(B2)

where a factor β = +1 (−1) is introduced for the left (right)
electrode. Next we calculate κ . For U0 = 0, the Schrödinger
equation of H can be written as(

− h̄2∂2

2m∂x2 − μ �(x)

�∗(x) h̄2∂2

2m∂x2 + μ

)(
u(x)
v(x)

)
= E

(
u(x)
v(x)

)
. (B3)

The form of the solution to Eq. (B3) is assumed as

u(x) ≡ f (x) exp(ikFx),

v(x) ≡ g(x) exp(ikFx),
(B4)

substituting it into Eq. (B3):

− h̄2

2m

∂2

∂r2
[eikFx f (x)] − μeikFx f (x) + �(x)eikFxg(x)

= − h̄2

2m

[
ik2

FeikFx f (x) + 2ikFeikFx f ′(x) + eikFx f ′′(x)
]

− μeikFx f (x) + �(x)eikFxg(x)

= EeikFx f (x). (B5)

Supposing the second-order term can be ignored compared
with the first-order one, then the results read

−ih̄vF f ′(x) + �(x)g(x) = E f (x). (B6)

Next taking v(r) into Eq. (B3), similarly we have

ih̄vFg′(x) + �∗(x) f (x) = Eg(x), (B7)

and combining Eqs. (B6) and (B7), we can obtain a
Schrödinger-like equation for f (x):

−(h̄vF)2 ∂2 f

∂x2
+ |�(x)|2 f = E2 f (x). (B8)

Therefore the solution of Eq. (B8) has the form of

f (x) = eφ(x)/h̄, (B9)
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and substituting it into Eq. (B8),

h̄2v2
Fφ

′′(x) + [φ′(x)]2 = �2
0 − E2. (B10)

The approximation |�(r)|2 ≈ |�0|2 is taken here, and further
we can assume that

φ′(x) = A(x) + iB(x) ≡ dφ(x)

dx
, (B11)

where the amplitude of f (x) is exp[
∫ x A(x′)dx′/h̄], and

exp[
∫ x B(x′)dx′/h̄] is the phase part. Bring these into Eq. (B8)

and matching the real and imaginary parts separately it yields

h̄2v2
FA′(x) + A(x)2 − B(x)2 = �2

0 − E2,

h̄2v2
FB′(x) + 2A(x)B(x) = 0. (B12)

Next we expand A(x) and B(x) to the power of h̄:

A(x) =
∞∑

n=0

h̄nAn(x),

B(x) =
∞∑

n=0

h̄nBn(x), (B13)

and substituting into Eq. (B12) and matching the zero-order
term coefficients of h̄ yields

A0(x)2 − B0(x)2 = �2
0 − E2

v2
F

, A0(x)B0(x) = 0. (B14)

If the phase change is much slower than the wave amplitude,
i.e., B0(x) 	 A0(x), then we can assume

A0(x) = ±
√

�2
0 − E2

vF
, B0(x) = 0. (B15)

This equation only holds when �0 � E , and the quantum
tunneling effect will appear. Substituting it into Eq. (B12) and
matching the first-order term coefficients of h̄ reads

A′
0 + 2A0A1 − 2B0B1 = A′

0 + 2A0A1 = 0,

B′
0 + 2A0B1 + 2A1B0 = 2A0B1 = 0, (B16)

and we can easily have

B1 = 0,

A1 = − A′
0

2A0
= d

dx
ln A−1/2

0 . (B17)

Hence, by now combining the results in Eqs. (B15) and (B17),
the phase part is

exp

[∫ x

B(x′)dx′/h̄

]

= exp

[∫ x

[B0(x′) + B1(x′)]dx′/h̄

]
= 1, (B18)

and the amplitude reads

exp

[∫ x

A(x′)dx′/h̄

]
= exp

[∫
[(A0(x′) + A1(x′)]dx′/h̄

]

= 1√
A0

e±(1/h̄)
∫

A0(x′ )dx′

= 1√
p(x)

e±(1/h̄)
∫

p(x′ )dx′
, (B19)

with p(x) =
√

�2
0−E2

vF
. Hence under WKB approximation with

�0 � E , we can finally obtain

f (x) ∝ e±κx = eβ

(√
�2

0−E2/h̄vF

)
x
, (B20)

where 1/κ represents the length scale over which the wave
function decays away from the interface. Now taking Eq. (B2)
into Eq. (B3), we can obtain(

− h̄2∂2

2m∂2x
− μ

)
(eβκxeikFxuβ,+) − �β,+

i∂

kF ∂x
(eβκxeikFxvβ,+)

= EeβκxeikFxuβ,+, (B21)

which can be simplified as[
−h̄2(βκ + ikF)2

2m
− μ

]
uβ,+ − �β,+

i(βκ + ikF)

kF
vβ,+

= Euβ,+, (B22)

in the limit of kF � κ , we can obtain

ηβ,+ = vβ,+
uβ,+

= E + h̄2(βκ+ikF )2

2m + μ

−�β,+ i(βκ+ikF )
kF

≈ E + ih̄2βκkF

m − h̄2k2
F

2m + μ

�β,+

= E + iβκ h̄vF

�β,+
. (B23)

Similarly we have

ηβ,− = vβ,−
uβ,−

= E−iβκ h̄vF

�β,− , (B24)

where

�L,+ = �0, �R,+ = �0eiφ,

�L,− = �0, �R,− = �0eiφ.
(B25)

The geometry of a junction constrains the solutions of
Eq. (B1) with two boundary conditions at the interface
(x = 0):

ψL(x = 0) = ψR(x = 0),

∂ψL

∂x
(x = 0) − ∂ψR

∂x
(x = 0) = kFZ0ψL/R(x = 0), (B26)

with Z0 = 2mU0

h̄2kF
, thus we can obtain the 4 × 4 linear system of

equations

ALuL,+ + BLuL,− = ARuR,+ + BRuR,−,

ALvL,+ + BLvL,− = ARvR,+ + BRvR,−,

Z0(ALuL,+ + BLuL,−) = i(ARuR,+ − BRuR,−
− ALuL,+ + BLuL,−),

Z0(ALvL,+ + BLvL,−) = i(ARvR,+ − BRvR,−
− ALvL,+ + BLvL,−). (B27)
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This 4 × 4 linear system with AL, BL, AR, BR only has
nonzero solutions if its determinant is zero, i.e.,∣∣∣∣∣∣∣∣∣∣

uL,+ uL,− −uR,+ −uR,−
vL,+ vL,− −vR,+ −vR,−

(Z0 + i)uL,+ (Z0 − i)uL,− −iuR,+ iuR,−
(Z0 + i)vL,+ (Z0 − i)vL,− −ivR,+ ivR,−

∣∣∣∣∣∣∣∣∣∣
= 0,

(B28)

which can be written as

4uR,+uR,−vL,+vL,− − 4uL,+uR,−vL,−vR,+
− 4uL,−uR,+vL,+vR,− + 4uL,+uL,−vR,+vR,−

+ uL,−−uR,−vL,+vR,+Z2
0 − uL,+uR,−vL,−vR,+Z2

0

− uL,−uR,+vL,+vR,−Z2
0 + uL,+uR,−vL,−,vR,−Z2

0 = 0.

(B29)

Then dividing the equation by uR,+uR,−vL,+vL,−, it reads

4 − 4
ηR,+
ηL,+

− 4
ηR,−
ηL,−

+ 4
ηR,+ηR,−
ηL,+ηL,−

+ Z2
0
ηR,+
ηL,−

− Z2
0
ηR,+
ηL,+

− Z2
0
ηR,−
ηL,−

+ Z2
0
ηR,−
ηL,+

= 0, (B30)

which can be simplified as

4(ηR,+ − ηL,+)(ηR,− − ηL,−)

= Z2
0 (ηR,+ − ηR,−)(ηL,− − ηL,+). (B31)

Finally we have

(ηR,− − ηL,−)(ηR,+ − ηL,+)

(ηR,+ − ηL,−)(ηR,− − ηL,+)
= 1 − D, (B32)

with the transmission coefficient

D = 4

4 + Z2
0

. (B33)

Then substituting Eqs. (B23) and (B24) into Eq. (B32), we
can obtain(

E−iκ h̄vF
�0eiφ − E+iκ h̄vF

�0

)(
E+iκ h̄vF

�0eiφ − E−iκ h̄vF
�0

)
(

E−iκ h̄vF
�0eiφ − E+iκ h̄vF

�0eiφ

)(
E−iκ h̄vF

�0
− E+iκ h̄vF

�0

)

= [(E − a)e−iφ − (E + a)][(E + a)e−iφ − (E − a)]

[(E − a)e−iφ − (E + a)e−iφ][(E − a) − (E + a)]

=
e−iφ + eiφ − 2 2E2−�2

0

�2
0

2 2E2−�2
0

�2
0

− 2
= 1 − D

D
, (B34)

Finally the energy-phase relation in a 1D p-wave Josephson
junction can be derived with the above equation as

Epx ≡ E = ±�0

√
D cos(φ/2). (B35)

Here we consider the ground state, i.e., Epx =
−�0

√
D cos(φ/2), hence

Ipx = e�0

h̄

√
D sin(φ/2). (B36)

Similarly, as for the 1D s-wave Josephson junction,

Esx (φ) = −�0

√
1 − D sin2(φ/2),

Isx = e�0D sin φ

h̄
√

1 − D sin2 φ

2

. (B37)
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