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By using the full 3D generalized time-dependent Ginzbug-Landau equation, we study a long superconducting
film of finite width and thickness under an applied transport current. We show that, for sufficiently large
thickness, the vortices and the antivortices become curved before they annihilate each other. As they approach
the center of the sample, their ends combine, producing a single closed vortex. We also determine the critical
values of the thickness for which the closed vortex sets in for different values of the Ginzburg-Ladau parameter.
Finally, we propose a model of how to detect a closed vortex experimentally.
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I. INTRODUCTION

One of the most outstanding physical phenomena in con-
densed matter theory is the flux quantization in the Shubnikov
phase of superconducting materials. In bulk type-II super-
conductors, above a certain critical value of applied field,
magnetic flux penetrates the sample in the form of flux quanta
(in units of �0 = hc/2e), the so-called magnetic vortices. Su-
perconducting vortices are very important due to their possible
use in many applications, ranging from single photon detec-
tors to quantum information. Moreover, the knowledge of how
vortices behave under various circumstances is fundamental to
the optimization of many electronic devices, since the vortex
motion causes energy dissipation in a superconductor.

In the core of a superconducting vortex, the order param-
eter that describes the superconducting state vanishes and its
phase changes by a multiple of 2π when circulated around a
closed loop that encloses the core. As the vortex line tends to
align with the direction of the magnetic field, in the presence
of an external field applied perpendicularly to a superconduct-
ing film, the core of the vortex is rigorously a straight line with
the currents flowing around it. This is the so-called Abrikosov
vortex, described in his work [1].

However, the circularly shaped magnetic self-field induced
by a current produces an Abrikosov vortex with a ringlike
shape, which is usually called a closed vortex. This type of so-
lution was found by Kozlov and Samokhvalov [2] through the
solution of the London equation and was extensively studied
further in Refs. [3–12]. In these works, the existence, dynam-
ics, and even stability of such closed vortices in the presence
of inhomogeneities were studied for unbounded superconduc-
tors or superconducting samples in the shape of a cylinder. In
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the latter case, due to matching symmetry between the field
lines produced by the current and the cylinder geometry, the
vortex penetrates the superconductor already in the form of a
closed ring. Recently, these closed vortices were also shown to
exist in a more complex geometry, such as a superconducting
torus [13].

In different scenarios, the formation of closed vortices was
also recently studied, for example, in Josephson junctions [14]
submitted to an external current, where it was shown that
Josephson vortices can also be found in the form of closed
vortex loops, and a procedure to their experimental observa-
tion was introduced. Due to short lifetime of the Abrikosov
closed vortices, their experimental detection is a difficult task
and has not been accomplished so far. Recently, by using
the microscopic theory of superconductivity, Fyhn and Linder
[15] proposed an experimental setup to the observation of
such objects based on STM measurements. One of the most
important results of the present paper is to provide a procedure
for the detection of closed vortex loops, which is based on the
measurement of the magnetic field profile produced by them.
It is worth mentioning that, in practice, half-closed vortices
have been demonstrated in RF cavities [16].

In the present paper, we study the physics of the closed vor-
tices in a different setup, namely, we investigate how a closed
vortex emerges and gets annihilated in a superconducting slab
under the presence of a transport current. Unlike previous
works on the subject, the geometry of our superconductor
does not favor the formation of a closed vortex. Here, this
object is created solely by the inhomogeneous action of the
applied current in different parts of the flux line. The study
of the vortex dynamics is of fundamental importance to the
understanding of the resistive state of current driven super-
conductors. Here, we show that, for appropriate thickness of
the slab and Ginzburg-Landau parameter κ , a closed vortex
forms in the process of annihilation of a vortex-antivortex

2469-9950/2023/107(9)/094515(8) 094515-1 ©2023 American Physical Society

https://orcid.org/0000-0002-0830-0329
https://orcid.org/0000-0002-6128-7207
https://orcid.org/0000-0002-7778-0979
https://orcid.org/0000-0002-1900-6707
https://orcid.org/0000-0001-7041-8136
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.094515&domain=pdf&date_stamp=2023-03-20
https://doi.org/10.1103/PhysRevB.107.094515


LEONARDO RODRIGUES CADORIM et al. PHYSICAL REVIEW B 107, 094515 (2023)

(v-av) pairs induced in the sample by the current self-field.
As we show, the lines corresponding to the vortex and the
antivortex combine and form a closed loop when the pair is
annihilating. After this combination, the loop takes the form
of a quasiellipse, with the aspect ratio gradually decreasing
until the collapse of the loop. By increasing the thickness of
the film, the loop tends to a circle.

The outline of this work is as follows. In Sec. II, we present
our model and the formalism we used to solve the generalized
Ginzburg-Landau equations [17,18]. In Sec. III, we present
and discuss the results obtained in our simulations. Finally,
we present our concluding remarks in Sec. IV.

II. THEORETICAL MODEL

In this paper, we rely on the generalized time-dependent
Ginzburg-Landau (GTDGL) equation which is more suitable
to describe the resistive state of dirty superconductors in
the nonequilibrium state [17,18]. In dimensionless units this
equation is given by

u√
1 + γ 2|ψ |2

[
∂

∂t
+ 1

2
γ 2 ∂|ψ |2

∂t

]
ψ

= (∇ − iA)2ψ + ψ (1 − |ψ |2), (1)

coupled with Ampre’s law

�
∂A
∂t

= Js − κ2∇ × h, (2)

where

Js = Im[ψ̄ (∇ − iA)ψ] (3)

is the superconducting current density.
Here, the temperature is in units of the critical temperature

Tc; the order parameter ψ is in units of ψ∞(T ) = √
α(T )/β,

where α and β are two phenomenological constants; the dis-
tances are measured in units of the coherence length ξ (T );
the vector potential A is in units of ξHc2(T ), where Hc2 is
the upper critical field; the local magnetic field h = ∇ × A
is units of Hc2(T ); time is in units of the Ginzburg-Landau
characteristic time τGL = π h̄/8kBTu; the material-dependent
parameter γ = 2τE
0/h̄, where τE is the inelastic electron-
collision time, and 
0 is the gap in the Meissner state; the
constant � = 4πσD/c2ξ 2(T ), where D is the diffusion coef-
ficient and σ is the normal state electrical conductivity; κ =
λ(T )/ξ (T ) is the Ginzburg-Landau parameter, where λ(T ) is
the London penetration depth; and finally, the constant u is
equal to 5.79, which is derived from first principles [17].

The original GTDGL equations take into account the scalar
electrical potential ϕ. Since they are invariant under the fol-
lowing gauge transformations:

ψ ′ = e−iχψ,

A′ = A − ∇χ, (4)

ϕ′ = ϕ + ∂χ

∂t
,

where χ is an arbitrary scalar function therefore, we conve-
niently use the Weyl gauge [19] in which the scalar potential
is constant and equal to zero.

FIG. 1. Schematic view of the system under consideration: An
infinitely long superconducting sample of width ly and thickness lz;
only one unit cell of length lx is shown. The transport current is
applied in the x direction. The encircling lines illustrate the line fields
of the self-field produced by the current. Two defects are introduced
at the border of the sample (black spots) to facilitate nucleation of
v-av pairs.

In the present paper, we consider an infinite superconduct-
ing film carrying a transport current as sketched in Fig. 1.
The applied transport current is introduced as follows. The
superconductor is in the presence of an applied electric field
which is sustained by a DC transport current density which
flows along the x axis, Ja = Jax̂. In the normal state, the vector
potential has only the x component. Thus, we separate the
vector potential and the local magnetic field into two contribu-
tions, one coming from the normal state, and another one due
to the diamagnetic nature of the superconductor that tends to
cancel out the field induced by the applied current inside the
sample. In other words, in Eqs. (1)–(3) we substitute

A = A0 + A1, (5)

h = h0 + h1, (6)

where A0 and h0 satisfy the following equations:

κ2∇ × h0 = Jax̂, κ2∇2A0x = −Ja. (7)

The analytical solutions of Eqs. (7) are given in the Sup-
plemental Material of Ref. [20].

Here, we solve the full 3D GTDGL equations numeri-
cally for an infinite superconducting film of finite width and
thickness (see Fig. 1). The infinitely long film is divided into
unit cells of dimensions (lx, ly, lz ). We take into account the
demagnetization effects. Therefore, for numerical purposes,
we must consider the unit cell inside a simulation box (not
shown in Fig. 1) of dimensions (lx, Ly, Lz ), where (Ly, Lz )
are sufficiently larger than (ly, lz ) so the demagnetizing field
h1 vanishes far away from the superconducting surfaces (for
more details, see Ref. [21]). In addition, the normal compo-
nents of the superconducting current density of must be zero
on the superconductor-vacuum interfaces. Then, the following
boundary conditions must be fulfilled:

n̂ · (∇ − iA0 − iA1)ψ = 0, in ∂�sc, (8)

∇ × A1 = 0, in ∂�, (9)

where ∂�sc and ∂� stand for superconducting and simulation
box surfaces, respectively.

The two black spots in Fig. 1 represent two defects on
the border of the sample. They are introduced as an artifact
to create an inhomogeneity in the current that induces the
vortices and antivortices in the opposite sides of the sample.
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III. RESULTS AND DISCUSSION

A. Parameters and methodology

The above equations are discretized by using the standard
link-variable method as described in Ref. [22]. This algorithm
is then implemented in the Fortran 90 programming language
and run in a GPU (graphics processing unit) accelerated
forward-time-central-space scheme.

In the simulations, we have fixed some parameters and
varied others as follows. The length and width of the unit cell
are fixed as lx = 12ξ and ly = 8ξ . The thickness of the sample
varied from lz = 1ξ to lz = 3.6ξ in increments of 0.2ξ . We
use κ = 1/

√
2, 1,

√
3 for each set of values of lz. The grid

space used is 
x = 
y = 0.2ξ and 
z = 0.1ξ . The size of
the simulation box was chosen sufficiently large to satisfy
boundary conditions Eq. (9); we use ly = 16ξ and lz = 12ξ .
The dimensions of the defects are ax = ay = 0.2ξ . The range
10 � γ � 20 is suitable for most metals like Nb [17,18,23];
we used γ = 10.

Let us explain how we calculate the IV (current voltage)
and IR (current resistance) characteristics, which are the mea-
surable quantities in the resistive state. In the Weyl gauge, the
electrical field is given by E = −∂A/∂t , so, assuming that
the voltage is measured between electrodes at z = 0 that cover
the width of the film, the voltage across a unit cell is

U (t ) = − 1

ny − 1

ny∑
j=2

∫ lx/2

−lx/2
Ex(x, y j, 0)dx

= 1

ny − 1

ny∑
j=2

∫ lx/2

−lx/2

∂Ax(x, y j, 0)

∂t
dx, (10)

where ny = ly/
y, and y j = ( j − ny/2 − 1)
y for the y co-
ordinates of the mesh points. The voltage is then calculated as
a time average of U (t ). We have

V = 1

T

∫ T

0
U (t ) dt, (11)

where T is the time corresponding to an appropriate number
of oscillations of U (t ).

The applied current density was adiabatically increased
in steps of 
Ja = 0.01JGL from the Meissner state until the
superconductivity was fully destroyed. In the resistive state,
we moved from a value of Ja to Ja + 
Ja only after the voltage
U (t ) became periodic, which is the same periodicity with
which the v-av pairs are formed and annihilated. When mul-
tiple nucleations of v-av (vortex-antivortex) pairs are present,
the voltage loses its periodicity, and therefore we change the
value of Ja only after 220 oscillations of U (t ) to obtain a more
accurate value of the time average voltage.

The results of all simulations are compiled in the following
subsections.

B. Field profile, closed vortex, and current distribution

In Fig. 2, we illustrate the vector field profile at x = 0
plane (in the middle of the unit cell, where the defects are
located). The local field has symmetry as if the current den-
sity was uniform. Due to the geometric symmetry and the
demagnetization effect, the local magnetic field is larger near

FIG. 2. The magnetic field profile in the vertical plane x = 0
(parallel to the yz plane): For better visualization purposes, the ar-
rows are not in real size; the rectangle inside is a cross section of
the superconductor; this picture is for κ = 1, ly = 8ξ , lz = 3ξ ; the
value of the current density is Ja = 0.26JGL just before the critical
current density Jc1 = 0.27JGL. The vortex (antivortex) nucleates on
the right-hand side (left hand-side) of the figure.

the surface of the superconductor and decreases deep inside.
As can also be observed, the field is larger on the lateral sides
of the sample. In this figure, we show the vector field for a
value of the current density just before the first critical current
Jc1 = 0.27JGL. Therefore, once the resistive state sets in, it is
on the lateral sides that the vortex and the antivortex sprout,
move to the center, and finally annihilate each other at the
center of the sample. Then, a periodic collapsing of v-av pairs
is established.

Next, we discuss the morphology of a closed vortex in the
resistive state. The first works about closed vortices were con-
ducted on long current-carrying superconducting cylinders, so
the vortex follows the geometry of the sample since from the
surface until it collapses at the center [4,7]. In the present
scenario, we deal with a film of rectangular cross section.
Thus, before the closed vortex is formed, two curved vortices
(a vortex and an antivortex) nucleate in opposite sides of the
sample [see Fig. 3(a)] and move toward the center. Then, as
they encounter each other, their ends join together forming a
closed vortex [Fig. 3(b)]. Once this ringlike vortex is formed,
its radius starts decreasing [Fig. 3(c)] until it collapses at
the center. After the transition from the Meissner state to
the resistive one, the process is repeated periodically until
superconductivity is suppressed throughout the sample.

It is conceivable that the closed vortex can exist for any
thickness of the film, but for small values of lz is very elon-
gated when the ends of the v-av pair meet. In our simulations,
we do not have sufficient resolution to detect a closed vortex
for any lz. Indeed, in Fig. 4 we show four panels of the
color maps of the superconducting Cooper-pair density for
lz = 1.6ξ . As we can see, the shape of the closed vortex
is much more elongated than for the previous case lz = 3ξ

of Fig. 3. For κ = 1, and thickness below lz = 1.6ξ , we do
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FIG. 3. Color maps of the superconducting Cooper-pair density,
|ψ |, for κ = 1, lz = 3ξ , and Ja = 0.27JGL throughout the plane x =
0: (a) a v-av pair of curved vortices; on the left hand-side (right hand
side) is the antivortex (vortex); (b) a combination of a vortex and an
antivortex producing a closed vortex; (c) a closed vortex diminishing
its radius; (d) a closed vortex shrinking down at the center. The dark
strips on both sides are due to the defects. These pictures correspond
to the same region highlighted in Fig. 2.

not observe any closed vortex; the v-av pair remains straight
lines, since the nucleation of the vortex and the antivortex
on the surfaces, until the pair is annihilated at the center of
the sample. The formation of a closed vortex depends on the
sample thickness because the current and the magnetic field
concentrate near the surface of the superconductor, on a scale
of the order of the London penetration depth. Therefore, for
thicker samples, the ends of a vortex line are subjected to
stronger Lorentz force and to a stronger horizontal magnetic
field that facilitate the formation of a closed vortex.

Let us now discuss the current distribution of a closed vor-
tex. When both curved vortex and antivortex touch their ends
on the upper and lower surfaces, z = +lz/2 and z = −lz/2,
respectively, they combine to make a single closed vortex.
This new vortex looks like a toroid with the superconducting
currents flowing around its core. Figure 5 exhibits four cuts
of the toroid in the xz plane for lz = 3ξ . As can be seen,
the currents in the internal parts of the toroid flow in the
same direction for both the upper and lower segments of the
closed vortex. Therefore, all v-av pairs opposedly positioned
in the toroid attract one another, causing the closed vortex to
collapse at the center of the sample.

C. Straight to curved vortex crossover, and (IV, IR)
characteristics

As mentioned previously, as the thickness of the sample is
increased, there is a crossover between straight to curved v-av
pairs. In what follows, we show a consistency between the
criterion based on the aspect ratio of the vortex (antivortex)
and an important physical quantity, namely, the voltage across
the z direction on the lateral side of the film; by aspect ratio,
we mean the distance between the center of the vortex and
the antivortex along the y direction when their tips first touch

FIG. 4. The same as in Fig. 3 for lz = 1.6ξ and Ja = 0.30JGL.

FIG. 5. The panels show four cuts of the current distribution of
the closed vortex throughout the vertical plane y = 0. The radius of
the closed vortex diminishes from (a) to (d).

each other. For this purpose, we calculate the time average of
the following voltage:

U (t ) = − 2

nx

nx∑
i=nx/2

∫ lz/2

0
Ez(xi, ly/2, z)dz

= 2

nx

nx∑
i=nx/2

∫ lz/2

0

∂Az(xi, ly/2, z)

∂t
dz, (12)

where nx = lx/
x, and xi = (i − nx/2 − 1)
x for all {i =
1, 2, . . . , nx + 1} are the x coordinates of the mesh points.
Here, we have not considered the branch −lz/2 � z � 0.
By symmetry, had we included this contribution, the voltage
would vanish.

When a closed vortex appears, we will have a larger con-
tribution for the current flowing in the vertical direction and,
consequently, an increase in the voltage. For a fixed value of
κ and current density Ja, we determine the voltage for several
values of lz. We have done this for three distinct values of
the Ginzburg-Landau parameter. The respective value of Ja is
chosen so as to correspond to the critical current density Jc1

for the lowest thickness, lz = 1ξ . The results are summarized
in Fig. 6. In Fig. 6(a), we present the voltage as a function of
the thickness of the film. We find that, at a certain point, which
we denote by lz,c, there is a change of the behavior of the V (lz )
curves. These points are highlighted in Fig. 6(a). They signal
a crossover from linear to curved v-av pairs.

To make sure that this special point is correlated to the
straight-to-curved vortex crossover, we calculate the deriva-
tive dV (lz )/dlz for the three values of κ [see Fig. 6(b)]. As
can be seen, the derivatives have an inflection point which are
highlighted in Fig. 6(b). These points correspond to lz,c. We
find the following critical values, lz,c = 1.4ξ, 1.6ξ, 1.8ξ for
κ = 1/

√
2, 1,

√
3, respectively. We must emphasize that first

we determine the value of lz,c by inspecting the aspect ratio of
the curvature of the vortex. Second, we check if the result is
in agreement with inflection point of dV (lz )/dlz. For all three
cases mentioned above, they coincide.
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FIG. 6. (a) Voltage across the z direction as a function of the
thickness of the sample for three values of κ: the value of Ja for each
case corresponds to the first critical current density when the resistive
state sets in. The highlighted dots are the critical lz,c values for which
the v-av pairs combine to make a closed vortex. (b) The derivative of
the voltage: The dots separate the two regimes of straight to curved
vortices; the inflection points coincide with lz,c.

Now we discuss the transport properties of the supercon-
ductor. The IV and IR characteristics are presented in Fig. 7
for κ = 1 and lz = 3ξ . As we increase the applied current
density, the system becomes unstable to the penetration of
v-av pairs. When Ja achieves the value Jc1 = 0.27JGL, the
superconductor goes to the resistive state, where a periodic
formation v-av pairs occurs. Notice that Jc1 is smaller than the
depairing current density JGL. This is a consequence of the
defects deliberately introduced at the border of the supercon-
ducting film. If we further increase Ja, a second jump appears
in the IV curve at Ja = 0.575JGL. This is an indication that
another two adjacent v-av pairs around the central one are
nucleating (see insets). This is in correspondence with the
experimental observations of multiple penetrations of kine-
matic vortices in Sn film by Sivakov et al. [24]. Finally, when
the current density reaches the value Ja = Jc2 = 1.155JGL the
superconductor goes straight to the normal state. We believe
that for larger unit cells, additional jumps in the IV curve
would occur.

D. Single defect (half-closed vortex)

We also have considered a single defect in the middle of
a unit cell (in the middle of the front edge in Fig. 1). In this

FIG. 7. IV (blue line) and IR (red line) characteristic curves,
respectively, for κ = 1 and lz = 3ξ . The Meissner state (full super-
conductivity) survives up to Ja = Jc1 = 0.27JGL. Above this current
density, the resistive state sets in. The resistive state splits into two
phases. In one of them, the vortex and the antivortex nucleate only
at the defects on the border of the superconductor. In the second
phase, another set of v-av pairs nucleates at the frontiers between unit
cells. The second jump in the IV characteristic is the signature of this
crossover. The insets illustrate this scenario through the modulus of
the order parameter in the xy plane (z = 0 plane).

configuration, only an antivortex nucleates on the y = −ly/2
surface. Once the antivortex nucleates at y = −ly/2 it moves
directly toward the opposite side. As can be seen from Fig. 8,
as the antivortex approaches the other side of the sample, it be-
comes significantly curved [see Fig. 8(a)]. When it reaches the
surface y = ly/2, surprisingly, it does not escape the sample.
Instead, its ends touch the surface giving rise to a half-closed
vortex [see Figs. 8(b) and 8(c)]. Then, it diminishes its ratio
until it collapses [see Fig. 8(d)].

Due to its intrinsic nature, it is very difficult to observe
experimentally the closed vortex. In addition, both the closed
and half-closed vortex are very unstable. Therefore, we re-
quire an indirect method that signals either a v-av or a single
half-closed vortex curves. Having this in mind, we propose a

FIG. 8. Color maps of the superconducting Cooper-pair density,
|ψ |, for κ = 1, lz = 4ξ , and Ja = 0.26JGL throughout the plane x =
0: (a) An av nucleates in the left edge of the sample and moves
towards the opposite side; (b) the ends of the av touch the y = ly/2
plane and form a half-closed vortex; (c) a half-closed vortex dimin-
ishing its radius; (d) the half-closed vortex shrinking down.
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FIG. 9. The main panel presents the time average of the magnetic
flux, �̄, across the surfaces defined in Eq. (13); the black points
correspond to the beginning of the resistive state. The inset shows
the magnetic flux, �, as a function of time. The parameters used
were κ = 1, lz = 4ξ , and Ja = 0.26JGL.

setup to detect the curvature of the v-av pair when it gives rise
to a closed vortex with a nonvanishing aspect ratio. Instead
of doing this for a closed vortex, which is formed inside the
sample, we think it should be much easier for a half-closed
vortex since its collapse occurs on the surface. For this pur-
pose, we calculate the time average of the magnetic flux on
the lateral side of the film. To calculate the magnetic flux, we
focus on a small region where the antivortex tips touch the
plane y = ly/2, although we could extend it throughout the
whole lateral side of the unit cell. We evaluate the following
equation:

�(t ) =
∫ lz/2

0

∫ ξ

−ξ

hy(x,±ly/2, z) dxdz. (13)

Here, the minus sign stands for the left edge where the antivor-
tex nucleates, and the plus sign is for the opposite one where
the antivortex ends touch the surface. We consider only half
of the lateral edge, otherwise the total flux would vanish.

Figure 9 presents the results for the time-averaged mag-
netic flux by using the same parameters as those used in Fig. 8.
As can be clearly seen, until the transition to the resistive
state, the flux is approximately the same through both surfaces
y = ±ly/2. Nevertheless, once the resistive state sets in, they
become different as much as 
�̄ ≈ 0.09ξ 2Hc2 ≈ 0.02�0.
This is signaling that the antivortex is piercing the y = +ly/2
surface. Therefore, for this to happen, the antivortex necessar-
ily has to bend.

Since the creation and annihilation of the half-closed vor-
tex is a dynamical process, the flux evolves periodically. The
AC magnetic flux can be seen in the inset of Fig. 9. The period
of the AC signal depends on the applied current density. For
Ja = 0.26JGL, we find that the period is τ ≈ 0.03 × 104tGL.
For low-Tc materials like Nb films [23], tGL ≈ 6.72 ps. This
produces τ ≈ 2 ns, which is in the GHz frequency range.

As we can see, the measurement of the difference between
the time-averaged magnetic flux threading at each plane, as

FIG. 10. Difference between the average magnetic flux on both
sides of the sample through two vertical circuits positioned on the
planes y = ±(ly/2 + ξ ). The domain of the circuits is given by
{−ξ � x � ξ, −lz/2 � z � Lz/2}. The value of Lz was chosen such
that the area of the circuit above the z = lz/2 surface is the same for
all thicknesses lz. The points just before the onset of the resistive state
are highlighted in black.

displayed in Fig. 9, can be an indirect method for the ex-
perimental detection of a closed vortex. Such measurement
is experimentally feasible by using the recently developed
nanoSQUIDs [25–27], which are capable of detecting the
variation of the flux produced by the closed vortex in the time
and length scales we used in our computations.

We must emphasize that for thin superconductors, the mea-
surement of the flux in the region prescribed in the above
setup can be experimentally challenging. For this reason, we
also present another indirect method for the detection of a
closed vortex. Figure 10 shows the difference between the
averaged magnetic flux calculated at the lateral sides of our
superconductor as a function of the applied current density for
different superconductor thicknesses. In contrast with the pre-
vious case, here the flux is calculated from the bottom of the
superconductor up to a height well above the sample surface.
The flux is evaluated across a vertical rectangular surface,
located a coherence length away from the lateral surface. This
makes the proposed experiment much more feasible.

The black dots in Fig. 10 represent the onset of the resistive
state for each thickness. We are interested in current densi-
ties slightly above these values. In this region, the antivortex
moves through the whole sample, being expelled at the other
side (animations of this regime, as well as the one described
below, can be found in the Supplemental Material [28]). Due
to its curvature, the antivortex produces a larger magnetic
flux in the plane which it is moving into, increasing the flux
difference between each plane. Since the curvature increases
with the film thickness, this difference also increases with
the sample thickness, as shown in Fig. 10. Nevertheless, for
large values of the current density, a vortex also penetrates the
superconductor at the opposite side, with the pair being anni-
hilated inside the sample, reducing the impact of the curvature
in the flux. The penetration of this vortex becomes easier as
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the superconductor thickness increases, which explains why
the flux difference for lz = 4ξ is smaller than for lz = 2ξ or
3ξ at high current densities, for example. In summary, by
comparing the magnetic flux difference, at the onset of the
resistive state, for films with different thicknesses, we can
clearly demonstrate the existence of the half-closed vortex.
Given the inherent complexity for the direct observation of a
closed vortex, our indirect method brings a possibility for the
detection of such objects.

IV. CONCLUDING REMARKS

To summarize, we have shown that the combination of the
flux lines of a vortex and an antivortex during their annihila-
tion gives origin to a closed vortex loop. As we show here,
the formation of the closed vortex depends on how easily
the flux lines can be bent due to the action of the applied
current, with this bending increasing with the superconduct-
ing film thickness and decreasing with the Ginzburg-Landau
parameter κ . Since the motion and annihilation of vor-
tices are highly dissipative processes, understanding their

behavior is of fundamental importance to the design of elec-
tronic devices.

Our findings suggest a method to experimentally ob-
serve a closed vortex. As discussed here, closed vortices can
be indirectly detected by measuring the flux produced by
their stray fields. We emphasize that the recently developed
nanoSQUIDs are capable of performing such measurements
in the time and length scales that our system requires.
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Milošević, A. Gurevich et al., Imaging of super-fast dynam-
ics and flow instabilities of superconducting vortices, Nat.
Commun. 8, 85 (2017).

[26] Y. Anahory, H. Naren, E. Lachman, S. B. Sinai, A. Uri, L.
Embon, E. Yaakobi, Y. Myasoedov, M. Huber, R. Klajn et al.,

Squid-on-tip with single-electron spin sensitivity for high-field
and ultra-low temperature nanomagnetic imaging, Nanoscale
12, 3174 (2020).

[27] D. Vasyukov, Y. Anahory, L. Embon, D. Halbertal, J. Cuppens,
L. Neeman, A. Finkler, Y. Segev, Y. Myasoedov, M. L.
Rappaport et al., A scanning superconducting quantum in-
terference device with single electron spin sensitivity, Nat.
Nanotechnol. 8, 639 (2013).

[28] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.107.094515 for animations of the dynamics
of the half-closed vortex. They depict the motion of the half-
closed vortex for different values of the applied current and film
thickness. The videos help in the illustration of the proposed
experiment as described in the text.

094515-8

https://doi.org/10.1103/PhysRevB.79.184506
https://doi.org/10.1103/PhysRevLett.91.267001
https://doi.org/10.1038/s41467-017-00089-3
https://doi.org/10.1039/C9NR08578E
https://doi.org/10.1038/nnano.2013.169
http://link.aps.org/supplemental/10.1103/PhysRevB.107.094515

