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Higher-order topological superconductivity in twisted bilayer graphene
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We show that introducing spin-singlet or spin-triplet superconductivity into twisted bilayer graphene induces
higher-order topological superconductivity. Multiple copies of C2zT -protected Majorana Kramers pairs appear
at corners on pairing domain walls. The topology originates from the anomaly analyzed in Song et al.—the
absence of a lattice support—of the single-valley band structure of twisted bilayer graphene, which is protected
by C2zT and approximate particle-hole symmetry P . We prove that any pairing (spin-singlet or spin-triplet)
term preserving valley-U(1), spin-SU(2), time-reversal, C2zT , and P must drive the system into a higher-order
topological superconductor. Here spin-SU(2) is the global spin-SU(2) for the singlet pairing and is broken to
U(1) for the triplet pairing. Using a Dirac Hamiltonian, we derive the corner modes and confirm with numerics.
These corner states are stable even if P is weakly broken, which is true in experimental setups. Finally, we
suggest experimental detection via the fractional Josephson effect in a TBG-TSC Josephson junction.
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I. INTRODUCTION

Twisted bilayer graphene (TBG) plays host to a plethora
of exciting physics, including superconductivity, correlated
insulators, the quantum anomalous Hall effect, and ferromag-
netism [1–95]. The richness stems from several remarkable
properties: the nearly flat bands that emerge at the magic
angle, which allow for interactions to dominate the physics
[1]; the (previously thought) fragile topology of these bands,
whereupon adding additional trivial bands renders the system
trivial [51–53]; and the effective symmetries that appear in
certain limits of TBG, including a unitary particle-hole sym-
metry P that appears at charge neutrality of the single-particle
bands [51,96].

In Ref. [96], some authors of the present work showed
that the Bistritzer-MacDonald model of single-valley TBG
is anomalous: it cannot be realized in a lattice model that
preserves the C2zT and P = PC2zT symmetries. It is well
known (e.g., Ref. [97]) that an anomalous band structure plus
a symmetry-preserving pairing term can yield a topological
superconductor (TSC). We prove that TBG plus pairing yields
a TSC phase, which we term TBG-TSC, as long as the pairing
preserves spin-SU(2), valley-U(1), time-reversal, C2zT , and
P symmetries. The spin and valley remain good quantum
numbers in the superconducting phase.

We use a Dirac theory to demonstrate that TBG-TSC has
higher-order topology. A d-dimensional higher-order topo-
logical insulator has gapless modes in d − 2 dimensions or
lower [98–123]. When pairing is present these gapless modes
may be Majorana, studied, for example, in Refs. [115–119,
124–160]. The eight Dirac cones in TBG are gapped with
spin-singlet or spin-triplet pairing introduced via proximity
to a superconductor. Each valley yields four gapped Dirac
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cones in the nonredundant Bogoliubov–de Gennes (BdG) ba-
sis. Within a single valley, domain walls (in the C2x-invariant
direction) capture two helical modes and corners bind two
complex fermion zero modes (or four Majoranas) per valley.
The four total fermionic corner modes are globally pro-
tected by valley-U(1),C2zT,P, and a chiral symmetry S that
emerges as a result of time-reversal symmetry. The zero-
energy states are pinned to Ci

3zC2xC
−i
3z -invariant (i = 0, 1, 2)

corners of the system.
We verify the corner modes numerically. We also demon-

strate at the level of free fermions that C2x-symmetric
edges are gapless. In the Supplemental Material (see, also
Refs. [161–170] therein) we show interactions can gap out
the zero modes. Finally, we conclude with an experimental
setup to detect TBG-TSC, namely, observing the fractional
Josephson effect.

II. DIRAC THEORY

TBG obeys spin-SU(2) and valley-U(1) symmetries [171].
The first originates from the negligible spin-orbit coupling
of graphene and the second emerges at small twist angle of
TBG. The valley-U(1) symmetry splits the Hamiltonian into
two sectors, denoted by η = ±1 [1]. Because our pairing is
intervalley, valley-U(1) is still preserved. Valley-U(1) symme-
try is critical; without it TBG is not anomalous. We expect
that if the domain wall is smooth over the lengthscale of the
graphene lattice but sharp over the Moiré lattice, valley-U(1)
is still a good symmetry [172].

The low-energy physics of TBG is described by four Dirac
points for each spin s:

H (s)
0 (k) = μ0(kxτzσx + kyτ0σy), (1)

where τ0,z are Pauli matrices representing the two valleys
and μ0, σx,z are Pauli matrices denoting the Moiré valley
(KM and K ′

M) and sublattice, respectively. Enforcing spin
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TABLE I. Table of symmetries in TBG along with their actions
on H (the free Hamiltonian of TBG) and H (the BdG Hamiltonian
of TBG for both valleys) low-energy degrees of freedom. The P
symmetry only emerges at charge neutrality and will disappear if
the chemical potential moves away and S only exists for the BdG
Hamiltonian.

Symmetry Action on H Action on H k → KM �M MM

C2x μxσx μxσx C2xk K ′
M �M MM

C3z e
i2π

3 τzσz e
i2π
3 τzσz C3zk KM �M C3zMM

C2zT σxK σxK k KM �M MM

T τxμxK τxμxK −k K ′
M �M MM

P iμyσxK iξzμyσxK −k K ′
M �M MM

S - ξy k KM �M MM

rotation forces H (↑)
0 = H (↓)

0 , so we drop the spin index. This
Hamiltonian respects the discrete symmetries: T (spinless
time-reversal), P (approximate antiunitary particle-hole), C2z,
C3z, and C2x, where T and P are antiunitary and satisfy
T 2 = 1, P2 = −1. The representations of the discrete sym-
metries for this Dirac theory are summarized in Table I. All
the discrete symmetries commute with the valley-U(1) and
spin-SU(2) rotations and they also commute with each other
except for {P,C2x} = 0, C3zC2x = C2xC

−1
3z . Each valley and

spin sector has a magnetic space group generated by C2zT ,
C3z, C2x, and P [51,96]. The anomaly of the single-valley
Hamiltonian H (η)

0 , defined as the block of H0 with τz = η, is
reflected as the fact that one cannot gap H (η)

0 by adding terms
preserving C2zT and P symmetries. Breaking the valley-U(1)
symmetry will remove this anomaly.

P corresponds to a charge-conjugation symmetry Pc of the
many-body flat-band Hamiltonian of TBG [173]. Pc has the
same representation matrix as P except that it is unitary and
transforms annihilation operators to creation operators (and
vise versa)

Pcck,η,ν,α,sP−1
c =

∑
ν ′β

c†
−k,η,ν ′,β,s[iμy]ν ′ν[σx]βα, (2)

where ν, ν ′ represent the Moiré valley, α, β represent the
sublattice, and s represents spin. In this work, we regard Pc as
a physical symmetry and {P, H} = 0 as a constraint satisfied
by the single-particle Hamiltonian imposed by Pc. (See the
SM and Ref. [173] for detailed discussions on the relation
between P and Pc.)

We now show that the BdG Hamiltonian of TBG in each
valley sector is in Altland-Zirnbauer symmetry class CII,
which is equipped with a chiral symmetry S, a particle-hole
symmetry P , and an emergent “time-reversal” T̃ = SP satis-
fying P2 = T̃ 2 = −1. Intervalley spin-singlet pairing, which
creates one fermion in each valley and thus preserves the total
valley number, takes the form

�
(η)
να;ν ′β (k)c†

k,η,ν,α,↑c†
−k,−η,−ν ′,β,↓ + H.c.. (3)

The pairing term pairs opposite Moiré valley. Switching into
the nonredundant BdG basis

(ck,η,ν,α,↑ · · · c†
−k,−η,−ν ′,α′,↓ · · · )T , (4)

yields the BdG Hamiltonian

H(η)(k) =
[

H (η)
0 (k) − EF �(η)(k)
�(η)†(k) −μxH (−η)T

0 (−k)μx + EF

]
,

(5)

with H (η)
0 (k) being the hopping Hamiltonian projected into

the valley τz = η of TBG (not spin) and EF the chemical po-
tential. Then T = τxμxK and spin-SU(2) constrains the form
of the pairing and hopping Hamiltonians to satisfy

H (η)
0 (k) = μxH (−η)∗

0 (−k)μx, �(η)(k) = �(η)†(k), (6)

which yields the BdG Hamiltonian

H(η)(k) = (H (η)
0 (k) − EF )ξz + �(η)(k)ξx. (7)

We use the Pauli matrices ξz,x for particle-hole space. We
focus on the positive valley η = +1. In the BdG basis Eq. (4),
spinful time-reversal T = iŝyT (with ŝy the spin operator cor-
responding to y) transforms the BdG spinor as

(ck,η,ν,α,↑ · · · c†
−k,−η,−ν ′,α′,↓ · · · )T

→ (c−k,−η,−ν,α,↓ · · · − c†
k,η,ν ′,α′,↑ · · · )T

= iξy(c†
k,η,ν,α,↑ · · · c−k,−η,−ν ′,α′,↓ · · · )T , (8)

which corresponds to a unitary operator iξy accompanied by
a particle-hole exchange. This is the anticommuting chiral
symmetry S = ξy (the i can be gauged away as typically
chiral symmetry is chosen to square to +1.) See the SM for a
microscopic derivation of the chiral symmetry S and particle-
hole P .

We consider the simplest spin-singlet pairing: �(+)
να;ν ′β (k) =

�δν,ν ′δαβ , � real, i.e.,

H(+)(k) = ξzμ0(kxσx + kyσy) − EF ξzμ0σ0 + �ξxμ0σ0.

(9)

As detailed in the SM, such a pairing term corresponds to a
homogeneous on-site spin-singlet pairing introduced at each
carbon atom in TBG. This spin-singlet pairing commutes with
the symmetry operators T , C2zT , C3z, C2x. It also anticom-
mutes with Pc. (See the SM for detailed discussions on the
form of P in the BdG formalism.) We hence identify the
equivalent symmetry class of the BdG Hamiltonian in each
valley as CII because in the BdG formalism P2 = −1 and
T̃ 2 = (SP )2 = −1. The symmetries of Eq. (9) are summa-
rized in Table I.

Equation (9) is fully gapped in the bulk and there is a
symmetric copy of this Hamiltonian in the other valley (η =
−), obtained by applying spinless T to Eq. (9). There are no
independent copies in the other spin sector (s =↓) because we
already included them in the nonredundant BdG basis. See
Fig. 1 for an illustration of the pairing gap.

III. EDGE HAMILTONIAN AND CORNER STATES

In this section we explicitly demonstrate the existence of
edge states and corner states bound to domain walls of pairing
terms with phase difference π . We restrict ourselves to the
valley sector η = +. Consider a domain wall perpendicular to
the x axis: �(x)ξx, where �(x) = �0 for x > 0 and −�0 for
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FIG. 1. TBG possesses four Dirac cones per graphene valley
(eight total), which we hybridize with spin-singlet (and later spin-
triplet) pairing. The four cones per graphene valley can be labeled
by spin and Moiré valley. Pairing between opposite spin, valley, and
Moiré valley drives us into the topological phase.

x < 0, see Fig. 2(a). As ky is a good quantum number we
expect the states localized in the x direction and propagating
along y. As expected for Dirac fermions under a mass change,
we find four gapless edge modes per valley (two chiral and
two antichiral); their particle-hole, Moiré valley, and sublat-
tice indices are given by {ξy, μz, σx} = {1, 1, 1}, {1,−1, 1},
{−1, 1,−1}, {−1,−1,−1}, respectively. The projected
Hamiltonian (performed in the SM) on the edge modes is

H edge(ky) = kyξ
′
yμ0. (10)

Here ξ ′
y and μ0 are Pauli matrices acting on the projected

low-energy Hilbert space defined on the domain wall. The
projected chiral, particle-hole, and C2x symmetries are
Sedge = ξ ′

zμ0, Pedge = iξ ′
zμyK , Cedge

2x = ξ ′
zμx, respectively.

The only homogeneous gap term (anticommuting with the
Hamiltonian) that is allowed by S and P is ξ ′

xμ0; however,
this breaks C2x. Therefore, TBG-TSC has protected gapless
edge states on the pairing domain walls in the y-direction. The
number of edge solutions is doubled due to the other valley
(η = −1). Because we used the nonredundant BdG basis, the

zero-mode solutions for the corner states are not Majoranas,
but complex fermions.

Consider breaking translation symmetry along y, for ex-
ample, with the circular geometry in Fig. 2(b). The S-
and P-symmetric gap term M1(y)ξ ′

xμ0 is now allowed but
must change sign under y → −y to preserve C2x, M1(y) =
−M1(−y). The zero of M1(y) at y = 0 leads to two Jackiw-
Rebbi complex fermion zero modes (per valley), as derived
in the SM. We find that the two complex fermion zero modes
in each valley have the same chiral eigenvalue +1 and thus
are robust against arbitrary perturbations respecting the chiral
symmetry [174]. The two zero modes must be located at the
same position in real space because of P — since P is a local
operator and satisfies P2 = −1, due to Kramers theorem, it
must transform one fermionic zero mode to another at the
same position. We call such a pair of fermionic zero modes
a Kramers doublet. Breaking P slightly will not annihilate
the doublets, but shift them in position. Due to the C3z and
C2zT symmetries, zero modes also appear at other points
in the sample, as shown in Fig. 2. Since [C3z, S] = 0 and
{C2zT, S} = 0, zero modes at the third and fifth corners, which
are, respectively, rotated from the first corner by C3z and
C−1

3z , have the chiral eigenvalue +1; whereas zero modes at
the second, fourth, and sixth corners, which are, respectively,
rotated from the fifth, first, third corners by C2zT , have the
chiral eigenvalue −1. The other valley has opposite chiral
eigenvalues. In short, both P and S protect the zero modes
from splitting, while S also keeps the zero modes at 0 energy.

We numerically confirmed the existence of edge states and
corner states using the BM model of TBG plus a spin-singlet
pairing in the SM. The evolution of the corner modes (Fig. 2)
under the P breaking term, chosen the chemical potential, is
also observed.

In order for two corner states to annihilate they must carry
opposite chiral eigenvalues; thus we require a doublet of S =
+1 and another doublet of S = −1 to come together. C2zT will

FIG. 2. (a) Edge states in TBG-TSC. The top panel is an edge along the y direction. If we assume translation symmetry, then C2x will
conspire to keep the band structure gapless (neglecting interactions). On the other hand, a domain wall along the x direction will be generically
be gapped even with free fermions. (b) Schematic of TBG-TSC. Corner modes (indicated by stars) are protected by TRS and are captured
along domain walls between regions separating superconductors with phases φ = 0, π . In the presence of reflection symmetry these corner
modes are pinned to C2x-invariant points and are mapped onto other zero modes via C3z and C2zT . For weak P-breaking perturbations (i.e.,
adding V ξz) these corner modes shift to points ±y0; for strong P-breaking perturbations they annihilate with their partners. (c) Magnetic flux
piercing TBG-TSC. If the flux pierces the C2z center of the system we find four Majorana zero modes per valley (eight total) bound to the
vortex. Shifting away from the center causes splitting between the modes. See the SM for detailed calculations.
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reflect these zero-energy states to the opposite corner, giving
a total of four doublets per valley required to annihilate the
topology completely. Since our system has six doublets per
valley (enforced by C3z symmetry), we cannot fully annihilate
every corner and thus our system is topological.

The authors of Ref. [64] found that only four types of
pairings in TBG lead to full gaps in the Bogoliubov bands:
the pairings that carry D6 irreps A1, A2, B1, B2. In the SM we
analyze all four cases and find that A2, B2 are trivial and A1, B1

are topological.

IV. INTERACTIONS

We proved the existence of zero-energy corner modes
under the appropriate symmetries at the free fermion level.
Adding interactions, however, may gap the many-body spec-
trum, complicating detection. In the Supplemental Material,
we study the effects of symmetry-preserving interactions on
the corner states, showing that symmetric interactions may
fully remove the degeneracy afforded at the single-particle
level when four corner modes interact. We also perform a
similar calculation but with the C2x-gapless edge and study
the effects of interactions via bosonization. We find that the
edge is gapped under repulsive interactions.

V. EXPERIMENTAL DETECTION

TBG-TSC yields a fascinating assortment of experimental
signatures. At the free fermion level, altering the chemical po-
tential (e.g., by adjusting gate voltage) will shift the location
of the corner states because of the breaking of P . The corner
modes remain at zero energy over a finite range of voltages
until they annihilate one another, as shown in Fig. 2(b) and
proven in the SM. Along C2x-invariant edges, the edge states
remain gapless and thus may offer scanning tunneling micro-
scope (STM) signatures [175]. As illustrated in Fig. 2(c) and
detailed in the SM, zero modes also appear at the center of
vortices of the pairing order parameter. However, interactions
complicate the detection of the gapless states and edges; as
the symmetry-preserving interactions can gap the corner states
and gapless edges.

We propose a further setup to detect the higher-order
topology with interactions: the fractional Josephson effect
[176–183]. Figure 3 shows a sheet of TBG-TSC hybridized to
a Josephson junction between two superconductors. At phase
difference φ = π , the four complex fermion corner modes �as

exist at zero energy (at the level of free fermions). Changing
the chemical potential will shift them in location, but so long
as the symmetry breaking is not too large the zero modes
are stable. Changing the phase difference away from φ = π

allows the corner states to shift away from zero energy. We
will denote these states as �as[φ] and they are in-gap states;
close to φ = π they are smaller than the gap but they are not
pinned at E = 0.

We prove in the SM that single-particle spectrum appears
as Fig. 3(b). Each in-gap mode �as[φ] carries valley number
+1. A pumping cycle that winds φ by 2π will begin in the
ground state, with all negative energies unoccupied, and end
up occupying positive energy states which all carry valley
number +1. At the level of free fermions, valley-U (1) is a

(a) (b)

FIG. 3. Josephson junction for TBG-TSC. In (a) we apply a
chemical potential via gate to shift the pairs of corner modes 1,2
away from one another. At φ = π , four total complex fermion cor-
ner modes (at the free fermion level) are pinned to zero energy
and breaking P shifts the two pairs of two complex fermions in
space. Varying the superconducting phase away from π will allow
the corner modes to shift from zero energy, as depicted in (b), the
single-particle spectrum (at finite chemical potential) for �1↑. There
is an identical copy of the spectrum for the opposite spin sector �1↓
and doubled again for the other pair of in-gap modes �2s, though
since that is separated in space we will not consider it. In (c) the
multiparticle states involved in the ground-state evolution are plotted.
See SM for an in-depth discussion.

good symmetry, and so no matter how many times we wind
φ, the valley number continues to increase with no chance of
mapping back to the ground state. The Josephson junction is
aperiodic.

So long as valley-U(1) is conserved, there is no way for the
multiparticle ground state to return to its original form, as each
winding changes the valley number. However, as the 3K = 0
modulo reciprocal lattice vectors, Umklapp scattering reduces
the valley-U(1) to a Z3 symmetry. The many-body spectrum
avoids as in Fig. 3(c), resulting in a Z3 fractional Josephson
effect. (See the SM for more details.)

VI. CONCLUSION AND DISCUSSION

We showed that proximitizing twisted-bilayer graphene
with A1 spin-singlet (or B1 spin-triplet) superconductivity
must yield a higher-order topological superconductor. This
fate of TBG in pairing is a result of the anomaly guaranteed by
approximate particle-hole symmetry and C2zT . We explicitly
demonstrated the topological phase and proved its existence
with the Wilson loop formalism (see SM), and concluded with
possible experimental signatures of the zero modes, including
an exotic Z3 fractional Josephson effect.

Our work begs the question if other heterostructures can
exploit the anomalous structure of TBG to yield even more
exotic topological phases; for example, by using ferromagnets
or quantum Hall systems.

We also conjecture that introducing superconductivity into
the recently realized mirror symmetric magic-angle twisted
trilayer graphene (MATTG) [184] also leads to topological
superconductivity because in MATTG a single valley has an
odd number of Dirac points protected by C2zT , which is also
anomalous and usually only appears as the surface state of the
axion insulator.
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