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We present an inelastic neutron scattering study of liquid and solid hydrogen carried out using the wide Angu-
lar Range Chopper Spectrometer at Oak Ridge National Laboratory. From the observed dynamic structure factor,
we obtained empirical estimates of the molecular mean-squared displacement and average translational kinetic
energy. We find that the former quantity increases with temperature, indicating that a combination of thermal and
quantum effects is important near the liquid-solid phase transition, contrary to previous measurements. We also
find that the kinetic energy drops dramatically on melting of the crystals, a consequence of the large increase
in molar volume together with the Heisenberg indeterminacy principle. Our results are compared with quantum
Monte Carlo simulations based on different model potentials. In general, there is good agreement between our
findings and theoretical predictions based on the Silvera-Goldman and Buck potentials.
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I. INTRODUCTION

The condensed phases of molecular hydrogen are sys-
tems of fundamental interest to quantum many-body physics.
Due to their light mass, the zero-point motion of hydrogen
molecules makes a significant contribution to the atomic-scale
structure and dynamics of liquid and solid hydrogen. The im-
portance of quantum-mechanical effects places the condensed
phases of molecular hydrogen in a position between classical
substances, on the one hand, and highly degenerate quantum
fluids and solids, on the other [1]. Current scientific interest
in hydrogen encompasses a broad range of topics, including
molecular superfluidity [2–4], hydrogen storage materials [5],
planetary science [6], and thermonuclear fusion [7,8]. More
generally, nuclear quantum effects are significant in materials
comprised of light atoms [9] and in hydrogen-bonding sub-
stances [10,11].

Despite its basic role in condensed hydrogen, the molecular
momentum distribution is not fully understood at present.
Several groups have carried out inelastic neutron scattering
measurements of the average molecular kinetic energy 〈EK〉
of liquid parahydrogen [12–16]. Unfortunately, experiments
performed with the TOSCA [13,14] and MARI [15] spec-
trometers yield conflicting values for average kinetic energy
in the liquid state. In particular, at 16.5 K, the former groups
finds that 〈EK 〉 is 60.3(6) K, whereas the latter group obtains a
value of 67.8(3) K. Recent quantum Monte Carlo simulations
of liquid parahydrogen, built on different model pair poten-

*Current address: Lawrence Livermore National Laboratory, Liver-
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tials, yield similarly conflicting predictions for 〈EK 〉 [17]. The
discrepancy between the empirical estimates of 〈EK 〉 makes
the choice between available microscopic models of the liquid
an ambiguous one. This situation sharply contrasts with 4He,
where the momentum distribution can be predicted to a high
degree of accuracy [18].

Another area of significant disagreement between inelas-
tic neutron scattering experiments and quantum Monte Carlo
simulations concerns the relative importance of quantum and
thermal effects in the liquid-solid phase transition of hydro-
gen [19,20]. Fernandez-Alonso et al. examined the lowest
rotational transition of solid hydrogen by means of the IN20
spectrometer. They obtained a temperature independent value
for the molecular mean-squared displacement 〈u2〉 of 0.56 Å2.
On that basis, they concluded that thermal effects play a neg-
ligible role in the hcp solid and that its properties are wholly
dominated by quantum-mechanical effects. In contrast, quan-
tum Monte Carlo calculations predict that 〈u2〉 increases from
0.519(2) Å2 to 0.622(2) Å2 as the temperature is increased
from 4 K to 13.8 K. This suggests that a combination of
quantum and thermal effects is at play near the liquid-solid
phase transition.

In this paper, we present an inelastic neutron scattering
study of liquid and solid hydrogen under saturated vapor pres-
sure. In particular, we report high-precision measurements
of the molecular mean-squared displacement and average
translational kinetic energy. The experiment was performed
using the wide Angular Range Chopper Spectrometer at
Oak Ridge National Laboratory. Empirical estimates of the
molecular mean-squared displacement were obtained from the
wave-vector dependence of the first rotational state transition.
The momentum distribution of the hydrogen molecules was
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inferred from recoil scattering via the impulse approximation.
As shown in detail below, we find good agreement between
the new observations and quantum Monte Carlo simulations
based on the Silvera-Goldman and Buck potentials.

For convenience, we introduce the following notation to
refer to transitions between the rotational states of molecular
hydrogen. We write (J, J ′) to refer to a transition where J
and J ′ are the initial and final rotational quantum numbers,
respectively. Throughout, the hydrogen molecules remain in
their electronic and vibrational ground states.

II. EXPERIMENTAL APPROACH

A. Wide Angular Range Chopper Spectrometer

We carried out an inelastic neutron scattering study of liq-
uid and solid hydrogen under saturated vapor pressure using
the wide Angular Range Chopper Spectrometer (ARCS) at
the Spallation Neutron Source [21,22]. This instrument is a
direct geometry, time-of-flight spectrometer. Incident neutron
energies between 15 and 5000 meV are available from the
decoupled poisoned water moderator. A T0 chopper blocks
prompt radiation released by the target during spallation. The
incident neutron energy is chosen via time-of-flight by a Fermi
chopper located before the sample. The secondary spectrome-
ter consists of a cylindrical bank of 920 position sensitive 3He
detectors spanning −28◦ to +135◦ in the horizontal plane.
There are two low efficiency beam monitors, one located after
the Fermi chopper and another located just before the beam
stop. The beam profile observed at these monitors is used
to determine the incident neutron energy Ei and moderator
emission time.

Measurements were carried out at each experimental con-
dition using 30 meV (λ = 1.65 Å−1) and 500 meV (λ =
0.404 Å−1) incident neutrons. The 30 meV data sets reported
in this paper were acquired with either 834 or 1668 µA hrs of
proton charge delivered to the target, whereas the 500 meV
data sets correspond to 3330 µA hrs. For the Ei = 30 meV
measurements, we ran a Fermi chopper that nominally pos-
sessed 1.52 mm slit thickness, 0.35 slat thickness, a 50 mm
radius, and a blade curvature of 0.580 m. This Fermi chopper
was set to a frequency of 300 Hz, and the T0 chopper was
operated at 90 Hz. For the Ei = 500 meV measurements, we
employed a Fermi chopper with nominal 0.51 mm slit thick-
ness, 0.35 mm slat thickness, a 50 mm radius, and a blade
curvature of 1.535 m. However, as the slit package for the
500 meV measurements is rather tight, manufacturing uncer-
tainties imply the effective slit thickness is finer than designed.
Ray-tracing Monte Carlo simulations, discussed further in the
next section, suggest that the effective slit width is 0.192 mm.
This chopper frequency was set to 480 Hz, while the T0

frequency was set to 120 Hz. The chopper frequencies were
chosen to maximize the incident neutron flux at the desired
incident energies.

The sample environment chosen for this experiment was a
closed-cycle refrigerator with aluminum tails. Research-grade
hydrogen was loaded in situ to the sample cell from a gas
handling system. This system includes a refrigerated vessel
containing a chromium oxide catalyst, allowing cooled gas
to undergo ortho to para conversion before being loaded. We

employed an aluminum plate cell that was oriented at thirty
degrees relative to the incident beam. The sample space was
71 mm wide, 50 mm tall, and 0.508 mm deep. A pocket
below the sample space contained a Cr(II) oxide catalyst
[23], and this catalyst was in continuous contact with the
condensed hydrogen during the experiment. The temperature
of the condensed hydrogen sample was inferred from the
observed vapor pressure using the expression given by Souers
et al. [24].

The history of the condensed hydrogen sample is as fol-
lows. Immediately after loading hydrogen to the cell, we
cooled the sample to 5.0 K and conducted neutron scatter-
ing measurements. We found that the initial mole fraction
of parahydrogen within the sample was 89.41(6)%. We sub-
sequently melted the hydrogen sample and allowed it to
equilibrate with the chromium oxide catalyst contained in the
sample cell for approximately thirteen hours. The resulting
parahydrogen concentration was 99.70(2)%. These concentra-
tions were inferred from the relative intensities of the (0, 1)
and (1, 0) peaks, as described below. Measurements were
then carried out in the following order: 12.7, 10.0, 8.4, 5.0,
and 16.5 K. Both incident energies were employed before
changing temperature. The scattering from the empty cell and
sample environment was measured at 15 K.

The double-differential scattering cross section was trans-
formed to the dynamic structure factor by means of
Mantid [25] and the Data Analysis and Visualization
Environment [26].

B. Instrumental resolution

In order to obtain accurate empirical estimates of 〈EK 〉, it
is necessary to account for the effects of instrumental resolu-
tion on the observed dynamic structure factor. At a spallation
neutron source, the resolution function of a Fermi chopper
spectrometer is determined by the velocity-time distribution
of the source and the response functions of the various in-
strument components, and consequently it may assume an
asymmetric form [27]. In this case, the observed peaks are
significantly broader than the instrumental resolution func-
tion, making the detailed lineshape of the latter unimportant
for present purposes.

Therefore, for the Ei = 500 meV measurements, we adopt
a Gaussian approximation, according to which the moderator
pulse width, Fermi chopper pulse width, and detector time
uncertainty combine in quadrature to determine the energy
resolution [28,29]. We obtained a moderator pulse width of
3.095 µs from Monte Carlo N-Particle Transport Code System
(MCNPX) simulations of the decoupled water moderator [30].
The observed profile width in the first beam monitor, namely
3.19 µs, was taken as an estimate of chopper pulse width. The
detector time uncertainty is given by the width of a detector
divided by the neutron final velocity. The calculated resolution
width decreases from 15.5 meV at E = 0 to 4.8 meV at
E = 400 meV.

We performed a ray-tracing Monte Carlo simulation of the
ARCS instrument with the McStas software suite [31–33].
For Ei = 30 meV, we found excellent agreement between the
simulated and observed monitor spectra with no modification
of the instrument parameters from their nominal values. We
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furthermore found the simulation correctly reproduced the
elastic resolution function determined by measurements of a
vanadium plate. For Ei = 500 meV, excellent agreement be-
tween simulated and observed monitor spectra was found after
refining the value of the effective Fermi chopper slit width.
Because the primary spectrometer functions analogously to a
pinhole camera, where the Fermi chopper acts as the pinhole,
the second monitor is especially sensitive to the description of
the moderator. Thus, the outcome of the simulations confirms
that the MCNPX description of the moderator is valid, and
that the moderator pulse width used in our resolution calcula-
tions is correct.

C. Multiple scattering

The sample geometry was chosen to minimize the amount
of multiple scattering. Ideally, one would like each neutron
to interact once with the sample before reaching the de-
tector. However, in practice, neutrons can undergo several
scattering events within the sample, and, for these neu-
trons, the simple relationship between the double-differential
scattering cross section and the dynamic structure factor
is lost.

Multiple scattering is expected to be negligible here given
the macroscopic scattering cross section of the condensed hy-
drogen and the geometry of the sample cell. The total neutron
scattering cross section of liquid hydrogen at Ei = 500 meV is
approximately 44 barns/molecule [34]. At 16.5 K, the number
density of liquid hydrogen is 0.0223 Å−3 [7]. Accordingly,
the macroscopic scattering cross section is 0.981 cm−1 and
the neutron mean free path is 1.019 cm. Given that the plate
cell had a thickness of 0.508 mm and was oriented at 30◦
relative to the incident beam, the fraction of scattered neutrons
is approximately 5.6%.

III. RESULTS

A. Dynamic structure factor

We first consider the dynamic structure factor obtained
with a 30 meV incident neutron energy. Figure 1(a) illustrates
S(Q, E ) of the initial solid hydrogen sample. Along the elas-
tic line (E = 0), one observes elastic incoherent scattering
from orthohydrogen as well as Bragg reflections of the hcp
crystal. We did not employ a radial collimator in this experi-
ment, and so there is imperfect subtraction of the background
signal originating from the aluminum tails of the closed-
cycle refrigerator. Between 0 and +15 meV, one observes the
phonon density of states, which peaks near +5 meV [35].
The (0, 1) transition appears as a sharp peak near +15 meV.
Beyond the rotational transition, there are combinations of
this transition with lattice vibrations, and these exhibit a local
maximum near +20 meV. At −15 meV, one sees upscattering
due to the (1, 0) rotational transition. Lastly, combinations
of that rotational transition with lattice vibrations peak near
−10 meV.

In Fig. 1(b), we display the dynamic structure of the hydro-
gen sample after equilibration with the catalyst contained in
the sample cell. The upscattering signal and elastic incoherent
scattering have nearly, though not completely, disappeared.
Along the elastic line, the (110), (101), (110), (201), and (004)

FIG. 1. The dynamic structure factor of solid and liquid hydro-
gen obtained with a 30 meV incident neutron energy: (a) the solid
phase with Xpara = 89.41(6)% at T = 5 K; (b) the solid phase with
Xpara = 99.70(2)%; and (c) the liquid phase at 16.5 K.

Bragg reflections are clearly seen. The (002), (102), (200), and
(112) peaks are expected to have low intensity, and they are
not found. The (103) peak is expected to be observed, but it
appears to be obscured by the background. We cannot judge
whether the sample is polycrystalline or a “true” powder on
the basis of the diffraction pattern. In panel (a), the observed
signal from the phonon density of states consists of incoherent
inelastic scattering from orthohydrogen and coherent inelastic
scattering from parahydrogen. In panel (b), the signal orig-
inates from coherent inelastic scattering from parahydrogen
alone.

The dynamic structure factor of the liquid at 16.5 K is
shown in Fig. 1. Here one observes coherent quasielastic scat-
tering and the collective excitations of the liquid state [36,37].
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FIG. 2. The dynamic structure factor of solid hydrogen obtained
with a 500 meV incident neutron energy. In panel (a), S(Q, E ) is
shown on a linear intensity scale for Xpara = 99.70(2)% at T = 5 K.
In panel (b), the same data is shown on a logarithmic intensity scale.
The dashed line indicates the molecular recoil dispersion, and the
solid lines indicate the dispersions of the (0, 1), (0, 2), (0, 3), (0, 4),
(0, 5), and (0, 6) transitions.

The (0, 1) transition is no longer sharply defined, but in-
stead blends smoothly and continuously with the multiphonon
spectrum. It is apparently broadened by translational diffu-
sion, which has a quasielastic width on the order of a few
meV [38].

We now turn to measurements obtained with 500 meV
incident neutrons. Figure 2(a) displays the dynamic structure
factor of solid hydrogen at 5 K. Panel (b) shows the same
data on a logarithmic intensity scale, where the superimposed
dashed line represents free molecular recoil: ER = h̄2Q2/2m.
The recoil line is split by the internal rotational transitions of
the molecule. Most prominent in the spectrum are the (0, 1),
(0, 3), (0, 5) transitions.

B. Ortho-para concentrations

The concentration Xp of parahydrogen within the sample
may be inferred from the relative intensities of the (0, 1) and
(1, 0) transitions. To first order, the integrated intensities of

these peaks are given by the following expressions [39–41]:

A01 = Np 3σi j2
1 (Qa)e−2Wp,

A10 = No,
1
3σi j2

1 (Qa)e−2Wo.

Here Np and No are the number of parahydrogen and or-
thohydrogen molecules; σi is the incoherent scattering cross
section of atomic hydrogen; jn is a spherical Bessel func-
tion of order n; a = 0.3707 Å is the radius of gyration of
the hydrogen molecule; and e−2Wp and e−2Wo are the Debye-
Waller factors of para- and orthohydrogen. If one assumes
that the Debye-Waller factors for the two species are identical,
then it follows that the concentration of parahydrogen is the
following:

Xp = Np

Np + No
= A01

A01 + 9A10
. (1)

To extract the peak intensities, A01 and A01, we first integrated
the dynamic structure factor over Q to obtain the inelastic scat-
tering function S(E ). Figure 3 compares the observed S(E ) of
the sample immediately after condensation and of the sample
after equilibration with the catalyst. To obtain the integrated
intensities of the (0, 1) and (1,0) peaks, we represented them
by an asymmetric double sigmoidal function f (E ), and the
remaining scattering by a Gaussian:

f (E ) = fS · 1

1 + e−(E−Ec )/w

(
1 − 1

1 + e−(E−Ec )/w′

)
. (2)

Here fS is a scale factor, EC is the “center” of the peak, and
w and w′ are constants that control the shape of the peak.
After obtaining this parameterized description of the peak, we
obtained their intensities by numerical integration, as we have
not found a closed, analytic expression for an integral over
this peak shape.

IV. DISCUSSION

A. Empirical estimates of 〈u2〉
We now consider the molecular mean-squared displace-

ment of our solid hydrogen sample. As discussed in the
preceding section, the integrated intensity of the first rota-
tional transition is proportional to the product of a rotational
form factor and a Debye-Waller factor. Here we retain the
series expansion of the form factor up to fifth order [39,40]:

A01(Q) = S′ · (
3 j2

1 (Qa) + 7 j2
3 (Qa) + 11 j2

5 (Qa)
)

× exp

[
− Q2〈u2〉

3
(1 − αQ2)

]
. (3)

S′ is an overall scale factor and α is an anharmonic coefficient.
When fitting the integrated intensity versus Q, the adjustable
parameters are S′, 〈u2〉, and α.

If the crystal were perfectly harmonic, then the molecu-
lar displacements would follow a Gaussian distribution. The
Debye-Waller factor would be Gaussian in Q and the coeffi-
cient α would be identically zero. However, solid hydrogen
is strongly anharmonic as

√
〈u2〉 is a significant fraction of

the nearest-neighbor distance. In this case, the Debye-Waller
factor can be represented via a cumulant expansion, and we
have retained terms up to O(Q4).
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FIG. 3. The inelastic scattering function S(E ) of solid hydrogen
near the (a) (0, 1) transition and the (b) (1, 0) transition. Data from
the initial (final) sample is shown as closed (open) circles. Fits,
described in the text, are shown as solid curves. The data in both
panels have been scaled so that the maxima in (a) occur at 100
arbitrary units. Where not visible, error bars are smaller than symbol
sizes.

The values of 〈u2〉 and α in the solid phase were obtained
from the first rotational transition as follows. Figure 4(a)
plots S(Q, E ) at Q = 2.5 Å−1 and T = 12.7 K. The scattering
has been fit to the asymmetric double sigmoidal function,
given in Eq. (2), and a cubic polynomial. Figure 4(b) plots
the integrated intensities as a function of wave vector for
this same temperature. To obtain empirical estimates of 〈u2〉
and α, we first carried out a nonlinear least-squares fit of
A(Q) according to Eq. (3). Unfortunately, all three adjustable
parameters are strongly correlated with one another. We then
employed the differential evolution algorithm [42] with a 5%
χ2 tolerance, and took the respective pointwise errors to rep-
resent the uncertainties on the adjustable parameters.

Table I compiles our empirical estimates of 〈u2〉 and α. We
find that molecular mobility and anharmonicity grow with in-

FIG. 4. (a) The dynamic structure factor S(Q, E ) of solid hydro-
gen at Q = 2.5 Å−1 and T = 12.7 K. (b) The integrated intensity of
the first rotational transition at the same temperature as a function of
wave-vector transfer.

creasing temperature. Moreover, both quantities are the same
for the initial and equilibriated solid samples, at least within
experimental precision. No values could be obtained for the
liquid phase because the (0, 1) transition does not appear
as a sharp peak, but instead merges continuously with the
multiphonon spectrum.

TABLE I. Summary of present results.

T [K] n (Å−3) 〈u2〉 (Å2) α (×10−3 Å2) δ 〈EK 〉 (K)

5.0 0.0261 0.479(5) 1.09(10) 0.183 70.9 ± 1.2
8.4 0.0261 0.495(5) 1.38(13) 0.186 70.4 ± 1.0
10.0 0.0260 0.505(5) 1.47(10) 0.188 70.5 ± 1.2
12.7 0.0259 0.536(5) 1.68(11) 0.193 71.0 ± 1.3
16.5 0.0223 – – – 61.5 ± 1.5
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FIG. 5. Theoretical and empirical estimates of the molecular
mean-squared displacement of solid parahydrogen. Symbol designa-
tions: ARCS result for Xpara = 99.70(2)% (closed circle); triple-axis
measurement [43] (open circle); phonon density of states [35] (open
squares); IN20 measurement [19] (open diamonds); quantum Monte
Carlo simulation [20] (red triangles). Solid lines are guides to the eye.
The dashed vertical line indicates the liquid-solid phase transition at
13.8 K.

Theoretical and experimental values for 〈u2〉 of solid hy-
drogen under saturated vapor pressure are shown in Fig. 5.
The ARCS data set stands in excellent agreement with the pre-
vious triple-axis measurement of Nielsen [43] and with values
inferred from the phonon density of states [35]. On the other
hand, our results are at variance with the IN20 experiment
[19], where 〈u2〉 was found to possess a temperature indepen-
dent value of 0.56 Å2. Quantum Monte Carlo simulations [20]
are in semiquantitative agreement with experiment: the theory
predicts the correct behavior with temperature, although there
is an overall shift to larger values of 〈u2〉.

We here define the Lindemann ratio δ =
√

〈u2〉/a, where
a is the so-named lattice parameter of the hcp unit cell. This
quantity characterizes molecular mobility relative to the size
of the crystal unit cell. Employing the lattice parameters found
by Krupskii et al . [44], we find that δ increases from 0.183 to
0.193 as the temperature is increased from 5 to 12.7 K. This
suggests that both thermal and quantum effects play roles in
the liquid-solid phase transition of molecular hydrogen.

B. Empirical estimates of 〈EK〉
At high energies, the dynamic structure factor of liquid and

solid hydrogen consists of the molecular recoil dispersion,
though split by internal rotational transitions [12]. This can
be seen in Figs. 2 and 6. Ideally, one would like to determine
the position, intensity, and lineshapes of the peaks contained
in the spectrum wholly empirically. Despite the quality of the
data (<2% statistical noise and <15 meV energy resolution),
this cannot be done, as the peaks are broad and overlapping.
Therefore, it is necessary to adopt a priori assumptions in
the data analysis, and our empirical estimates of the average

molecular kinetic energy will be valid to the extent that these
assumptions are valid.

We make the following assumptions: (1) the molecular
momentum distribution is Gaussian; (2) the incoherent ap-
proximation is valid; (3) the impulse approximation is valid;
(4) the rotational transitions in the liquid and solid states occur
at the same energies as their counterparts in the gaseous phase;
and (5) the scattering from orthohydrogen is negligible. The
first and last assumptions are adopted for simplicity and, ulti-
mately, their justification turns on their adequacy in describing
the observed scattering. The second assumption is appropriate
since the static structure factor is S(Q) ≈ 1 for Q � 5 Å−1

[45]. Our third assumption cannot be given a firm foundation,
as there is currently no theory of final state effects in con-
densed hydrogen available. We offer the qualitative argument
that the asymmetrical broadening produced by final state in-
teractions should be small when the momentum distribution is
broad, as is the case in hydrogen. For (4), we appeal to Raman
spectroscopy measurements of condensed hydrogen [46]. In
the liquid state, the energy of the (0, 2) transition is reduced
by 170 µeV from its value in the gaseous state. In the solid,
this transition is split into a triplet with a spacing of 250 µeV
between the sublevels. These perturbations are far too small
to observe via ARCS.

On the basis of these assumptions, we suppose that the
intrinsic S(Q, E ), at a given Q, consists of a series of peaks
whose positions are shifted from the recoil energy by the rel-
evant rotational transition energies, and whose line shapes are
determined by the momentum distribution of the molecules. In
particular, the dynamic structure factor is a sum of Gaussian
peaks whose intrinsic widths are proportional to the average
molecular kinetic energy:

S(Q, E ) =
5∑

J=1

AJ (Q)√
2πσ 2

J

exp

(
− E − EJ − ER

2σ 2
J

)
. (4)

AJ (Q), EJ , and σ 2
J are the integrated intensity, transition

energy, and the observed second moment of the Jth peak,
respectively. For EJ , we use the values reported in Ref. [47].
The intrinsic width of the peak combines in quadrature with
the inelastic energy resolution to yield the observed width:
σ 2

J = σ 2 + σ 2
R . At a particular value of Q, all of the peaks in

the spectrum share a common value of σ . Thus, there are up to
six adjustable parameters in the model S(Q, E ): the integrated
intensities AJ (Q) and the intrinsic second moment σ 2. The
average kinetic energy is: 〈EK 〉 = (3m/2h̄2)(σ/Q)2.

Figure 6 plots representative fits to the scattering data
at T = 12.7 K. In the solid phase, the dynamic structure
factor was fit using Eq. (4) at wave vectors within the
range 5.0 Å−1 � Q � 10.0 Å−1 and energies within the range
−100 meV � E � +300 meV. In the liquid state, we mod-
eled a narrower range, with 5.0 Å−1 � Q � 8.0 Å−1 and
−100 meV � E � +200 meV. The model provides a good,
though not perfect, description of the data. For example, in
the 12.7 K data set, typical values of χ2 fall between one and
ten. However, for Q < 7 Å−1, χ2 reaches as high as twenty.
We attribute this to two distinct factors. First, the number of
neutron counts at low Q is apparently sufficiently high that
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FIG. 6. The dynamic structure factor of solid hydrogen at 12.7 K: experimental data (solid black points); model fit (solid blue curve);
and resolution-broadened Gaussian components of the model (dashed red curves). Error bars are due to Poisson counting statistics and they
represent one standard deviation.

systematic effects (such as the definition of the energy scale,
details of the peak lineshape, or the Gaussian approxima-
tion of the resolution function) begin to impose a statistical
penalty. Second, the scattering above 200 meV is relatively
flat, and the model does not fully capture this aspect of the
data.

Figure 7 illustrates the kinetic energies extracted from
S(Q, E ) as a function of Q at two different temperatures. As
expected, the observed kinetic energy is constant with Q. We
histogrammed the observed values, adopting the mean as the
best estimate of the kinetic energy and the standard deviation
as its uncertainty.

Our empirical estimates of 〈EK〉 as a function of tempera-
ture are listed in Table I and illustrated in Fig. 8. We find that
the average molecular kinetic energy is approximately 70 K
in the solid state and 62 K in the liquid state. We contend that
the discontinuity in 〈EK 〉 at the liquid-solid phase transition
is a consequence of the Heisenberg indeterminacy principle
[48] together with the large change in molar volume at the
transition. According to classical statistical mechanics, the

average molecular kinetic energy of a substance is directly
proportional to the absolute temperature, and it is furthermore
independent of density or structure. However, in a quantum
fluid or solid, there is a reciprocal relationship between the
amount of zero-point motion and the spatial localization of the
molecules. For example, in condensed 3He, the application of
pressure increases the observed value of 〈EK 〉, even at constant
temperature [49]. At the triple-point, solid hydrogen possess
a molar volume of 23.31 cc/mole, wheras the liquid has a
molar volume of 26.18 cc/mole [7]. Given the predominance
of zero-point motion, one expects a larger value of 〈EK 〉 in the
solid state than in the liquid state, and this is what we observe.

In Fig. 8, we compare the present measurements of 〈EK〉
with several previous experiments. Our empirical estimates of
〈EK 〉 stand in good agreement with the findings of the TOSCA
group [13,14]. From the phonon density of states, Colognesi
et al. estimate that 〈EK 〉 is 68.3(1) K at 13.3 K [35], slightly
below current values. In contrast, our results are inconsistent
with the outcome of the MARI experiment, from which a
kinetic energy of ≈68 K at 16.5 K was found [15].
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FIG. 7. Experimental estimates of 〈EK 〉 obtained from fitting the
scattering to Eq. (4) at 5.0 K (closed circles) and 16.5 K (open
circles). The best estimate of 〈EK 〉 at each temperature is shown by a
horizontal line.

Figure 8 also compiles quantum Monte Carlo predictions
based on several different model potentials [17,20,50]. This
includes the Silvera-Goldman [51], Buck [52], and Patkowski
[53,54] potentials. All of these models treat interactions be-
tween hydrogen molecules as static, isotropic, and pairwise,
but they differ in their descriptions of the repulsive core and
potential well. They are empirically supported by equation of
state measurements, molecular beam scattering experiments,
and gas phase transport studies, respectively. Not shown in
Fig. 8 is the prediction stemming from the Diep-Johnson

FIG. 8. The average molecular kinetic energy of parahydrogen
under, or near, saturated vapor pressure. Experimental estimates:
present ARCS study (closed circles); LRMECS [12] (open dia-
monds); TOSCA [13,14] (open circles); and MARI [15] (open
square). Quantum Monte Carlo simulations [17,20,50] based on the
following model pair potentials: Silvera-Goldman (light red trian-
gles); Buck (orange triangles); and Patkowski (dark red triangles).

potential [55], as this model yields an identical prediction to
the Patkowski potential at 16.5 K. There is excellent agree-
ment between the ARCS measurements and simulations based
on the Silvera-Goldman and Buck potentials.

C. Peak intensities

The theory of neutron scattering from molecular hydrogen
has been discussed by Sears [39,40] and by Young and Kop-
pel [41]. In particular, the latter developed a model for the
total neutron scattering cross section of hydrogen, beginning
with the assumption that the translational, rotational, and vi-
brational motions of the molecules are decoupled from one
another. This assumption is motivated by the empirical fact
that the rotational states are only weakly perturbed in the
liquid and solid states [1,7,46]. Their theory offers an explicit
expression for the integrated intensities of the rotational tran-
sitions observed in the present experiment:

A(YK)
J (Q) ∝ (2J + 1)|aJ (Q)|2σJ , (5)

aJ (Q) =
∫ +1

−1
exp

(
− 1

2

ER(Q)

Evib
μ2 + iQaμ

)
PJ (μ)dμ.

(6)

Here σJ is the cross section for the (0, J ) channel, and it is
equal to the coherent (incoherent) scattering cross section of
atomic hydrogen when J is even (odd); Evib is the first ex-
cited vibrational level; and PJ is the Jth Legendre polynomial.
When ER(Q) � Evib, A(YK)

J (Q) reduces to the rotational form
factors given above.

The Young-Koppel theory has previously been compared
to experiment in the gaseous and condensed phases of hy-
drogen. While the theory successfully predicts the integrated
intensities AJ (Q) of the gas phase [56], there remain dis-
crepancies in the condensed phases, at both the level of the
peak intensities [12] and the total neutron scattering cross
section [34]. As shown above, the Sears/Young-Koppel form
factors correctly describe the integrated intensity of the (0, 1)
transition at low energies. Moreover, in Ref. [38], it was found
that the (1, 1) transition in liquid normal hydrogen exhibits the
appropriate Sears/Young-Koppel form factor.

The validity of the Young-Koppel theory at higher energies
will now be considered. We first combine the Young-Koppel
theory with quantum Monte Carlo calculations. This combi-
nation is obtained from Eq. (4) by setting the integrated in-
tensities equal to those predicted by the Young-Koppel theory
and by setting the intrinsic peak width equal to that predicted
by the simulations. Figure 9 illustrates a representative com-
parison in the solid phase at two different values of Q. There
are no adjustable parameters in this comparison, apart from
the intensity scale which has been fixed so that the maximum
occurs at 100 units in each panel. As can be seen, the com-
bined theory is only qualitatively correct: although the peak
widths are faithfully reproduced, the peak intensities are not.

In Fig. 10, we return to the outcome of the fits to
Eq. (4) where the integrated intensities are treated as free
parameters. Panel (a) shows that the Young-Koppel theory is
in semiquantitative agreement with the observed intensities
for transitions to odd-J states. The deviations are consistent
with those first reported by Langel et al. [12]. Panel (b)
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FIG. 9. The dynamic structure factor of solid hydrogen at 12.7 K
where (a) Q = 7.0 and (b) 9.0 Å−1. The solid lines are obtained from
the Young-Koppel theory and quantum Monte Carlo predictions for
T = 12.2 K, for which 〈EK 〉 = 70.9 K. Both the experimental data
and the theoretical curves have been scaled so that the maximum
intensity in each panel is 100 arbitrary units.

compares the predictions of the Young-Koppel theory with
the observed intensities for transitions to the even-J states.
Here there are more striking, and perhaps more surprising, dif-
ferences between theory and experiment. In previous studies
[12–15], transitions to even-J were not considered in the data
analysis, either because they were thought to have negligible
intensity or because the available energy resolution was too
coarse to observe them. The present study was carried out with
an energy resolution three times sharper than that of Ref. [12],
apparently allowing for the contribution of the even-J states to
the neutron scattering spectrum to be observed.

V. CONCLUSIONS

In this paper, we presented an inelastic neutron scattering
study of liquid and solid hydrogen under saturated vapor

FIG. 10. The integrated intensities AJ (Q) estimated by fitting
Eq. (4) to the 5.0 K data set. One obtains the closed symbols when
the kinetic energy is allowed to be an adjustable parameter, whereas
one obtains the open symbols when the kinetic energy is fixed to
the quantum Monte Carlo value. In (a), transitions to J = 1, 3, 5
are shown as circles, squares, and triangles, respectively. In (b),
transitions to J = 2, 4 are shown as circles and squares, respectively.
In both panels, the continuous lines are predictions from the Young-
Koppel theory.

pressure. We obtained high-precision empirical estimates of
the molecular mean-squared displacement and the average
translational kinetic energy. Both quantities are largely shaped
by quantum-mechanical zero-point motion. In the solid state,
the mean-squared displacement increases from 0.479(5) Å2

at 5.0 K to 0.536(5) Å2 at 12.7 K, an increase of ≈12%.
Across the same temperature range, the average kinetic energy
of the hydrogen molecules is, to within current precision,
constant. It drops precipitously in the liquid state, going from
71.0 ± 1.3 K at 12.7 K to 61.5 ± 1.5 K at 16.5 K. The reduc-
tion in 〈EK〉 is a consequence of the indeterminacy principle
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together with the large increase in the molar volume of the
substance on melting.

The results of the present study may be compared with
both theoretical predictions and with previous experiments. In
general, we find good agreement between our measurements
of the molecular mean-squared displacement and average ki-
netic energy with quantum Monte Carlo simulations based on
the Silvera-Goldman and Buck potentials. Simulations pro-
ceeding from the Patkowski potential overestimate the average
kinetic energy in both the liquid and solid states by ≈10%.
Our results provide independent confirmation of the empir-
ical estimates of the kinetic energy obtained from TOSCA,
whereas they offer disconfirmation of the IN20 and MARI
studies.

In our view, the outcome of this experiment sheds new light
on the liquid-solid phase transition of molecular hydrogen,

and on the reliability of numerical models of condensed hy-
drogen built on currently available model potentials.
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