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We study the voltage-biased S-QD-S-QD-S Josephson junction, composed of three superconductors (S) and
two quantum dots (QDs). In the absence of an applied voltage, the Andreev bound states on each quantum
dot hybridize, forming an “Andreev molecule.” However, understanding of this system in a nonequilibrium
setup is lacking. Applying commensurate dc voltages on the bijunction makes the system time periodic, and
the equilibrium Andreev bound states evolve into a ladder of resonances with a finite lifetime due to multiple
Andreev reflections (MARs). Starting from the time-periodic Bogoliubov–de Gennes equations we map the
problem to a tight-binding chain in Floquet space. The resolvent of this non-Hermitian block matrix is obtained
via a continued fraction method. We numerically calculate the Floquet-Andreev spectra which could be probed
by local tunneling spectroscopy on the dots. We also consider the subgap current, and show that the Floquet
resonances determine the position of the MAR steps. Proximity of the two dots causes splitting of the steps,
while at large distances we observe interference effects which cause oscillations in the current-voltage curves.
The latter effect should persist at very long distances.
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I. INTRODUCTION

At its heart, superconductivity has the distinct characteris-
tic of a coherent macroscopic quantum state. Together with
that other particularly quantum phenomenon—magnetism—
superconductivity is bound to be an essential element for
quantum computing applications [1]. The working principle
of such superconducting circuits is the Josephson effect(s)
[2,3]. A more microscopic description of Josephson junctions
reveals the Andreev reflection mechanism and the resulting
Andreev bound states (ABSs) as responsible for carrying most
of the Josephson current across a phase-biased junction. Apart
from using the ABSs to realize an “Andreev qubit” [4–7],
other, more complex geometries are being explored. Multi-
terminal Josephson junctions are drawing particular interest
since, on the one hand, they could be an alternative way to
engineer topological states, even when the junctions are made
from topologically trivial materials [8,9], and on the other,
they can be used to create correlations among pairs of Cooper
pairs, the so-called quartets [10–13].

In an analogy to the formation of a molecule, bringing
two ABSs carrying junctions close enough should result in
a hybridization of the ABS wave functions [14,15]. The
hybridization would create nonlocal effects in the current,
whereby changing the phase on one junction would change
the current flowing through the other. This could be useful for
realizing qubits whose coupling, for example, can be tuned
by changing their phase difference, but one should have a
distance of the junctions which remains comparable to the
superconducting coherence length ξ0. In a typical supercon-
ductor, such as aluminum, ξ0 ∼ 100 nm. The first experiments
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realizing Andreev molecules and measuring nonlocal effects
in the Josephson current have already been performed on
semiconducting nanowires [16,17]. However, such systems
host subgap states which are different from the ABS (the Yu-
Shiba-Rusinov states) because they are in the opposite limit
of strong Coulomb interaction (U > �). Another interesting
proposal is to use an Andreev molecule as an elementary unit
for realizing a physical Kitaev chain, which could host the
elusive Majorana state [18,19].

Meanwhile, there is increasing interest in periodically
driven (Floquet) systems since the external drive can be used
to engineer new “hidden” states and dynamically control
properties otherwise inaccessible in equilibrium [20–23], for
example, to open band gaps in graphene [24], or induce edge
states that carry an anomalous Hall current [25]. Moreover,
Floquet qubits would offer numerous optimal working points
to choose from by changing the driving parameters [26–28],
contrary to their static counterparts whose parameters are
mostly tuned during fabrication. Experimentally, the realiza-
tion of Floquet states is often difficult due to thermalization
[29] and short lifetimes. Nevertheless, a recent experiment
has reported the generation of long-lived steady Floquet-
Andreev states realized by continuous microwave irradiation
of a graphene Josephson junction [30].

Periodic driving of a superconducting junction could
also be realized by voltage-biasing the junction. It has
been known since the 1980s that, in such cases, multi-
ple Andreev reflections (MARs) of quasiparticles between
the junctions’ superconductors lead to a subharmonic gap
structure of the current-voltage characteristics: the current
exhibits jumps at particular voltage values which are in-
teger subdivisions of the superconducting gap eV = 2�/n
[31,32]. In the limit of resonant tunneling through the junction
the subgap structure is greatly modified [33–36]: features
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corresponding to an odd number of MARs are enhanced,
while even trajectories are suppressed. In the driven case one
may, moreover, wonder at the fate of the subgap bound states.
Previous work has shown that instead of the equilibrium ABS
one obtains ladders of resonances separated in energy by
multiples of the basic frequency of the drive [37,38]. This
is analogous to the formation of Wannier-Stark ladders in a
solid under an electric field [39,40]. The resonances have a
finite width since MARs provide a mechanism of coupling of
the once discrete states (ABSs) to the continuum of states of
the reservoirs. Nevertheless, the lifetime of the Floquet states
can still be very long, since MARs are higher-order processes
which at small voltage give an exponentially small width in
�/eV [38].

In this work, we study the Floquet spectrum of a driven An-
dreev molecule, in the limit of resonant tunneling through the
junctions. We therefore model each junction as a noninteract-
ing resonant level (a quantum dot) coupled to superconducting
leads. The problem can be mapped to a tight-binding chain
in Floquet space. We take advantage of this tight-binding
structure to derive the Green’s function on the dot(s) itera-
tively. We find that the equilibrium discrete states on each
dot are dressed by MAR processes and evolve into ladders of
resonances, as expected. The spectrum of the driven molecule
exhibits level splitting when the separation between the dots is
comparable to the superconducting coherence length, R ∼ ξ0.
These Floquet-Andreev resonances should leave their trace in
the dc current. We therefore calculate the steady-state current
passing through one junction and see that the proximity of
the second junction modifies the usual MAR steps, which
accordingly exhibit splitting into substeps. Moreover, when
the two junctions are separated by a large distance R � ξ0,
we find oscillations of the spectral functions above the gap
and, consequently, of the current-voltage (I-V) curves. This
phenomenon is akin to the Tomasch effect [41,42], and is due
to long-distance correlations mediated by propagating quasi-
particles in the middle superconductor, as has been discussed
in recent work [43]. Indeed, we find that the spectral function
at a fixed voltage value is an oscillatory function of a Tomasch
phase factor. This Floquet-Tomasch effect should persist at
distances which are up to two orders of magnitude larger
than the superconducting coherence length, as in the Tomasch
experiment.

The rest of this paper has the following structure. In Sec. II
we define the model Hamiltonian and derive the Floquet-
Lippmann-Schwinger (FLS) equations. We then show how
to calculate the resolvent operator and the subgap current.
Section III presents our numerical results for the Floquet
spectra. Section IV shows our results for the subgap current,
first for the current through a single junction, and then for the
Andreev molecule. Conclusions and perspectives are provided
in Sec. V. We show that the spectral function oscillates due to
a Tomasch phase factor in the Appendix.

II. MODEL AND METHOD

A. Hamiltonian

The system considered here is the three-terminal Josephson
junction, with two quantum dots each connected to a super-
conducting reservoir Sa, Sb, and both connected to a central

FIG. 1. Schematic representation of the three-terminal Joseph-
son junction setup considered in this paper. The two quantum dots
host a single discrete level at zero energy and are separated through
the middle superconducting reservoir Sc by a distance R. The reser-
voirs are considered to be one dimensional and are voltage biased
along the quartet line: (Va,Vc,Vb) = (−V, 0, +V ).

superconducting reservoir Sc, as illustrated in Fig. 1. We study
the simplest case where each dot is modeled by a single
discrete resonant level at energy εd = 0. Some additional plots
are provided in the Supplemental Material [44] for the case of
nonresonant dots.

When a dc voltage V is applied across a superconducting
junction, its Hamiltonian acquires a time-periodic depen-
dence according to the Josephson relation φ(t ) = φ(0) +
2eV

h̄ t, where φ is the superconducting phase difference across
the junction. In this paper, we use the so-called quartet
configuration when biasing the superconducting reservoirs:
(Va,Vc,Vb) = (−V, 0,+V ). This choice simplifies the prob-
lem since it leads to a single basic frequency ω0 = eV/h̄ for
the whole system. The resulting Hamiltonian has the discrete
symmetry H(t ) = H(t + T ), where T = 2π

ω0
is the period of

the drive. A simple gauge transformation then permits to write
the Hamiltonian in the form

H(t ) = H0 + V (t ). (1)

The static part H0 is a sum of the BCS Hamiltonians describ-
ing the superconducting reservoirs:

H0 =
∑
jkσ

εkc†
jkσ

c jkσ +
∑

jk

(� jc
†
jk↑c†

j−k↓ + �∗
j c j−k↓c jk↑).

(2)
The operators c†

jkσ
and c jkσ create and annihilate an electron

in the j reservoir with momentum k and spin σ. We use the
notation � j = �eiφ j , and consider that all superconductors
have a gap of equal magnitude.

The time-periodic part V (t ) describes the tunneling be-
tween the dots labeled by i = {1, 2} and the reservoirs labeled
by j = {a, b, c}:
V (t ) =

∑
i∈dots

∑
jkσ

(
Jj (xi )e

is jω0t d†
iσ c jkσ + J	

j (xi )e
−is jω0t c†

jkσ
diσ

)
.

(3)

For convenience, we take the dots’ positions to be at x1 = 0,

x2 = R, and the tunnel couplings to be Jj (xi ) = Jjeikxi , with a
real amplitude Jj = J	

j . We have moreover used the notation
Vj = s jV.

The main idea is to exploit the symmetry of the Hamil-
tonian by looking for time-periodic (Floquet) solutions to
the Bogoliubov–de Gennes (BdG) equations. The problem
can then be mapped to an effective tight-binding model with
sites labeled by the Floquet harmonics [45–48]. Time then no
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longer appears in the equations, but is traded for a fictitious
Floquet direction. In such time-periodic systems the energy is
not a well-defined quantity [49–51], but is defined modulo the
frequency of the drive. We therefore talk of “quasienergies”
of the system, in direct analogy to the quasimomenta of Bloch
theory due to periodicity in space. In our study, the choice of
the quartet configuration leads to a mapping to an effective
one-dimensional Floquet chain. The method described can
be however applied to any set of commensurate voltages.
In the case of incommensurate voltages, one will obtain an
N-dimensional Floquet lattice instead, where N is the number
of incommensurate drive frequencies [52].

B. Floquet-Lippmann-Schwinger equations

In the absence of tunneling, V (t ) = 0, the BdG equa-
tion can be written as

i
d

dt
γ

†
lkσ

= [
H0, γ

†
lkσ

] = Elkγ
†
lkσ

. (4)

The bare quasiparticle operator γlkσ is an eigenstate of the
superconducting reservoir labeled l = {a, b, c}:

γ
†
lkσ

(t ) = e−iElkt
(
xlkeiφl /2c†

lkσ
+ σylke−iφl /2cl−k−σ

)
, (5)

and the coefficients x, y are the usual coefficients obtained by
diagonalizing the BCS Hamiltonian [53],

x2
lk = Elk + εk

2Elk
and y2

lk = Elk − εk

2Elk
, (6)

with Elk ≡
√

ε2
k + |�l |2 the excitation energy needed for

adding an electron or a hole to the BCS ground state.
When the tunneling is turned on, the discrete ABSs on the

dots become resonances due to the MAR processes which
connect them to the superconducting continua. We can then

use the Lippmann-Schwinger method from quantum scatter-
ing theory to construct dressed operators � which tend to
the bare quasiparticle operators γ at the limit of zero tunnel
couplings. We therefore introduce a dressed quasiparticle op-
erator �

†
lkσ

describing a quasiparticle being injected from a
source reservoir l with momentum k and spin σ , to any of the
reservoirs j, and quantum dot(s) i:

�
†
lkσ

(t ) = γ
†
lkσ

(t ) + e−iElkt
∑
m∈Z

e−imω0t

×
[ ∑

i∈dots

(um(i; lk)d†
iσ + σvm(i; lk)di−σ )

+
∑

jk′
(Um( jk′; lk)c†

jk′σ + σVm( jk′; lk)c j−k′−σ )

⎤
⎦.

(7)

The amplitudes um(i; lk), vm(i; lk) have respectively the
meaning of an electron- or holelike amplitude on the dot i,
corresponding to a Floquet harmonic with quasienergy Elk +
mω0, while capital letters Um,Vm correspond to amplitudes in
the reservoirs.

The dressed operators are Floquet solutions of the BdG
equations:

i
d

dt
�

†
lkσ

(t ) = [
H(t ), �†

lkσ

]
, (8)

and therefore obey the Floquet theorem,

�†(t + T ) = e−iElkt�†(t ). (9)

We use the ansatz of Eq. (7) and substitute into Eq. (8). Af-
ter integrating out the amplitudes of the reservoirs, we are led
to the following set of inhomogeneous Lippmann-Schwinger
equations for the amplitudes on the dots:

(Elk + mω0 + iη)um(i; lk) −
∑

ji′

[
g11

j,ii′ (m + s j )um(i′; lk) + g12
j,ii′ (m + s j )vm+2s j (i

′; lk)
] = δm,−sl Jl (xi )xlkeiφl /2,

(Elk + mω0 + iη)vm(i; lk) −
∑

ji′

[
g21

j,ii′ (m − s j )um−2s j (i
′; lk) + g22

j,ii′ (m − s j )vm(i′; lk)
] = −δm,sl Jl (xi )ylke−iφl /2. (10)

In the above equation, gj,ii′δii′ ≡ g j is the Green’s function for the j superconducting reservoir, defined as

g j (ω) = � j

ivF q(ω)

(
ω −� j

−�∗
j ω

)
, and vF q(ω) ≡ i

√
�2 − ω2θ (� − |ω|) + sign(ω)

√
ω2 − �2θ (|ω| − �). (11)

We have used the notation � j = πρ0J2
j , where ρ0 is the density of states in the normal state of the superconductors. Moreover,

since the quasienergy appears in the combination ω + mω0, it is convenient to use the shorthand f (m) instead of f (ω + mω0),
for any function f .

The nondiagonal part which couples the amplitudes on dif-
ferent dots g j,ii′ (m)(1 − δii′ ) ≡ g j (m, R) is a nonlocal Green’s
function and depends explicitly on the distance between the
two dots:

g j (m, R) = eiq(m)R[cos(kF R)g j (m) + sin(kF R)� jσz], (12)

where kF is the Fermi wave vector. The reservoirs have been
chosen as one dimensional (1D) for simplicity, but this should
not influence the qualitative description. In equilibrium, a

more careful analysis of the effect of dimensionality [54]
and comparison with Ref. [14] shows that if the propagation
in the middle reservoir is three dimensional (3D) instead of
1D, then the resulting hybridization of the Andreev molecule
will be smaller at a given distance by an order of magnitude
[55]. Moreover, we consider that the middle superconductor
Sc is large on the mesoscopic scale, so that it can have a
well-defined electrochemical potential, but that the distance
R between the two dots remains finite.
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The nonlocal Green’s function mediates the coupling be-
tween the junctions and oscillates on two very different length
scales. For energies smaller than the gap, |ω| < �, the factor

eiqR = e−
√

1−(ω/�)2R/ξ0 decays exponentially over distances
larger than the superconducting coherence length ξ0 ≡ vF /�,

while for energies above the gap eiqR oscillates without decay.
These nonvanishing oscillations physically represent quasi-
particle propagation in the continuum of the reservoirs, which
is therefore not bound by the superconducting coherence
length. On the other hand, the phase kF R oscillates rapidly
at the scale of the Fermi wavelength λF = 2π/kF , since the
superconducting coherence length is typically much larger
than the Fermi wavelength, ξ0 � 103λF . The former length
scale is coupled with the quasiparticle energy ω, while the
latter would give a geometric effect. Since the two scales are
very different, and we want to focus on new physics related
to the energy dependence rather than to any geometric effects,
we will assume that the phase kF R is fixed. We discuss this
choice in some more detail in the Supplemental Material [44].

Introducing the Nambu spinor

�m = (um(1), vm(1), um(2), vm(2))T

which collects the amplitudes on the two dots, we can rewrite
Eq. (10) by defining a linear operator L which acts on the
states �m in the following way:

(L�)m ≡ M0
m�m − M+

m+1�m+2 − M−
m−1�m−2 = Sm. (13)

Equation (13) is the Floquet chain advertised above. In the
tight-binding analogy, the matrix M0

m describes a self-energy
at position m of the chain, while matrices M±

m±1 describe “hop-
ping” to neighboring sites m ± 2. The fact that m couples to
m ± 2 is a consequence of coupling via second-order Andreev
reflection processes. Explicitly, the matrix M0,

M0
m = Em14 −

(
�1(m) gc(m, R)

gc(m, R) �2(m)

)
, (14)

contains a nonlocal coupling of the two dots through the
Green’s function of the middle superconductor gc(m, R), and
local Andreev reflection terms on each of the dots, collected
in the block diagonal in the �1,2 matrices:

�1(m) = gc(m) +
(

g11
a (m − 1) 0

0 g22
a (m + 1)

)
,

�2(m) = gc(m) +
(

g11
b (m + 1) 0

0 g22
b (m − 1)

)
. (15)

The matrices M± are

M−
m =

⎛
⎜⎜⎜⎜⎝

0 g12
a (m) 0 0

0 0 0 0

0 0 0 0

0 0 g21
b (m) 0

⎞
⎟⎟⎟⎟⎠,

M+
m =

⎛
⎜⎜⎜⎜⎝

0 0 0 0

g21
a (m) 0 0 0

0 0 0 g12
b (m)

0 0 0 0

⎞
⎟⎟⎟⎟⎠.

(16)

Remark. Equation (10) is an inhomogeneous equation be-
cause of the source terms on the right-hand side, collected
in the column matrix Sm. In the following sections we are
interested in the spectrum on the dots. We can then simply
consider the homogeneous version of Eq. (10), since it is
sufficient to find the resonances of the operator L. In later
sections, however, we will be interested in the transport prop-
erties (current). Then, we will have to restore the source term.

C. Iterative construction of the resolvent operator

If the resolvent operator R is the inverse of the operator
L, then knowledge of R allows straightforward calculation of
the amplitudes on the dots:

um(i; lk) =
∑

i′

[
Reiei′

m,−sl
Jl (xi′ )xlkeiφl /2−Reihi′

m,sl
Jl (xi′ )ylke−iφl /2

]
,

vm(i; lk) =
∑

i′

[
Rhiei′

m,−sl
Jl (xi′ )xlkeiφl /2−Rhihi′

m,sl
Jl (xi′ )ylke−iφl /2

]
.

(17)

Finding the poles of the resolvent operator corresponds to
finding the spectrum of the operator L. The resolvent R
is an operator which lives in the extended dot ⊗ Nambu ⊗
Floquet space. Upper indices correspond to the combined
dot ⊗ Nambu space, and lower indices correspond to the infi-
nite Floquet space. The inhomogeneous FLS equations for the
resolvent elements are

M0
mRmn − M+

m+1Rm+2,n − M−
m−1Rm−2,n = δmn1. (18)

For a tridiagonal block-matrix Hamiltonian, such as the
one we are dealing with, it follows generally that its resolvent
can be written in continued fraction form [56,57]. The con-
tinued fraction representation is equivalent to the usual Dyson
equation [58].

Starting from Eq. (18) it is straightforward to construct the
resolvent elements by iteration, assuming a source at some
index n and a cutoff at some large Floquet index ±N, with
|N | � �

ω0
. The latter is equivalent to assuming that the wave

function on the dot decays exponentially at energies above
the gap |ω + Nω0| � �. Physically, the first values of m will
correspond to multiple quasiparticle reflection processes, by
which the quasiparticle gains energy equal to mω0. When
m is large enough so that ω + mω0 > �, the quasiparticle
enters the superconducting continuum, thus macroscopically
resulting in a dissipative quasiparticle flow with normal con-
ductance values. The smaller the voltage value, the more
Floquet harmonics we need to take into account. We have the
following system consisting of 2N + 1 equations:

(19)
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FIG. 2. Diagrammatic representation of the forward-scattering self-energy. �+
m resums loops to the right of site m.

We solve this system of equations by iteration, and find that
the diagonal elements are resummed into a geometric series

Rmm = [
M0

m − M+
m+1�

+
m+2M−

m+1 − M−
m−1�

−
m−2M+

m−1

]−1

(20)

with forward and backward self-energy matrices, �±, that
can be calculated recursively once boundary conditions are
imposed, that is, once �±

±N is set to zero at some large number
±N. We find that

�+
m = 1

M0
m − M+

m+1�
+
m+2M−

m+1

,

�−
m = 1

M0
m − M−

m−1�
−
m−2M+

m−1

. (21)

The nondiagonal resolvent elements Rmn can then be ex-
pressed using the self-energy matrices

Rmn = �+
m M−

m−1 · · · �+
n+2M−

n+1Rnn if m > n,

Rmn = �−
m M+

m+1 · · · �−
n−2M+

n−1Rnn if m < n. (22)

This description of the resolvent admits a simple diagram-
matic representation. For example, by expanding the forward
self-energy term �+ into a series we see that this term re-
groups all paths that start from a point m and only return to
it after having visited all sites m′ > m, up to the boundary
site N :

�+
m = R0

m

1 − R0
mM+

m+1�
+
m+2M−

m+1

= R0
m + R0

mM+
m+1�

+
m+2M−

m+1R0
m + · · ·

= R0
m + R0

mM+
m+1R0

m+2M−
m+1R0

m + · · · . (23)

The expansion of the forward self-energy in terms of diagrams
is illustrated in Fig. 2. On the other hand, the backward
self-energy term �− resums loops which pass through sites
m′ < m. Equation (22) then describes the shortest path con-
necting a site n to site m. The role of the self-energy terms
�± is to renormalize the unperturbed diagonal elements of the
resolvent R0

m = 1/M0
m by introducing a finite imaginary part,

corresponding to virtual excursions to the superconducting
reservoirs.

This expansion is a locator-type expansion of the resolvent,
commonly used in disordered systems [59,60], in the sense
that the unperturbed part of the resolvent R0

m locates a quasi-
particle on site m, in contrast to the more usual “propagator”
which describes the propagation of a free particle. The resol-
vent Rmn then represents the probability that a quasiparticle is
localized on site m, given that it was originally on site n. The
major difference between a propagator and a locator expan-
sion is the restriction on repeated indices which is necessary
in the latter.

D. Current

Given that the dressed quasiparticle operators �†, � form
a complete basis, we can express all other operators in this
basis. The advantage of such decompositions is that one can
then very easily derive expressions for expectation values in
the stationary state |S〉, which is simply defined as the state
which is annihilated by the application of the � operator:
�lkσ |S〉 = 0.

In general, the current from a dot i to a reservoir j is given
by

Ii→ j (t ) = ieis jω0t d†
iσ (t )ψ jiσ (t ) − ie−is jω0tψ

†
jiσ (t )diσ (t ), (24)

where the shorthand ψ
†
jiσ = ∑

k J	
j (xi )c

†
jkσ

is used. Creation
and annihilation operators on the dots and on the leads can be
expressed as functions of the dressed Floquet operators �:

diσ (t ) =
∑
l,k,m

(
e−i(Elk+mω0 )t um(i; lk)�lkσ − σei(Elk+mω0 )tv	

m(i; lk)�†
lk−σ

)
,

ψ
†
jiσ (t ) =

∑
l,k,m

[
J	

j (xi )e
i(Elk+mω0 )t

(
δm0δ jl x jke−iφ j/2 + U 	

m( j; lk)
)
�

†
lkσ

− σJj (xi )e
−i(Elk+mω0 )t(δm0δ jl y jke−iφ j/2 + Vm( j; lk)

)
�lk−σ

]
. (25)

Since the steady state is the state which is annihilated by the operator �, any average taken in the steady state will contain
only contributions from 〈S|��†|S〉 terms. We then find that the steady-state current from dot i to reservoir j is

〈Ii→ j (t )〉 = 4Im
∑
l,k

∑
m,n

[
Jj (xi )e

−i(m−n)ω0t (δm,s j δ jl y jke−iφ j/2 + Vm−s j ( j; lk))v	
n(i; lk)

]
. (26)
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Using the FLS equations (10), we can reexpress the terms involved on the right-hand side so that the current contains only
quadratic terms in the resolvent. First, we reexpress the source term,

Jj (xi )δm,s j y jke−iφ j/2 = −(Ejk + mω0)vm(i; jk) +
∑
l,i′

[
g21

l,ii′ (m − sl )um−2sl (i
′; jk) + g22

l,ii′ (m − sl )vm(i′; jk)
]
, (27)

and the amplitudes in the reservoirs,

Vj (m − s j ) =
∑

i′

[
g21

j,ii′ (m − s j )um−2s j (i
′; l ) − g22

j,ii′ (m − s j )vm(i′; l )
]
. (28)

The expressions we find include terms which are local, gl,ii, and nonlocal, gl,ii′ , in the Green’s functions, as well as in the
resolvent (the nonlocal terms in the resolvent are its nondiagonal blocks). Note that only gc,i �=i′ �= 0 since only the middle
superconductor Sc connects the two dots. We can therefore categorize contributions in these expressions by the number of
nonlocal quantities they contain. A first approximation is to keep the “zero-order” terms, containing only local contributions.
Then, the current from the dot labeled 1 to the middle superconductor is given by

〈I1→c〉0
dc = 4Im

∫ +∞

�

dω
∑

m

[(
g21

c (m),−g22
c (m)

)(R11
m,1 R12

m,−1

R21
m,1 R22

m,−1

)
Qa

(
R21

m,1

R22
m,−1

)	

−(
g21

a (m + 1), −g22
a (m + 1)

)(R11
m+2,0 R12

m+2,0

R21
m,0 R22

m,0

)
Qc

(
R21

m,0

R22
m,0

)	]
. (29)

Note that this is exactly the result one would find in the case
of a single junction. The resolvent elements, however, are
calculated by resuming the contribution of different paths, as
explained in the preceding section, and therefore take into
account the effects due to the proximity of a second dot. The
matrices Ql (ω) describe the populations in the reservoirs of
ejection. For the current we will take integrals over excitation
energies above the gap so that ω > �. Then, we find that

Ql (ω) = 2�l√
ω2 − �2

(
ω −�

−�∗ ω

)
, ω > �. (30)

If we consider that the quasiparticle density of states is [53]
ρS (ω) = 2ρ0

|ω|√
ω2−�2 θ (|ω| − �), where ρ0 is the density of

states in the normal state, we see directly that the diagonal
of Q is nothing other than πJ2ρS (ω). This translates the fact
that the MAR current will naturally depend on the populations
of the reservoirs.

Equation (29) is at first sight not easy to calculate since it
involves an integral over all quasiparticle excitation energies
above the gap up to infinity, as well a summation over the
Floquet harmonics. Fortunately, the resolvent elements decay
exponentially at large energies, so that the integration can
be drastically truncated. Moreover, at large enough voltages
we observe a localization (analogous to the Wannier-Stark lo-
calization) which gives a rapidly convergent summation over
the Floquet harmonics. These points will be further discussed
in Sec. IV. Figures showing the localization of the resolvent
elements can be found in the Supplemental Material [44].

III. SPECTROSCOPY: REVEALING
THE FLOQUET-ANDREEV LADDERS

The diagonal part of the resolvent in Floquet space gives
access to a spectral function. Indeed, in the case of Floquet-
Green functions, one can still define a spectral function which

can be interpreted as a density of states [61]. The quantity

A(ω) = − 1

π
ImR00(ω) (31)

can be seen as a time average of the spectral function over one
period of the drive. Whether we need to take the trace over
the Nambu subspace of one dot or not should depend on the
type of spectroscopy experiment one performs. For example,
if we perform a local tunneling spectroscopy measurement on
one dot, we can probe both the creation and destruction of
excitations, while in an angle-resolved photoemission spec-
troscopy experiment we can only extract electrons, so we will
only have access to one part of the spectrum [62]. In the case
of local tunneling spectroscopy with a normal probe coupled
to the first dot, for example, the spectral function will be given
by a trace over the subspace of the first dot, defined as follows:

Adot1(ω) = − 1

π
ImTrdot1R00(ω)

= − 1

π
Im

[
R11

00(ω) + R22
00(−ω)

]
. (32)

The resolvent is calculated using the iterative formula of
Eq. (20). In practice, we found that a cutoff index of the order
of N ∼ �

ω0
is sufficient for convergence when calculating the

spectral plots. Since the system we are studying is periodic in
time with a period T = 2π

ω0
, we can plot quantities as functions

of inverse voltage 1
ω0

in order to make apparent the periodicity.
a. Floquet spectrum. Figure 3 presents the spectral func-

tion as defined in Eq. (32), calculated at a fixed distance
between the two dots. At large distances compared to the
superconducting length R > ξ0, the energies on the first dot
tend to that of a single junction, and we obtain results which
agree with previous calculations done using the method of
Keldysh Green’s functions [37,38]. The spectrum of the single
resonant dot consists of ladders of resonances at quasienergies
Em = ε± + 2mω0 with ε+ = −ε− [38], and has a basic period
of 2eV . The Floquet ladders show avoided crossings which is
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FIG. 3. [(a)–(d)] Density plots of the spectral function on the
first dot, − 1

π
ImTrdot1R00, plotted using inverse scaling. Red corre-

sponds to the maxima of the spectral function. The distance between
the dots is taken to be [(a), (c), (e)] R = ξ0/2 and [(b), (d), (f)]
R = 5ξ0. [(e), (f)] Particle-hole asymmetry of the spectral function
− 1

π
Im[R11

00(ω) − R22
00(ω)]. White represents positive values of the

difference (electronlike) and black represents negative values (hole-
like). The signs change at avoided crossings.

a sign of coupling between them via Landau-Zener transitions.
Both electronic and hole parts of the resolvent have peaks
at the same energies, but their weight away from avoided
crossings differs when varying the voltage. To illustrate this,
we plot the difference between the electron and hole parts of
the spectral function − 1

π
Im[R11

00(ω) − R22
00(ω)] in Figs. 3(e)

and 3(f). Near avoided crossings, a rapid change of the Floquet
states is expected to happen. Accordingly, we see that the
sign of the aforementioned quantity changes signs at avoided
crossings, signaling the change in character between electron-
like and holelike states. In order to observe this asymmetry
it would be necessary to break the mirror symmetry of the
system, for example by having asymmetric tunnel couplings.
One could then probe the asymmetry away from avoided

crossings by measuring the conductance at opposite voltage
values, as has been proposed in Ref. [63].

b. Floquet engineering. The avoided crossings present in
Fig. 3 could be used to find dynamical sweet spots of the sys-
tem. These so-called sweet spots are optimal working points
corresponding to the extrema in quasienergy differences and
have been proposed as a way to protect qubits from noise.
Contrary to the static case where few sweet spots are present,
the extra dimension of time in periodically driven systems
allows to find a manifold of dynamical sweet spots [26].
An added advantage is that one can tune the system to an
avoided crossing by changing the drive in situ. Realization of
a Floquet qubit has been proposed along this line [28], where a
periodic driving can be used to tune the system near one of the
avoided crossings, and a second drive can be used to control
transitions between the Floquet states. Typically, the smaller
the quasienergy dispersion, the more insensitive would the
qubit states be to fluctuations. Moreover, tuning a fluxonium
qubit to a dynamical sweet spot away from its half-flux bias
static spot has been shown to increase coherence times [27],
demonstrating the relevance of Floquet engineering to the
qubit community. Some more Floquet spectra for different
combinations of tunnel couplings are presented in the Supple-
mental Material [44], showing various different possibilities
when engineering the band structure.

c. Level splitting. When the distance between the dots is
comparable to the superconducting coherence length R ∼ ξ0,

we arrive at an “Andreev molecule regime,” where a lift
of degeneracy produces four peaks instead of two in each
Floquet-Brillouin zone. At large distances the splitting de-
creases exponentially with the distance ∼e−R/ξ0 . However,
at intermediate distances its behavior depends on the ap-
plied voltage. Figure 4 shows the lift of degeneracy of the
quasienergy levels when the two dots are brought close to-
gether. In reality, we observe oscillations of the spectral
functions around the single-junction value even at very large
distances. We discuss this long-range interference effect in
Sec. IV B and show that the oscillations of the spectral func-
tions lead to an oscillatory I-V curve.

IV. SUBGAP CURRENT

Before showing the results for the Andreev molecule, we
will briefly discuss the well-known case of a single junction.
This serves two purposes, the first being to benchmark our
method by comparing with what is already known, and the
second to acquaint the reader with the Floquet ladder and its
impact on the current.

A. Current through one resonant dot from the point of view
of its Floquet spectrum

The symmetric configuration of a resonant dot with energy
εd = 0 coupled to two reservoirs which are voltage biased
with (VL = −V,VR = +V ) is already well understood: the
subgap structure of the current-voltage curve shows steps at
voltages 2eV = 2�

n , and the presence of the resonant level
restricts n to being an odd integer, while even MAR pro-
cesses are suppressed [33–36]. These steps in the subgap
current appear whenever a new “MAR trajectory” becomes
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FIG. 4. Density plots of − 1
π

Im[R11
00(ω) − R22

00(ω)] as a function of the distance between the two dots, for different values of voltage bias
ω0. At large distances R � ξ0 the quasienergies approach those of a single junction. At R ∼ ξ0 we are in a molecular regime, and there is
a considerable lift of degeneracy of the quasienergies. White represents positive values of the difference (electronlike) and black represents
negative values (holelike). We set kF R = π/4 and �a,b,c = 0.3�.

possible: a quasiparticle is Andreev reflected n times, chang-
ing its energy by e(VR − VL ) = 2eV with each reflection, until
it has enough energy (equivalent to the size of the gap 2�)
to reach the superconducting continuum of states and give a
contribution to the current. The results of our calculation for
this case are depicted in Fig. 5(a) for different values of tunnel
couplings � = �L = �R, and we verify that our method gives
the expected results for the I-V curves at zero temperature.
In order to produce this result, we numerically calculated the

FIG. 5. Subgap current and corresponding Floquet spectra of a
single resonant dot. (a) Subgap structure for the highly symmetric
left-right configuration � = �L = �R and (VL = −V,VR = +V ) with
the known MAR steps at odd subdivisions of the gap. Logarithmic
scaling has been used for better visibility of the features. (b) The
corresponding Floquet spectrum consists of decoupled ladders at
multiples of the basic frequency 2ω0. The maxima of the spectral
function are shown here in white. (c) Comparison of subgap current
for equal (dashed black line) and unequal (red and orange lines) tun-
nel couplings (�L �= �R), showing the modification of the MAR steps
when there is asymmetry in the tunnel couplings. (d) Particle-hole
asymmetry −Im[R11

00(ω) − R22
00(ω)] for �L = 0.3�, �R = 0.4�.

current given by the following formula:

〈Idot→R〉dc = 4Im
∫ +∞

�

dω
∑

m

[(
g21

L (m + 1), g22
L (m + 1)

)

×
(
R11

m+2,−1 R12
m+2,1

R21
m,−1 R22

m,1

)
QR

(
R21

m,−1

R22
m,1

)	

−(
g21

R (m − 1), g22
R (m − 1)

)
×

(
R11

m−2,1 R12
m−2,−1

R21
m,1 R22

m,−1

)
QL

(
R21

m,1

R22
m,−1

)	]
.

(33)

We see that the current requires calculation of the resol-
vent elements Rm,n which connect the “source sites” at n =
VL,R/V = ±1 on the Floquet chain to sites on positions m.

These nondiagonal elements correspond to processes where
the system changes its energy by |m − n|ω0, equivalent to
absorbing or emitting an |m − n| number of “photons.”

a. Resolvent resonant structure. In the previous sec-
tion we have seen that the resolvent R00 has resonances at
even multiples of ω0: outside the gap the spectrum shows
signs of dissipation because of strong hybridization with
the reservoirs, i.e., the resolvent decays exponentially for
large energies ω � �. Floquet resonances, however, “sur-
vive” around frequencies ω0 > �/n, with n the smallest even
number such that the condition holds. The peaks are sharper at
small voltages, and become smeared when increasing ω0. The
symmetry by translation of the resolvent Rm,n(ω + pω0) =
Rm+p,n+p(ω) means that elements R±1,±1(ω) = R00(ω ±
ω0) have resonance peaks around odd multiples of ω0, which
gives the condition for the MAR steps at odd subdivisions
of the gap in the presence of a resonant level. Moreover,
since the nondiagonal elements of the resolvent Rm,±1 are
obtained from the diagonal elements R±1,±1 through Eq. (22)
we can conclude two things: (a) they are resonant when the
corresponding diagonal elements are resonant, and (b) there
is a hierarchy of peaks in m which depends on the voltage.
An element Rm,±1 becomes dominant when mω0 is the dom-
inant peak above the gap, i.e., when m is the minimal odd
integer for which mω0 > �. For example, the element R−3,−1

is dominant when the second-order MAR trajectory is domi-
nant, �

3 < ω0 < �, the element R−5,−1 is dominant when the
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third-order MAR trajectory is dominant, �
5 < ω0 < �

3 , and so
on. The resonant structure of the resolvent is illustrated with
some more detail in the Supplemental Material [44].

The localization on the Floquet chain can be further
illustrated by decomposing the subgap current into the con-
tribution from each Floquet harmonic. Then, we find that at
large voltages only a few harmonics need to be taken into
account when calculating the sum in Eq. (33), and the number
of harmonics needed increases as the voltage goes to zero. We
will show, and further discuss, this localization in the case of
the Andreev molecule (Fig. 8), but a completely analogous
result holds for the single junction case.

b. Asymmetry effects. It has perhaps been less commented
in the literature that the subgap current steps appear at exactly
ω0 = �

n only when there is a “left-right” parity symmetry
which happens when the tunnel couplings to the reservoirs
are equal, �L = �R, and the voltage biasing is symmetric
around the dot energy, VL = −VR. In this mirror-symmetric
case, electronlike and holelike MAR trajectories are equally
favorable. The corresponding spectrum then consists of de-
generate ladders situated exactly at even multiples of ω0.

The Floquet ladders are completely decoupled and show
no avoided-crossing behavior, as shown in Fig. 5(b). When
this symmetry is broken, we find that the electronlike part
−ImR11

00(ω) and the holelike part −ImR22
00(ω) of the spectrum

have peaks at different energies Em = mω0 ± ε, as has been
already noted [37,38]. We find that the current carries a trace
of this characteristic of the spectrum: the MAR steps break
into two substeps, positioned around the original ω0 = �±ε

n
frequencies. The exact shape of the steps (cusps or peaks)
depends on the choice of the couplings [64], as shown in
Fig. 5(c). This result suggests that electron-boson interaction
(such as absorption or emission of photons by the tunneling
quasiparticles), as studied in Ref. [65], is not sufficient to
break particle-hole symmetry of the conductance, but also
requires a breaking of the mirror symmetry of the system. In
Ref. [65] the mirror symmetry was broken by considering an
N-S system.

B. Current through the driven Andreev molecule

a. Modification of the subgap structure. The main result for
the bijunction current is presented in Fig. 6, where we plot the
results of numerical calculations of Eq. (29). For simplicity,
we consider equal tunnel couplings �a = �b = �c = 0.3�,
and we fix kF R = π/4, in order to avoid oscillations on the
scale of the Fermi wavelength. We see that for large distances
between the dots (grey line) the I-V curve approaches that of a
single S-dot-S junction (dashed black line). In reality, at large
distances, the curves show oscillations around the single junc-
tion curve; this will be commented on shortly. For distances
comparable to the superconducting length (red and orange
lines), we are clearly in a “molecular junction” regime [66],
and the MAR steps break into four substeps. These substeps
correspond to the splitting of the energy levels in the Floquet
spectrum in the Andreev molecule regime, as discussed earlier
(see Fig. 3). The steps are visible when the resonances are
not overlapping, that is, when their widths are smaller than
their separation. Given that the width of a resonance coupled
to a continuum of states increases when the coupling to the

FIG. 6. Andreev molecule I-V curve calculated at various dis-
tances between the two dots. Parameters used: �a,b,c = 0.3�, kF R =
π/4, φa,b,c = 0.

continuum is increased, one expects that small values of volt-
age bias and tunnel couplings give sharper features. Indeed,
the new features due to the proximity of a second junction
are more clear at voltages equal to higher-order subdivisions
of the gap. However, the modification should still be visible
around the 2�

3 or the 2�
5 MAR steps. Moreover, the influence

of the tunnel couplings on the I-V curves is shown in Fig. 7. As
it is expected we observe that the subgap features are softened
when increasing the tunnel coupling to the reservoirs.

b. Contribution of Floquet harmonics. Depending on the
region of the I-V curve the sum over the Floquet modes in
Eq. (29) of the current can be drastically truncated, and the
larger the voltage drive, the less harmonics we need to sum
over. We therefore have a “localization” on the Floquet chain,
analogous to the Wannier-Stark localization of electrons in
solids at strong electric fields. This localization is illustrated in
Fig. 8. At large voltages ω0 > 2�, the drive is strong enough
to promote quasiparticles directly above the gap without any
MAR processes, and we only need to sum over two harmonics
m = ±1. As we lower the voltage, we progressively need

FIG. 7. Andreev molecule I-V curves for different values of tun-
nel coupling �a,b,c = �, at fixed distance between the dots R = ξ0.

Logarithmic scaling is used. Features are softened with increasing �

and voltage.
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FIG. 8. “Localization” on the Floquet chain means only a few
of the harmonics need to be taken into account when calculating the
current. The amount of harmonics required increases with decreasing
voltage. Parameters: R = ξ0, �a,b,c = 0.3�, kF R = π/4.

to add more harmonics, in correspondence to the MAR pro-
cesses which are dominant. In the region of the first allowed
MAR process, 2�

3 < ω0 < 2�, the current is well approx-
imated by summing over three harmonics m = ±1,−3; in
the next region of 2�

5 < ω0 < 2�
3 , we need to add one more

m = ±1,−3,−5, and so on.

FIG. 9. Long-range Floquet-Tomasch effect. (a) Subgap current
structure near the second MAR step, around ω0 = 2�

5 , compared to
the single junction case (in red). At large distances (gray lines) oscil-
lations of the I-V curves appear around the single junction current.
(b) Spectral function at energies above the superconducting gap, for
ω0 = 0.45�.

C. Long-range Floquet-Tomasch oscillations

The effect of the distance between the dots is shown with
more detail in Fig. 9, focusing on the region of the MAR step
around ω0 = 2�

5 . We observe that an increased distance (grey
lines) produces oscillations of the I-V curve itself around the
single junction curve (dashed line). Moreover, the splitting
between the Floquet-Andreev resonances is suppressed ex-
ponentially with the distance (see Fig. 4), so that at large
distances we can only see the steps corresponding to the poles
of the single junction resolvent. The effect at large distances
is reminiscent of the Tomasch effect. Historically, Tomasch
[41] observed oscillations in the density of states above the
gap and in the tunneling current. The oscillations depend on
the applied voltage and the thickness d of superconducting

films as a function of the combination
2d

√
(eV )2−�2

h̄vF
. Follow-

ing the experimental observation, McMillan and Anderson
[42] then interpreted the phenomenon as one of quasiparti-
cle interference due to a perturbation in the order parameter
(induced by some impurity or by some spatially nonuniform
�). Figure 9(b) shows the spectral function −ImTrdot1R00 at
energies above the gap, calculated at a fixed voltage value
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ω0 = 0.45�. We observe that at large distances the spectral
function oscillates around the spectral function of the single
junction. We find that the frequency of oscillations is the
Tomasch frequency, and we provide a demonstration in the
Appendix to support this observation. It has been argued [43]
that this new “Floquet-Tomasch” effect could be used to create
correlations of Cooper pairs over long distances, which are or-
ders of magnitude larger than the superconducting coherence
length (in the Tomasch experiment the thickness was some
tens of micrometers, 10–30 µm ∼ 100ξ0). It is a nonlocal
effect over distances which are not achievable in the absence
of the voltage drive since it is mediated by quasiparticles
which, by MAR processes, reach the continuum of states of
the middle superconductor Sc where they can propagate over
a long distance without being bound by the superconducting
coherence length.

V. SUMMARY AND PERSPECTIVES

In conclusion, we have studied the Andreev molecule sub-
jected to a dc voltage drive, which brings the system out
of equilibrium. The superconductivity of the leads allows to
explore Floquet physics by simple voltage biasing. As is often
done in Floquet systems [21], one can expand quantities,
such as the electron and hole amplitudes on the dot(s), into
Fourier modes and map the initial time-dependent BdG equa-
tion into a tight-binding chain with sites labeled by the Fourier
harmonics. The sites are coupled to their nearest neighbors
through absorption or emission of virtual photons which here
correspond to Andreev reflections. The tight-binding analogy
can be exploited to get an iterative solution that corresponds
to a Dyson equation for the Green’s function on the dot(s).
We find that the initial discrete levels are renormalized by a
self-energy which corresponds to the sum of two independent
processes, the �± of Eq. (21). These matrices describe loops
that connect the initial discrete levels to the superconducting
continua either above the gap, ω > �, or below the gap,
ω < −�, and therefore are a source of dissipation. An ef-
fective Hamiltonian for the amplitudes on the dot(s) will
therefore be non-Hermitian, since the S-dot-S system in the
presence of voltage is an open quantum system.

The resonances on the dots are then coupled through the
middle reservoir by the nonlocal Green’s function of Eq. (12).
This coupling produces splitting of the energy levels and
avoided crossings in the spectrum at distances between the
dots comparable to the superconducting coherence length R ∼
ξ0. It also modifies the subgap structure, producing splitting
of the MAR steps. This direct coupling decays exponentially
with R/ξ0. Instead, at R � ξ0 the two dots are coupled through
higher-order processes contained in the self-energy which be-
come the dominant mechanism for coupling at long distances.
This long-range Floquet-Tomasch mechanism involves local
MAR processes on each dot and subsequent quasiparticle
propagation through the middle superconductor at energies
|ω| > �. The system in this regime behaves like an interfer-
ometer, in the sense that the current becomes an oscillatory
function of the voltage. We intend to further explore this in up-
coming work, particularly in relation to the spectral properties
of the system, since the Floquet-Tomasch effect is expected to
cause interference effects on the subgap resonances as well.

This study could allow interpreting the signatures of an An-
dreev molecule in nonequilibrium dc transport experiments,
an understanding that was missing so far. Moreover, the
method we have employed can be adapted to accommodate
various different and more complex situations, such as mul-
tilevel dots, or multiterminal configurations. Open questions
remain as to the effect of the interactions, which could be
added perturbatively at the limit U/� < 1 in the spirit of
Ref. [67]. However, subsequent work shows that this approach
seems to fail at the MAR points [68], so a better method might
be needed.
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APPENDIX: OSCILLATIONS ABOVE THE GAP

For energies above the gap ω > �, we have seen that the
spectral function on dot 1, given by

A(ω) = −2ImR11
00(ω) = −Im

[
R11

00(ω) + R22
00(−ω)

]
,

oscillates as a function of the energy ω and the distance R
separating dot 1 and dot 2, a phenomenon reminiscent of the
Tomasch oscillations. In fact, we will show that the oscilla-
tions of the spectral function are due to a “Tomasch phase
factor” equal to e2i

√
ω2−�2R/vF , and will explain the physical

process that, in this case, gives rise to the oscillations.
In order to calculate the resolvent above the gap, we can

neglect the forward self-energies �+, given in Eq. (21). The
resolvent can then be written as

R00 = [M0(0) − �−(0)]−1, (A1)

with the backward self-energy given by

�−(0) ≡
(

�−
1 (0) �−

12(0)

�−
21(0) �−

2 (0)

)

= M−(−1)
1

M0(−2) − �−(−2)
M+(−1). (A2)

We would like to compare the spectral function of the bijunc-
tion system on dot 1 to that of a single junction. We must
therefore define the latter: if the distance between the dots
R → ∞, then the resolvent of dot 1 (dot 2) would be

R1(2) = [
M0

1(2)(0) − �−
1(2)(0)

]−1
, (A3)

where all matrices are now calculated in the 2 × 2 subspace of
dot 1 (dot 2). The backward self-energies �−

1(2)(0) represent
local MAR processes which connect the state on dot 1 (dot 2)
above the gap to those below the gap.

The resolvent (A1) of the bijunction system can the be
written as a block matrix:

R00 =
(

M0
1 (0) − �−

1 (0) gc(0, R) − �−
12(0)

gc(0, R) − �−
21(0) M0

2 (0) − �−
2 (0)

)−1

≈
(

M0
1 (0) − �−

1 (0) gc(0, R)

gc(0, R) M0
2 (0) − �−

2 (0)

)−1

. (A4)
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We can neglect the matrices �−
12,21 in the off diagonal, since

they are of higher order in the tunnel couplings. The resol-
vent (A4) therefore describes resonances on each dot which
are formed due to local MAR processes and which are then
coupled by propagation in the middle reservoir, represented
by the nonlocal Green’s function gc(0, R) in the off diagonal.

Since the resolvent is a block matrix, we can invert it
blockwise [69]. For the resolvent of Eq. (A4), the upper-left
block (corresponding to the first dot) is

[R00]dot1 = R1

1 − R1gc(0, R)R2gc(0, R)

≈ R1 + R1gc(0, R)R2gc(0, R)R1 + · · · . (A5)

We therefore find that the first correction to the resol-
vent of the two coupled dots with respect to the resolvent

corresponding to an uncoupled dot is

[R00]dot1 − R1 ≈ R1gc(0, R)R2gc(0, R)R1. (A6)

A term like the above has a clear physical interpretation:
the two resonances represented by R1,2 are coupled via prop-
agating quasiparticles in the continuum of states of the middle
superconductor. The amplitude of the effect will therefore
depend on the specific geometry of the middle reservoir (here
we have considered a one-dimensional superconducting wire).
We see that the Tomasch phase factor will appear, since the
nonlocal Green’s function gc(0, R) is proportional to a phase
ei

√
ω2−�2R/vF . A phase e2i

√
ω2−�2R/vF is then accumulated by

quasiparticles which travel from resonance 1 to resonance 2
and back. Therefore, at a fixed distance R, the resolvent of the
coupled system oscillates as a function of the energy around
the single-dot resolvent R1.
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