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Demonstration of CP2 skyrmions in three-band superconductors by self-consistent
solutions of a Bogoliubov–de Gennes model
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Topological defects, such as magnetic-flux-carrying quantum vortices, determine the magnetic response of
superconductors and hence are of fundamental importance. Here, we show that stable CP2 skyrmions exist in
three-band s + is superconductors as fully self-consistent solutions to a microscopic Bogoliubov–de Gennes
model. This allows us to calculate microscopically the magnetic signatures of CP2 skyrmions and their footprint
in the local density of states.
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I. INTRODUCTION

Skyrmions are topological solitons that were originally
discussed as an effective description of nucleons [1]. Since
that first discussion, many generalizations have been proposed
[2]. Currently, the most studied case is magnetic skyrmions,
which are a topological defect characterized by the so-called
S2 → S2 topological map [3]. However, more complex
skyrmionic solutions exist in field theories with more compo-
nents [2]. In particular, early works considered skyrmions in
N-component nonlinear σ models with a high broken symme-
try [2,4,5]. More complicated skyrmions, with three or more
field components, can be characterized by CPN−1 topological
invariants. These are much less studied in condensed-matter
systems, where high broken symmetries have been relatively
rare. Recently, the interest in these objects started to increase
[6–14], revealing interesting properties.

In our work we focus on superconducting systems.
Previously, it was shown that CP2 skyrmions are possible
in a phenomenological Ginzburg-Landau model describing
a three-band s + is superconductor [6,7]. A three-band
s + is superconductor [15–18] can be described by
a three-component Ginzburg-Landau theory where
U (1) × U (1) × U (1) symmetry is explicitly broken to
U (1) × Z2 by intercomponent coupling [16,19]. The
Ginzburg-Landau-based studies in [6,7] suggest that
CP2 skyrmions can form in s + is superconductors as
metastable states, with a higher energy per flux quanta than
ordinary vortices. They could be excited by perturbations
and be protected against decay by a potential energy barrier.
The experimental discovery of s + is superconductivity in
Ba1−xKxFe2As2 was recently reported [20–22], in agreement
with theoretical predictions [15–17]. The evidence is based
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on the detection and analysis of spontaneous magnetic
fields from muon spin relaxation experiments [21,23], the
spontaneous Nernst effect [22], and the existence of two phase
transitions indicating two broken symmetries [22,24,25].
This is strong motivation to investigate the existence of
CP2 skyrmions in a fully microscopic model, not limited to
temperatures near criticality.

In this paper we report the existence of CP2 skyrmions in
fully self-consistent solutions of a three-band Bogoliubov–de
Gennes (BdG) model. The model retains microscopic degrees
of freedom. Moreover, the microscopic calculations allow us
to determine the skyrmions’ signatures in the local density of
states.

II. MODEL

We begin by considering the three-component Hubbard
model, defined on a two-dimensional square lattice, described
by the microscopic Hamiltonian

H = −
∑
ασ

∑
〈i j〉

exp (iqAi j )c
†
iσαc jσα

−
∑
iαβ

Vαβc†
i↑αc†

i↓αci↓βci↑β . (1)

Here, 〈i j〉 denotes nearest neighbor pairs, and ciσα is the
fermionic annihilation operator at position i, with spin σ

(σ ∈ {↑,↓}) and in band α (α ∈ {1, 2, 3}). We are using a
rescaled unit system, where the planar spatial coordinates
are measured in units of the lattice spacing, and all energies
are measured in units of the hopping parameter (for details
see Appendix A). The quartic interaction term, defined by
Vαβ = V ∗

βα , allows Cooper pairs to form and tunnel between
bands, yielding multiband superconductivity. By performing
the mean-field approximation in the Cooper channel (for de-
tails see Appendix B), we obtain the mean-field Hamiltonian

H = −
∑
σα

∑
〈i j〉

exp (iqAi j )c
†
iσαc jσα

+
∑

iα

(�iαc†
↑iαc†

↓iα + H.c.), (2)
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FIG. 1. Illustration of the lattice description of the magnetic field
(defined on the plaquette) and the vector potential (defined on the
links).

where H.c. denotes Hermitian conjugation. The interaction
between the bands is embedded in the self-consistency equa-
tions for the gaps, which read

�iα =
∑

β

Vαβ〈c↑iβc↓iβ〉. (3)

The phase factor exp (iqAi j ) accounts for interaction with
the magnetic vector potential A through Peierls substitution
[26,27], where

Ai j =
∫ i

j
A · d�. (4)

The magnetic field is also solved for self-consistently. The
current from j to i generated by the fermions equals

Ji j = −
〈

∂H
∂Ai j

〉
= −2q

∑
ασ

Im[〈c†
iσαc jσα〉 exp(iqAi j )]. (5)

The current is defined on the links connecting nearest neigh-
boring sites, and we discretize the vector potential in the same
way, as shown in Fig. 1. This results in having the magnetic
field Bz defined on the lattice plaquettes and equal the dis-
crete curl of the vector potential. Following Fig. 1, we have
Bz = A21 + A32 − A34 − A41. Following this convention, we
can write the magnetic field energy as

Fmag = 1

2

∑
plaquettes

B2
z , (6)

where the sum is carried out over all the plaquettes. The
discrete version of Maxwell’s equation ∇B − J = 0 is

∂Fmag

∂Ai j
+

〈
∂H
∂Ai j

〉
= 0. (7)

The free energy associated with the tight-binding Hamilto-
nian, up to a constant, equals

FH =
∑

i

�†
i V

−1�i − kBT Tr ln(e−βH + 1), (8)

such that the total free energy is F = Fmag + FH .
The self-consistency equations in Eq. (3), along with the

Maxwell equation for the magnetic field in Eq. (7), are solved
numerically by employing an iterative scheme based on the

Chebyshev spectral expansion method [28–30]. For more de-
tails on the iterative scheme, see Appendix C.

A. Gauge and time reversal symmetries

Having introduced coupling between the fermions and the
magnetic vector potential using Peierls substitution, the sys-
tem is now invariant under the gauge transformation

ciσα 	→ exp (iχi )ciσα, Ai j 	→ Ai j + χi − χ j

q
,

�iα 	→ exp (2iχi )�iα. (9)

This transformation does not alter the magnetic field or the
phase differences between the superconducting gaps. In this
notation, the magnetic flux quantum, associated with one vor-
tex, is equal to �0 = π/q.

Suppose that (�, A) is a self-consistent solution to our
equations. By symmetry, (�∗,−A) is also a solution. The
s + is state in the three-band system corresponds to the case
where the phase differences between the individual gaps are
different from zero and π . This state spontaneously breaks
time reversal symmetry since � and �∗ are distinct states
(corresponding to s + is and s − is superconducting states,
respectively). These two time-reversed states cannot be trans-
formed into each other by a gauge transformation.

B. Skyrmionic index

In this section, we introduce the classification of topologi-
cal excitations in terms of their topological index. The model
contains three complex-valued fields � = (�1,�2,�3)T, de-
fined on a square lattice. We can write � = ρZ, where Z =
(Z1, Z2, Z3)T satisfies |Z|2 = 1 and contains information about
the relative phases and magnitudes of the three supercon-
ducting gaps. The total density ρ and the relative phases and
magnitudes contained in Z are gauge invariant. If we assume
that ρ > 0 (that is, the superconducting gaps never vanish
simultaneously), the space associated with the relative phases
and magnitudes is the complex projective plane CP2.

For a three-band Ginzburg-Landau model, it was shown
that there exists a topological index Q ∈ Z, associated with
the complex projective space CP2 [7]. Here we will use the
corresponding index derived for a lattice in [31], which is
defined as a sum over the plaquettes, where each plaquette
contains two signed triangles. As in Fig. 1, let 1, 2, 3, and
4 denote the vertices associated with a plaquette in coun-
terclockwise order. One possible choice for the two signed
triangles is 123 and 134. The skyrmionic charge density
ρCP2 (ABC) associated with a signed triangle ABC satisfies

exp[i2πρCP2 (ABC)] = TrPAPBPC√
TrPAPBTrPBPCTrPCPA

, (10)

where the matrices P, defined as Pαβ = ZαZ∗
β , contain the

relative phase and magnitudes of the complex fields at the
different vertices [32]. Explicitly, the topological index reads

Q =
∑

plaquettes

[ρCP2 (123) + ρCP2 (134)]. (11)
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III. GROUND STATE AND CRITICAL TEMPERATURE

The ground state is found by considering the case when
the superconducting gaps � = (�1,�2,�3)T are uniform
in the absence of any magnetic field. The self-consistency
equations in the multicomponent case are straightforward ex-
tensions of the single-component case and read

�α =
∑

β

VαβI (|�β |2)�β, (12)

where

I (|�|2) =
∫

BZ

dkxdky

(2π )2

tanh
{

1
2kBT E (k, |�|2)

}
2E (k, |�|2)

(13)

and E (k, |�|2) =
√

ξ (k)2 + |�|2 is the dispersion relation
in the presence of the superconducting gap �, with ξ (k) =
−2 cos kx − 2 cos ky being the dispersion relation in the ab-
sence of superconductivity. The integral is carried out over the
first Brillouin zone [0, 2π ) × [0, 2π ). In order to find the crit-
ical temperature at which the superconducting gap vanishes
continuously, we can expand Eq. (12) to the lowest order in
the gap magnitude, resulting in the linearized gap equation

� = I (0)V �. (14)

It is clear that the critical temperature is determined by the
largest eigenvalue Vmax of the pairing potential matrix V ,
such that 1 = I (0)Vmax. The relative phases and magnitudes
of the components �α at criticality can be inferred from the
corresponding eigenvector.

We now consider the pairing potential matrix Vαβ , written
in matrix form as

V =
⎛
⎝v u u

u v u
u u v

⎞
⎠, (15)

where v is the pairing potential within each band, also
called intraband pairing, while u is the interaction pairing
between different bands, i.e., interband interaction. Diagonal-
izing the pairing potential matrix V in Eq. (15) gives us two
eigenvalues, V+ = v + 2u and V− = v − u. The eigenvector
associated with V+ is v+++ = (1, 1, 1)T/

√
3, corresponding

to zero phase difference between all three components. The
eigenvalue V− is degenerate, and a possible choice for the two
orthonormal associated eigenvectors is

vs+is = 1√
3

⎛
⎝ 1

ω3

ω∗
3

⎞
⎠, vs−is = 1√

3

⎛
⎝ 1

ω∗
3

ω3

⎞
⎠, (16)

where ω3 = e2π i/3 is the third root of unity. The eigenvec-
tors vs±is have nonzero phase differences between all three
components and are each other’s complex conjugates. These
three eigenvectors form a complete orthonormal basis, and
consequently, the gap vector � can be expressed as

� = �s+isvs+is + �s−isvs−is + �+++v+++. (17)

We are interested in the case when u is negative, such that
opposite signs (phase difference π ) of the superconducting
gaps are favored, and V− is the largest eigenvalue. In the case
of three components, this results in phase frustration since the

FIG. 2. Phase diagram for the superconducting ground state,
where v is the pairing potential within bands and u is the interaction
pairing between different bands, as in Eq. (15). When u is positive,
the optimal phase difference between the bands is zero, while for
negative u, the optimal phase difference is π , resulting in frustration
and spontaneous time reversal symmetry breaking (illustrated by the
two arrow configurations). This phase diagram holds for all tempera-
tures below the critical temperature. The solid (dashed) line indicates
when the pairing potential matrix is singular, i.e., when the eigen-
value V− (V+) is zero. No superconductivity is present when both
eigenvalues are negative. The dotted line marks where we perform
the investigation of skyrmions.

optimal phase difference π cannot be satisfied for all pairs.
The resulting ground state � ∝ vs±is spontaneously breaks
time reversal symmetry. It is important to note that it is not
possible to infer directly from the linearized gap equation the
ground state for temperatures below the critical temperature.
For example, the state v++− = (1, 1,−2)T/

√
5 is also an

eigenvector with eigenvalue V−. Studying the associated free
energies shows that the s ± is state is the ground state for
all temperatures below the critical temperature. The phase
diagram is shown in Fig. 2.

At the critical lines V± = 0, the pairing potential matrix
is singular, and the free energy in Eq. (8) seems ill defined.
However, this is not the case. For example, when V+ = 0, the
projection of � onto the corresponding eigenspace is exactly
zero, and the three superconducting gaps � can always be
written as a linear combination of only two order parameters:
�s+is and �s−is. Similarly, when V− = 0, the full three-band
system is described by a single order parameter �+++. It
should be noted that this not only is for the ground state but
holds locally for every inhomogeneous gap configuration.

IV. SKYRMION SOLUTIONS

Like the model for conventional superconductors, the
three-band model in this paper, described by three complex
fields � = (�1,�2,�3)T, can host topological excitations in
the form of vortices. The simplest vortex solution would be
the composite vortex, where all three complex fields vanish si-
multaneously at a joint vortex core. Overlapping vortex cores
are favored by the electromagnetic and Josephson couplings
[33]. The topological invariant associated with this solution
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is the winding number of the complex fields. Fractional vor-
tices, i.e., configurations with winding in only one of the
three complex fields, have been found to be stable [9,33]
but energetically unfavorable compared to composite vortices
in the bulk of the system in a constant external field. The
skyrmion solutions, shown previously using Ginzburg-Landau
theory for an s + is superconductor [6,7], are situations in
which the vortex cores can fractionalize; that is, the vortex
cores of the three complex fields do not overlap. The frac-
tionalized vortices populate domain walls. At the domain wall
the interaction between fractional vortices is repulsive since
phase differences between components have energetically un-
favorable values. Hence, the domain wall is stabilized against
collapse due to the Josephson interaction together with the
magnetic repulsion between the fractional vortices. In these
cases, the solution is associated with a topological skyrmionic
index Q, as described in Sec. II B. In this section, we search
for such solutions and investigate their properties in a fully
microscopic model.

A full phase diagram exploration of these properties is un-
feasible. However, by setting V− = v − u = 3 while varying
both u and v, we can explore regimes where the interaction
between the bands is weak (|u| is small) and where the in-
teraction between the bands is dominant (|u| is large). Since
V− is constant along this line, so is the critical temperature
(kBTc ≈ 0.46). This line is marked as a dotted line in Fig. 2.
We set T = Tc/2 for all simulations, expect for the temper-
ature span considered in Sec. IV B. The numerical solutions
we present are obtained from simulating finite-sized systems
that are large, such that the skyrmions are sufficiently far away
from the boundaries to discard any mesoscopic effects.

A. Skyrmion structure: Q = 5 example

Let us begin by studying the structure of a single skyrmion
with skyrmionic topological charge Q = 5, shown in Fig. 3.
We set the effective charge q = 0.15, the pairing matrix diag-
onal v = 2.5, and off-diagonal u = −0.5. The skyrmion is an
excitation on top of the s + is ground state, where the phase
differences are θ2 − θ1 = 2π/3 and θ3 − θ1 = −2π/3. The
skyrmion consists of five fractional vortices in each super-
conducting band, that is, with nonoverlapping vortex cores,
forming a closed ring. Inside the ring, the phase differences
change sign and become an s − is superconducting state.
Note also that the vortices form a repeating pattern along the
domain wall. The cores are ordered in a 123123 . . . fashion
(counterclockwise). The cyclic ordering 132132 . . . is not sta-
ble, unless the vortices are replaced with antivortices or if the
s ± is domains are interchanged. A preferential sequence for
ordering of fractional vortices, i.e., the skyrmion’s chirality,
was also found in Ginzburg-Landau models [7].

Our microscopic model allows us to calculate the local
density of states (LDOS) at the Fermi energy. It is shown
in Fig. 4 together with the magnetic field generated by the
skyrmion. The LDOS at energy ε is calculated using the
quasiparticle wave functions u↑ni and v↓ni with eigenenergy
En as

LDOSi(ε) = −
∑

n

[|u↑ni|2 f ′(En − ε) + |v↓ni|2 f ′(En + ε)],

(18)

FIG. 3. Example of a skyrmion with Q = 5. The left column
shows the two phase differences θ2 − θ1 and θ3 − θ1, showing that
the skyrmion forms a circular domain wall, stabilized by the vortices.
The second column shows the skyrmion charge density ρCP2 and
the fractionalization of the vortex cores. The third column shows
the absolute value of each superconducting gap. We use intraband
pairing v = 2.5, interband pairing u = −0.5, and effective charge
q = 0.15.

where f (x) = (1 + eβx )−1 is the Fermi-Dirac distribution and
β = 1/(kBT ). In this model, the Fermi energy is set at ε = 0.
Both the magnetic field and the LDOS are localized at the
fractional vortex cores. The possibility of resolving the mag-
netic field peaks of individual vortex cores depends on the
skyrmion size in relation to the magnetic field length scale. In
the following sections, we investigate how the skyrmion prop-
erties depend on the temperature, interband pairing strength,
magnetic length scale, and skyrmion index.

B. Skyrmion size dependence on temperature

In this section we investigate how the skyrmion size
changes with temperature. We compute the area of the

FIG. 4. Magnetic field Bz and local density of states (LDOS) at
Fermi energy for the Q = 5 skyrmion in Fig. 3. Both quantities are
localized at the domain wall ring and the fractional vortex cores.
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FIG. 5. Skyrmion radius for a Q = 5 skyrmion as a function of
temperature. Within the considered temperature range, the radius in-
creases with temperature. The dots indicate where simulations were
performed and the dashed curve is a fit to the data. We use the same
parameters as for the skyrmion in Fig. 3.

skyrmion as

A = 1

2

∑
i

[
1 − 2√

3
sin(θ2 − θ1)i

]
, (19)

and the associated radius Rskyrmion = √
A/π [34]. The Q =

5 skyrmion radius as a function of temperature is shown in
Fig. 5 for temperatures 0.4 � T/Tc � 0.8. In this temperature
range, the skyrmion size increases with temperature.

C. The influence of interband pairing strength

Having demonstrated an example of a stable skyrmion,
we now explore its properties as we change the interaction
between the bands. To be specific, we study how the skyrmion
excitation energy and size change. As previously mentioned,
we fix v − u = 3 and change both the interband u and
the intraband v pairing simultaneously. We parametrize this
change as u = −s and v = 3 − s and consider positive values
of s. That is, s = 0 corresponds to no interaction between
the bands, while large s corresponds to interband-dominated
pairing. We compute the skyrmion size using Eq. (19). To
compute the skyrmion excitation energy �Fskyrmion, we cal-
culate the total free energy of the system, from which we
subtract the free energy of the ground state. By doing so, we
are able to cancel the free-energy contributions coming from
the boundary and uniform zones of the gap. The excitation
energy and skyrmion radius for a Q = 5 skyrmion are shown
in Fig. 6. When the interband pairing is weak, the excitation
energy is small, and the size of the skyrmion grows. When
the interband pairing is strong, the skyrmion shrinks, and the
excitation energy increases, both approaching constants in the
limit of interband-dominated pairing. The excitation energy is
given in units of the excitation energy of a composite vortex.
We see that in the limit of weak interband pairing, that is,
s → 0, the skyrmion excitation energy approaches the exci-
tation energy associated with Q vortices. In this limit of weak
interband interaction, the skyrmion radius grows, allowing for
the peaks of the magnetic field associated with each fractional
vortex to be resolved. In the limit of interband-dominated
pairing, the skyrmion shrinks such that the field from each
fractional vortex no longer can be resolved. In Fig. 6 we
show, for comparison, the excitation energy associated with

FIG. 6. Excitation energy and skyrmion radius for a Q= 5
skyrmion for different strengths of the interband pairing,
parametrized by s. Here, s = 0 corresponds to no interaction
between bands, and s → ∞ corresponds to interband-dominated
pairing. The excitation energy is given in units of the vortex
excitation energy. The gray curve shows the energy associated with
five vortices separated from a domain wall with length equal to the
skyrmion circumference. The fact that the excitation energy of the
skyrmion is smaller than the sum of the excitation energy of its
constituents shows that domain walls and vortices bind together. The
right column shows the magnetic field for some specific values of s.
We use effective charge q = 0.15, intraband pairing v = 3 − s, and
interband pairing u = −s.

the constituents of the skyrmion: the domain wall and the five
composite vortices, considered independently. The excitation
energy of the domain wall is calculated as the excitation
energy per unit length of a straight domain wall, multiplied
by the skyrmion circumference. The fact that the excitation
energy of the skyrmion is smaller than the excitation energy of
a domain wall and vortices separated shows that skyrmions are
formed from an attractive interaction between domain walls
and vortices.

D. The influence of the magnetic length scale

In the previous examples, we used a constant value of
the effective charge q. In this section, we explore how
changing q affects the skyrmion size and energy. For vortices
in one-band superconductors, the magnetic field decays on
a length scale λ, which depends on the effective charge q.
For example, in Ginzburg-Landau theory, λ is proportional
to the reciprocal of q. In isotropic multiband models, the
tail of the magnetic field of a conventional vortex can be
well approximated by e−x/λ, where λ is the length scale of
interest. We consider values of the effective electric charge
q ∈ [0.144, 0.5], for which we compute the excitation energy
and magnetic length scale for a single composite vortex,
in addition to the excitation energy and radius of a Q = 5
skyrmion. The gathered data are presented in Fig. 7, where
we show how the excitation energy and size of the skyrmion
change as the magnetic length scale is altered. Within the
considered parameter regime, both quantities increase linearly
with the magnetic length scale λ. In the first approximation,
the skyrmion excitation energy can roughly be partitioned
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FIG. 7. Excitation energy (in units of vortex excitation energy)
and radius for a Q = 5 skyrmion for various values of the magnetic
length scale λ associated with a composite vortex. In the considered
parameters range, both quantities increase linearly with λ. We use
intraband pairing v = 2.5 and interband pairing u = −0.5.

into three parts: the vortex energy, the domain wall energy,
and their interaction energy. The domain wall energy scales
linearly with the skyrmion radius, which in turn, in the con-
sidered regime, scales linearly with λ. We observe that the
total excitation energy (i.e. not only the domain wall asso-
ciated energy) scales linearly with λ. This means that when
the magnetic penetration length is relatively large, the exci-
tation energy of flux-carrying skyrmions can be significantly
larger than the excitation energy of the corresponding number
of flux-carrying vortices. It is unclear whether our range of
magnetic length scales is sufficiently wide to extrapolate the
trend for even larger values of λ. Numerical limitations on
the system size do not allow us to reliably compute skyrmion
properties in the BdG model for very large λ (that is, small q),
and further investigations are necessary to assess the scaling
behavior in this limit.

E. Energy and size scaling with Q
Let us compute the skyrmion excitation energy and the

skyrmion radius for different skyrmionic indices Q. The result
is shown in Fig. 8, where we consider different magnitudes of
the interband pairing controlled by the parameter s, which we
introduced previously. We see that both the excitation energy
and the radius grow linearly with Q. Increasing the inter-
band pairing strength (increasing s) results in smaller radii
and larger excitation energies, as shown already for Q = 5
in Fig. 6. Note that for the weakest interaction considered,
s = 0.05, the stability of the skyrmion is achieved only for
topological indices larger than Q = 2.

F. Concentric skyrmions

In the previous examples, we considered different
skyrmions with different topological indices Q by changing
the number of vortices localized at the domain wall. However,
it is also possible to change the number of domain walls. In
this section, we show that these domain walls can even be con-
centric. Cocentered skyrmions were previously reported using

FIG. 8. Skyrmion excitation energy (in units of vortex excitation
energy) and skyrmion radius for increasing skyrmionic index Q for
different interband pairing strengths s. Both quantities scale linearly
with Q. Increasing the interband pairing results in smaller skyrmions
with larger excitation energies, as shown in Fig. 6 for Q = 5 (we use
the same parameters as in Fig. 6).

the Ginzburg-Landau model for s + is superconductors [7].
Similar composite skyrmions have been shown to appear in
chiral magnets [35] and liquid crystals [36]. In Fig. 9 we show
an example of a concentric skyrmion with Q = 10, consisting
of two concentric domain walls. Note that on the outer ring,
the fractional vortices follow a 123 . . . ordering, while on the
inner ring, the order is 132 . . .. The reversal occurs because
from the perspective of the outer ring, the regime outside is
s + is and the inner one is s − is, while for the inner ring, the
regimes are the opposite. We can also see that the outer ring
forces the inner ring to contract, which is most apparent when
studying the magnetic field.

V. CONCLUSION

In conclusion we demonstrated that, at the level of a mi-
croscopic Bogoliubov–de Gennes theory in three-band s + is
superconductors, there are flux-carrying CP2 skyrmions. The
skyrmions can be viewed as stable bound states of spatially
separated fractional vortices and circular domain walls. These
solutions were obtained by solving a fully self-consistent
three-band Bogoliubov–de Gennes model coupled to a gauge
field. In the considered parameter regime, we found that
skyrmions are slightly more energetically expensive than
vortices per unit of magnetic flux. This suggests that in
Ba1−xKxFe2As2, where the s + is state has been reported, the
magnetic response under external field along the c axis should
be dominated by ordinary vortices. However, a sufficiently
strong quench of a lattice of ordinary vortices may produce
CP2 skyrmions. Recently, more superconducting materials
that break time reversal symmetry were discovered [37], for
which we can also search for skyrmion solutions. When the
superconducting bands are strongly coupled, we find that the
magnetic signature of a skyrmion can manifest itself in a
scanning superconducting quantum interference device exper-
iment as a washed-out circle, or, more generally, closed stripe,
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FIG. 9. Example of a concentric skyrmion with Q = 10, where the inner ring has four fractional vortices in each band and the outer ring
has six. We use the same parameters and show the same quantities as in Figs. 3 and 4.

of magnetic flux. Another possible route to detect skyrmions
is scanning tunneling spectroscopy. In fact, the skyrmion so-
lutions that we presented exhibit clear signatures in the local
density of states correlated with the position of fractional-flux
vortices.
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APPENDIX A: RESCALING

In dimensionful units, the Hamiltonian for our
three-component superconductor, before the mean-field
approximation, reads

H = −t
∑
ασ

∑
〈i j〉

exp (ieaAi j/h̄)c†
iσαc jσα

−
∑
iαβ

Vαβc†
i↑αc†

i↓αci↓βci↑β, (A1)

where t is the nearest-neighbor hopping parameter, e is the
electronic charge, and Ai j = 1

a

∫ i
j A · d� accounts for inter-

action with the magnetic vector potential through Peierls
substitution (a is the lattice spacing). The energy associated
with the magnetic field equals

Fmag = 1

2μ2D
0

∑
plaquettes

B2
z a2, (A2)

where Bz = (A21 + A32 − A34 − A41)/a (following the nota-
tion introduced in the main text) and μ2D

0 = μ0/Lz is the
effective two-dimensional vacuum permeability for the sys-
tem (Lz is the perpendicular length scale associated with the
magnetic field).

Let us introduce a dimensionless system in which we mea-
sure all energies in units of the hopping parameter t and the
planar coordinates x and y in units of the lattice spacing a (x =
ax′ and y = ay′). Let H = tH ′ and Fmag = tF ′

mag, where H ′

and F ′
mag are the rescaled energies. We introduce Vαβ = tV ′

αβ

for the rescaled Hubbard Hamiltonian. The rescaled magnetic
energy equals

F ′
mag = 1

2

∑
plaquettes

B′
z
2
, (A3)

where B′ = Ba/
√

μ2D
0 t = ∇′ × A′ and A′ = A/

√
μ2D

0 t . The
Peierls phase reads

e

h̄
aAi j = qA′

i j, (A4)

where q = e
h̄ a

√
μ2D

0 t and A′
i j = ∫ i

j A′ · d�′ are dimensionless.
Throughout the main text we use these rescaled coordinates,
and for brevity we drop the prime notation.

APPENDIX B: DERIVATION OF THE
MEAN-FIELD HAMILTONIAN

The partition function associated with the Hamiltonian in
Eq. (1) is

Z =
∫

D[c†c]e−S(c†c), (B1)

where the action S reads

S =
∫ 1/kBT

0
dτ

[∑
i jσα

c†
iσα (δi j∂τ + hi jα )c jσα

−
∑
iαβ

Vαβc†
i↑αc†

i↓αci↓βci↑β

]
, (B2)

where hi j = h∗
ji is some general quadratic term (such as near-

est neighbor hopping). The mean-field approximation is used
to rewrite and approximate the quartic interaction term, de-
fined by the interaction strengths Vαβ . We assume that the
associated interaction matrix V is nonsingular, resulting in
three superconducting order parameters (for a discussion of
the singular case, see Sec. III). Let ρiα = ci↓αci↑α , such that
the quartic interaction reads −∑

iαβ Vαβρ
†
iαρiβ . By perform-

ing the Hubbard-Stratonovich transformation [38,39] in the
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Cooper channel, we have

exp

{∫
dτ

∑
iαβ

Vαβρ
†
iαρiβ

}

=
∫

D[�∗�] exp

{
−

∫
dτ

∑
iα

[
�∗

iαρiα + �iαρ
†
iα

+
∑

β

(V −1)αβ�∗
iα�iβ

]}
, (B3)

where �iα is an auxiliary bosonic field and V −1 is the inverse
of the coupling matrix. Hence, the partition function becomes

Z =
∫

D[�†�]D[�∗�]

× exp

{
−

∫
dτ

[ ∑
i jα

�
†
iα (δi j∂τ + Mi jα )� jα

+
∑
iαβ

(V −1)αβ�∗
iα�iβ

]}
, (B4)

where we introduced the Nambu spinor notation with

�iα =
(

ci↑α

c†
i↓α

)
, �

†
iα = (ci↑α c†

i↓α ), (B5)

and the matrix elements

Mi jα =
(

hi j δi j�iα

δi j�
∗
iα −h∗

i j

)
. (B6)

Let us Fourier transform the Nambu spinors from imaginary
time to the Matsubara frequency space, i.e.,

�iα (τ ) =
∞∑

m=−∞
�̃iαmeiωmτ , (B7)

where ωm = 2πkBT (m + 1/2) are the Matsubara frequencies
for fermions. By integrating out the fermionic degrees of
freedom �̃iαm and �̃

†
iαm we obtain the partition function

Z =
∫

D[�∗�]

× exp

{
−

∫
dτ

∑
iαβ

(V −1)αβ�∗
iα�iβ

+
∑
αm

ln det(1ωm + Mα )

}
, (B8)

where

Mα =
(

h �α

�†
α −h∗

)
(B9)

is a 2N × 2N matrix, with �α = diag(�1α, . . . ,�Nα ) (N is
the total number of sites). By assuming that the auxiliary
fields are classical, that is, they have no dependence on τ , we
can perform the imaginary time integral, yielding the partition

function

Z =
∫

D[�∗�]e−S′(�∗,�), (B10)

with

S′ = 1

kBT

∑
iαβ

(V −1)αβ�∗
iα�iβ −

∑
αm

ln det(1ωm + Mα ).

(B11)

At this point, we make the further assumption that the field
does not have thermal fluctuation, which means that the only
field configuration which does contribute to the partition func-
tion is the one which minimizes the action S′. Therefore,
we can define the free energy of the model as FH = kBT S′,
obtaining, after summing up the Matsubara frequencies,

FH =
∑

i

�†
i V

−1�i + kBT
∑

α

Tr ln f (Mα ), (B12)

where f (x) = (eβx + 1)−1 is the Fermi-Dirac distribution and
�i = (�i1,�i2,�i3)T. The last step to perform is to find the
field configuration which minimizes the free energy, namely,

∂FH

∂�∗
iα

= (V −1)αβ�iβ + f (Mα )i,i+N = 0. (B13)

Following the derivations in [28,29], it is possible to show that
the matrix elements of f (Hα ) correspond to thermal averages.
Explicitly, we have

〈c†
i↑αc j↑α〉 = f (Mα ) ji, (B14)

〈c†
i↓αc j↓α〉 = δi j − f (Mα )i+N, j+N , (B15)

〈ci↑αc j↓α〉 = − f (Mα ) j,i+N , (B16)

yielding the self-consistency equations

�iα =
∑

β

Vαβ〈ci↑βci↓β〉. (B17)

The fields �iα represent the superconducting gaps in each
band. We can now insert the equations for the gaps �iα back
into the free energy, obtaining, up to a constant,

FH =
∑

i

�†
i V

−1�i − kBT Tr ln(e−βM + 1), (B18)

where M = M1 ⊕ M2 ⊕ M3. From Eqs. (B17) and (B6) we
can see that, following the decoupling in the Cooper channel,
the three bands are described by single-band matrices Mα and
are coupled through the self-consistency equations.

APPENDIX C: NUMERICAL METHOD DETAILS

In order to solve the mean-field Hamiltonian self-
consistently, we need to evaluate thermal averages to compute
the superconducting gaps in Eq. (3) and the currents in
Eq. (5). The standard approach would be to express these
thermal averages in terms of the quasiparticle wave functions
(u(n)

↑αi, v
(n)
↓αi )

T that satisfy the equation

Enα

(
u(n)

↑αi

v
(n)
↓αi

)
=

∑
j

(
hi j �αiδi j

�∗
αiδi j −h∗

i j

)(
u(n)

↑α j

v
(n)
↓α j

)
, (C1)
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where hi j corresponds to the hopping terms in the Hamil-
tonian. These quasiparticle wave functions can be found by
diagonalizing matrices Mα , which are 2N × 2N Hermitian
matrices. However, finding all wave functions and corre-
sponding eigenvalues is computationally expensive. Since we
are interested only in local thermal averages, such as those for
the superconducting gaps and the currents, it is computation-
ally more efficient to express these thermal averages as matrix
elements of f (Mα ), where f (x) is the Fermi-Dirac distribu-
tion function [see Eqs. (B14), (B15), and (B16)]. Calculating
these specific matrix elements is more tractable than full
diagonalization of the matrices. We employ the Chebyshev
spectral expansion method [28–30], where the Fermi-Dirac
distribution is approximated by an expansion in Chebyshev
polynomials. For all the simulations, we use 400 polynomi-
als to approximate the distribution function. The number of
polynomials needed depends on the smoothness of the Fermi-
Dirac distribution, which, in turn, depends on the temperature.
For the temperature used in all the simulations we performed,
400 polynomials are sufficient to ensure highly accurate re-
sults.

Next, we need to describe the iterative method used to
update the magnetic vector potential and the superconducting

gaps. For the superconducting gap we use

�
(t+1)
iα = m�

(t )
iα + (1 − m)

∑
β

Vαβ〈c↑iβc↓iβ〉(t ), (C2)

where m ∈ [0, 1) is a memory parameter, which is necessary
to ensure convergence in certain parameter regimes, where
a negative eigenvalue, of the potential matrix V , of large
magnitude can destabilize the iterative procedure. The vector
potential is updated by performing one gradient descent step

A(t+1)
i j = A(t )

i j − γ

(
∂Fmag

∂Ai j

(t )

− J (t )
i j

)
, (C3)

where γ = 0.1 is a constant coefficient. These iterations are
continued until a specific convergence criterion is met. We use
the requirement that the mean value of the relative change,
over all sites (or links for the magnetic vector potential),
should be less than 10−6. Efficient calculation of the local
density of states can be performed using the Chebyshev ex-
pansion method. However, we compute the local density of
states using Eq. (18) by performing one diagonalization step
after convergence to obtain all information contained in the
eigenstates.
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