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Spin diffusion in spin glasses requires two magnetic variables, �M and �m
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Experiment has established that spin glasses can support a steady-state spin current �ji. However, the accepted
theory of spin-glass dynamics permits oscillations but no steady-state spin current. Onsager’s irreversible
thermodynamics implies that the spin current is proportional to the gradient of a magnetization. We argue,
however, that the magnon distribution function associated with the local equilibrium magnetization �M cannot
diffuse because it represents 1023 variables. We therefore invoke the nonequilibrium magnetization �m, which
in spintronics is called the spin accumulation. Applying the theory of irreversible thermodynamics, we indeed
find that it predicts spin diffusion, and we consider other experimental consequences of the theory, including a
wavelength-dependent coupling between the reactive and the diffusive degrees of freedom.
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I. INTRODUCTION

Spintronics, i.e., control and manipulation of spin de-
grees of freedom [1,2], especially spin currents, has received
great attention in recent years. Various magnetic materials
including paramagnets, ferromagnets, and antiferromagnets
has been used to realize spintronics. The present work con-
siders spintronics in spin glasses, which dates to 2011. At that
time Iguchi et al. studied spin current absorption in the spin
glass AgMn using the spin pumping method, and proposed
spin current injection as a method to investigate spin-glass
properties [3].

More recently, Wessenberg et al. presented evidence for
steady-state spin currents traversing an amorphous sample
of the magnetic insulator yttrium iron garnet (YIG) [4]. In
their work, x-ray diffraction on a 200-nm sputtered sample
indicated no medium-range or long-range order. From this it
was inferred that the system was polycrystalline and perhaps,
for length scales larger than 100 nm, effectively a spin glass
[5]. For these thin films they found spin currents much larger
than for crystalline YIG. This experiment has motivated us to
develop a theory for spin currents in spin glasses.

Unfortunately, further experiment is needed in this area,
such as—all other variables fixed—a study of the dependence
of the spin current on sample thickness. For dc spin current
such a study has been performed on an antiferromagnet, which
like a spin glass has no net magnetization. That study found
two characteristic decay lengths [6]. (Reference [7] uses a
kinetic theory to discuss spin diffusion for insulating anti-
ferromagnets.) For a spin glass we expect that, due to its
isotropic nature, there would be only one characteristic decay
length.

At the microscopic level we expect that in a spin glass the
equilibrium spin orientations vary rapidly from site to site, due
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to the frustrating effect of competing exchange interactions.
This is illustrated explicitly in the simulations of Walker and
Walstedt [8,9]. Previous theories of the macroscopic dynamics
of spin glasses included as macroscopic variables the mag-
netization �M and an orientation �θ [10,11]. The variable �θ
represents a local rotation of the noncollinear magnetic order
within the spin glass. For a spin-glass sample with no magne-
tization in zero external field H (i.e., no remanence), the local
spins tip to give a local net magnetization �M. However, these
theories give no spin current �ji, where i is a spatial index. Note
that a spin glass repeatedly prepared in the same field �H and
the same sample orientation (thus the same local anisotropies)
will in each case go into distinct microscopic states. However,
all of these microscopic states will have the same macroscopic
properties. In equilibrium we take �θ = �0.

The present work applies the spintronics idea [12,13] that
spin currents are associated with the nonequilibrium magneti-
zation �m known as the spin accumulation. To our knowledge
there is no previous theoretical work on spin currents (i.e.,
spin diffusion) in spin glasses, and the present work is directed
at filling this gap to provide a framework to understand the
experimental results in Ref. [4].

As background, Sec. II discusses the spin accumulation
�m, Sec. III discusses the energy density when �m is included,
and Sec. IV discusses the corresponding thermodynamics.
Section V uses irreversible thermodynamics to obtain the
equations of motion. As a check, Sec. VI obtains the pure
spin waves, where �m is neglected, and Sec. VII obtains the
pure spin diffusion modes, where �M and �θ are neglected.
Section VIII discusses the fully coupled modes, and Sec. IX
discusses the weakly coupled modes, where either a spin wave
is accompanied by a small amplitude for spin diffusion, or
where spin diffusion is accompanied by a small amplitude
spin wave. Section X presents a summary and discussion that
relates the present work, for insulating spin glasses, to spin
glasses with a conductor like Cu that has been doped with
Mn. An Appendix discusses the Ruderman-Kittel-Kasuya-
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Yosida (RKKY) interaction in both nuclear and electron-spin
systems.

II. SPIN ACCUMULATION

For magnetic insulators with magnon modes labeled by α,
in local equilibrium we write the thermal occupation number
nl.e.

α . A deviation from equilibrium δnα of the thermal occupa-
tion number nα can give a local value for the nonequilibrium
magnetization, which we identify with �m rather than �M. �M
may correspond to some equilibrium state of the system,
although perhaps not for the actual �H , as can happen if �H
is rapidly changed. This approach permits a near-equilibrium
spin glass to support spin diffusion in terms of a diffusive non-
reactive magnetic variable, �m, while permitting �M to remain a
nondiffusive reactive variable.

Translated back into the language of site localized spins,
we distinguish between the local value of the equilibrium
part of the spin �Si and the nonequilibrium part of the spin �si.
Summing the former over spins gives the local equilibrium �M
and summing over the latter gives the local nonequilibrium
�m. Even before the term spintronics was coined, the idea
of a local nonequilibrium �m was employed by Dyakonov
and Perel to predict, for semiconductors with a spin-orbit
interaction, what later became known as the spin Hall effect
and the inverse spin Hall effect [14,15]. They used the term
accumulation of spin.

We recently applied the idea of spin accumulation �m to
the longitudinal magnetization M of a ferromagnet. There we
argued that spin diffusion of M from position A to position
B takes place indirectly, first at A via conversion of M to m,
then by diffusion of m from A to B, and finally by conversion
at B of m to M [16]. We also argued, implicitly, that any
nonconserved order parameter (call it Y ; it could be a super-
conducting order parameter), being encoded in a statistical
distribution function of 1023 variables, is unable to diffuse,
and therefore diffusion of Y from A to B occurs indirectly,
first at A by conversion from Y to the “Y accumulation” y,
then by diffusion of y from A to B, and finally by conversion
at B from y to Y .

It is essential to recognize that spin glasses, with no magne-
tization and isotropic macroscopic properties, have a different
symmetry than do ferromagnets. Ferromagnets have a single
longitudinal magnetic variable and two transverse magnetic
variables. On the other hand, spin glasses have three rota-
tionally equivalent magnetic variables. In the absence of spin
diffusion and anisotropy, ferromagnets have a decaying, non-
propagating longitudinal mode, and two degenerate transverse
modes with quadratic dependence on the wave vector k. On
the other hand, under the same conditions spin glasses have
three degenerate modes with a linear dependence on k. This
is much more like that for antiferromagnets, which, however,
have a more complex symmetry than do spin glasses. In part
for that reason the present work does not consider spin diffu-
sion in antiferromagnets.

The simplest system supporting a spin current is a para-
magnet, with spin current proportional to the gradient of the
nonequilibrium magnetization �m [12,17–19]. Both a spin dif-
fusion constant D and a spin relaxation time τ are present,
and give a characteristic and dissipative spin decay length

ls ∼ (Dτ )1/2. In the end, for a spin glass with �M, �θ , and in
addition �m, we find a similar decay length, but complicated
by dimensionless factors related to ratios of additional decay
times and ratios of the susceptibilities of �M and �m.

III. ENERGY DENSITY

We consider that a spin glass is described by a set of
local atomic magnet orientations that, when only exchange
interactions are included, can be uniformly rotated by an
infinitesimal angle �θ to produce an inequivalent microscopic
state with no change in energy [8–10]. For a given micro-
scopic configuration, when weak anisotropy interactions are
included the spins will locally reorient slightly to give a local
minimum that we will characterize by �θ = �0.

If cooled in zero external field (zfc), the system will de-
velop no magnetization, and when a nonzero �H is applied, in
equilibrium it will develop a magnetization �M with

�M = χM �H (zfc), (1)

where χM is the susceptibility of �M.
If a spin glass is prepared in a finite external field �Hf c

(field cooling), then on removing �Hf c there is a remanent
magnetization M0 along �Hc. When an additional field �H is
applied along �Hf c we have �M along �Hf c. Therefore �M0 and �H
are collinear, so we may write the scalar equation

M = M0 + χMH. (2)

A three-dimensional anisotropy (see below), due to single
ion anisotropy or Dzyaloshinsky-Moriya anisotropy [20–22],
tends to align �M0 with the direction of �Hf c, and defines a
three-dimensional (3D) baseline set of coordinates relative to
which the spin can be rotated. For small rotations we employ
the 3D angle �θ . Compared to the saturation magnetization, M0

typically is small, so that the system is only slightly affected
by it.

A. Energy density with �M and�θ

In the absence of �m, following previous work we employ
variables �M and �θ . We assume an energy density of the form

ε0

μ0
= ( �M − �M0)2

2χM
− �M · �H + K

2
�θ 2 + ρs

2
(∂i�θ )2, (3)

where μ0 is the vacuum permeability. The first term per-
mits a frozen-in remanent magnetization (common in spin
glasses) and the second term is the Zeeman energy. The third
term, with anisotropy constant K , represents the macroscopic
anisotropy energy, which is minimized for �θ = �0. The last
term, with spin stiffness coefficient ρs, represents the increase
in microscopic exchange energy for a nonuniform rotation �θ .

In the absence of K , to produce a twist in �θ alone would
require the spin analog of what, in numerical simulations
for atoms, the distinguished computational physicist Aneesur
Rahman called “ether pegs” [23]. With “spin ether pegs” to
twist the spin texture, the new twisted equilibrium state will
have characteristic twist length ln = (ρs/K )1/2. This nondis-
sipative length does not relate to the dissipative spin decay
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length, associated with both spin decay and spin diffusion, that
we will find below.

B. Energy density with �m

When spin accumulation is included, we append the addi-
tional energy density

ε1

μ0
= m2

2χm
− �m · �H − λM �m · ( �M − �M0), (4)

where χm is the susceptibility of �m. Here the first term has
its origin in exchange, and the second term is a Zeeman
interaction. The last term, involving the effective exchange
constant λM , is of a statistical nature. Enforcing the equilib-
rium conditions �Meq = �M0 + χM �H and �meq = �0 will constrain
the exchange constant λM .

IV. THERMODYNAMICS

We now give the thermodynamic differential energy den-
sity ε = ε0 + ε1 more generally, in terms of the appropriate
thermodynamic variables. We have, with entropy density s and
temperature T ,

dε = T ds − μ0 �H∗ · d �M − μ0�h∗ · d �m − �� · d�θ − ��i · d (∂i�θ ),
(5)

where �H∗, �h∗, and ��i are thermodynamic conjugates (effective
fields) associated with �M, �m, and ∂i�θ . When (3) applies, �� =
−K�θ , and ��i = −ρs∂i�θ .

We will require that the conditions �H∗
eq = �0 and �h∗

eq =
�0 recover the equilibrium conditions �M = �M0 + χM �H and
�m = �0.

The variational derivative of the energy with respect to �θ
defines the net torque density

��′ ≡ �� − ∂i ��i, (6)

and from (3), we have

��′ = −K�θ + ρs∇2�θ. (7)

This permits us to simplify (5) to, on neglecting a pure diver-
gence term,

dε = T ds − μ0 �H∗ · d �M − μ0�h∗ · d �m − ��′ · d�θ. (8)

A. The effective field �H∗

We define the effective field �H∗ by

�H∗ ≡ − ∂

∂ �M
ε

μ0
= �H − �M − �M0

χM
+ λM �m. (9)

�H∗
eq = �0 is consistent with the equilibrium conditions.

We now introduce the magnetization deviation from local
equilibrium, δ �M, via

δ �M ≡ −χM �H∗ = �M − �M0 − χM ( �H + λM �m). (10)

B. The effective field�h∗

We define the effective field �h∗ by

�h∗ ≡ − ∂

∂ �m
ε

μ0
= �H − �m

χm
+ λM ( �M − �M0). (11)

We can make this consistent with the equilibrium conditions
if we take

λM = − 1

χM
, (12)

so

�h∗ ≡ − ∂

∂ �m
ε

μ0
= �H − �m

χm
− ( �M − �M0)

χM
. (13)

We now introduce the spin accumulation deviation from
local equilibrium, δ �m, via

δ �m ≡ −χm�h∗ = �m − χm

χM
( �M − �M0 − χM �H ). (14)

C. Deviations from local equilibrium

For completeness we rewrite �H∗ and δ �M as

�H∗ = �H − �M − �M0

χM
− �m

χM
, (15)

δ �M = �M − �M0 − χM �H + �m. (16)

With (12) and the definition

ξ ≡ χm

χM
, (17)

we may write, in defining  �m and  �M,

δ �m ≡ −χm�h∗ = �m + χm

χM
( �M − �M0 − χM �H ) ≡  �m + ξ �M,

(18)

δ �M ≡ −χM �H∗ = ( �M − �M0 − χM �H ) + �m ≡  �M +  �m.

(19)

For uniform systems the equilibrium conditions �H∗ = �0
and �h∗ = �0 yield equations like those for two interpenetrating
and interacting paramagnets, so for �H �= �0 both �M �= �0 and
�m �= �0.

V. IRREVERSIBLE THERMODYNAMICS
AND EQUATIONS OF MOTION

We now employ Onsager’s irreversible thermodynamics
to study the dynamics of this system, including dissipation.
For that we first write down the conservation laws and equa-
tions of motion for the thermodynamic variables. We then
require that, if (5) holds initially, then it holds in the future,
subject to the nondecreasing nature of s. We take �M to be
nondiffusive because it represents an equilibrium distribution.
However, �m can have a diffusive flux term.

This system has various unknown dissipative fluxes j and
dissipative sources R. We assume that

(a) energy has only a flux jεi ;
(b) entropy has a flux js

i and a source Rs � 0;
(c) �M has only a source �RM (it has no flux because we

believe that a macroscopic variable should not be able to
diffuse), and is driven by torque both from the effective field
and from the anisotropy, or −γ �M × �H∗ − γ ��′;

(d) �m has a flux �jm
i and a source �Rm, and is driven by

−γ �m × �h∗, with no lattice torque ��′ analogous to ��; and
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(e) �θ has no flux but a source �Rθ and is driven by an
unknown �ω. We expect that �ω = γμ0 �H∗, because the atomic
moments in a spin glass precess in the effective field.

Thus, with gyromagnetic ratio due to electrons (properly
as −γ < 0) we take

∂tε + ∂i jεi = 0, (20)

∂t s + ∂i js
i = Rs � 0, (21)

∂t �M = −γμ0 �M × �H∗ − γ ��′ + �RM, (22)

∂t �m + ∂i �jm
i = −γμ0 �m × �h∗ + �Rm, (23)

∂t �θ = �ω + �Rθ . (24)

Using (8) and the above equations gives

−∂i jεi = −T ∂i js
i + T Rs−μ0 �H∗ · �RM−μ0�h∗ · �Rm

+μ0�h∗ · ∂i �jm
i −��′ · (�ω−γμ0 �H∗ + �Rθ ). (25)

Then

0 � T Rs = −∂i
[

jεi − T js
i + μ0�h∗ · �jm

i

] − js
i ∂iT

+μ0 �H∗ · �RM + μ0�h∗ · �Rm + μ0 �jm
i · ∂i�h∗

+ ��′ · (�ω−γμ0 �H∗ + �Rθ ). (26)

For Rs to be non-negative, we take
(a) the entropy flux to be

js
i = − κ

T
∂iT, (27)

where κ � 0 is the thermal conductivity, with units of entropy
density diffusion constant;

(b) the �M and �m source terms to satisfy

�RM = −δ �M
τM

+ δ �m
τmM

= χM

τM

�H∗ − χm

τmM

�h∗, (28)

�Rm = −δ �m
τm

+ δ �M
τMm

= χm

τm

�h∗ − χM

τMm

�H∗, (29)

with self-explanatory positive relaxation times;
(c) the magnetization flux to come only from diffusion of

�m, as in

�jm
i = Dm

χm
∂i�h∗ = −Dm∂iδ �m, (30)

where Dm � 0 is a diffusion coefficient, with units of velocity
times distance;

(d) the reactive part of the �̇θ driving term to be

�ω = γμ0 �H∗; (31)

(e) the dissipative part of the �̇θ driving term to be dissipa-
tive

�Rθ = αγ ��′, (32)

where α � 0 is a dissipation coefficient, with units of inverse
magnetization.

We also note the Onsager relation between cross-decay
rates, which can be obtained by, in T Rs, equating the cross

terms in (28) and (29):

χm

τmM
= χM

τMm
. (33)

VI. PURE SPIN WAVES: NEGLECT �m

In the absence of K , �H , dissipation, and �m, by (7) we have
��′ = ρs∇2�θ . Further, by (19) we have �H∗ = − �M/χM , so

∂t �M = −γ ρs∇2�θ, (34)

∂t �θ = γμ0

(
− �M

χM

)
. (35)

At fixed �M0 and fixed �H ,  �M = �M, so combining these gives

∂2
t

�M = γ 2μ0

χM
ρs∇2 �M. (36)

With �M ∼ ei(kx−ωt ) we then have

ω = vk, v ≡
(

γ 2μ0ρs

χM

)1/2

, (37)

the spin-wave mode given in Ref. [10]. This might appear in
an experiment by imposing a field gradient with wave vector
k that oscillates at variable ω until there is a resonance.

If K �= 0, then we may replace K by K ′ = K + ρssk2. In
that case we have

ω = (
ω2

0 + v2k2
)1/2

, ω0 ≡ γ

(
μ0K

χM

)1/2

. (38)

This applies if ω0 is much larger than the relaxation time for
K [24–26]. If ω0 is much smaller than the relaxation time for
K , then (37) applies.

VII. PURE SPIN DIFFUSION: NEGLECT �M AND�θ

If a spin current �ji enters the system, and �M and �θ can be
neglected, then (23), (29), and (30) (on dropping the nonlinear
term �m × �h∗, and the term δ �M), reduce to

∂t �m − Dm∇2 �m = − 1

τm
�m. (39)

For the dc case we expect that �m ∼ e−qx, where the solution of
the above equation gives q−1 = lSG = (Dmτm)1/2. It would be
of interest to test this by studying spin flow through samples
of different thicknesses.

VIII. FULLY COUPLED MODES

If a field gradient is added, then �M should develop a gra-
dient, which might twist �θ . Let us consider how this might
appear in an experiment.

For �H = �0 = �M0, by (18) and (19) we have

δ �M = �M + �m, δ �m = ξ �M + �m. (40)

Then, using (22), (28), and (15), and neglecting precession,

∂t �M = −γ ��′ − δ �M
τM

+ δ �m
τmM

; (41)
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using (24), (31), (32), and (16),

∂t �θ = γμ0

(
−δ �M

χM

)
+αγ ��′; (42)

and using (23), (29), and (13),

∂t �m − Dm∇2δ �m = −δ �m
τm

+ δ �M
τMm

. (43)

Equation (7) should be used for ��′.
Consider the dc case, which is relevant for low-frequency

studies using lock-in detectors. Then (41) and (42) can be used
to eliminate ��′ and to obtain a linear relationship between δ �M
and δ �m, with a positive proportionality constant. Then (43)
can be used to obtain an equation for �m, with a decay rate
reduced from τ−1

m . Despite the three equations, there is only
a single doubly degenerate diffusion mode, with a modified
spin decay length lSG. (At finite frequency there also will be a
nondiffusive mode that primarily involves δ �M and �θ .)

Note that the anisotropy K can vary slowly with time [24].
In studying a dc spin current, we may take K → 0. Then,
setting the time derivatives to zero in (41) and (42) permits us
to eliminate ��′ and to relate �M and �m. Placing this in (43) then
gives an effective wave-vector squared q2 for the diffusion
mode, with �M and �m related. ��′ then determines �θ because
��′ is related to �M and �m, and includes the now-known wave
vector q2.

Using (40), we now rewrite (41), (42), and (43),

∂t �M = −γ ��′ − �M + �m
τM

+ ξ �M + �m
τmM

, (44)

∂t �θ = −γμ0

�M + �m
χM

+ αγ ��′, (45)

∂t �m − Dm∇2(ξ �M + �m) = −ξ �M + �m
τm

+ �M + �m
τMm

, (46)

where

��′ = −K�θ + ρs∇2�θ, (47)

and �M should be replaced by  �M = �M − �M0 − χM �H if �M0 −
χM �H �= 0.

We now assume that this physical system is subject to space
and time variations of the form ei(kx−ωt ). This can be done ei-
ther by driving the system at frequency ω, to which the system
responds at some wave vector k that must be determined, or
by turning on a disturbance at a fixed k, to which the system
responds in time at some ω (which may be complex) that must
be determined.

We will be particularly interested in fixed ω, and determin-
ing k. To that purpose it will be helpful to define

K ′ ≡ K + ρsk
2. (48)

We also introduce

1

τM
≡ 1

τML
+ 1

τMm
,

1

τm
≡ 1

τmL
+ 1

τmM
, (49)

r ≡ 1

τmM
− 1

τMm
, ξ ≡ τmM

τMm
. (50)

With these terms defined, the equations of motion can be
rewritten in matrix form as

− iω

⎛
⎝M

m
θ

⎞
⎠ = �

⎛
⎝M

m
θ

⎞
⎠, (51)

where the matrix � is

� =

⎛
⎜⎜⎝

− 1
τML

− 1
τML

+ r γ K ′

−ξ
(
Dk2 + 1

τmL

) −Dk2 − 1
τmL

− r 0

− γμ0

χM
− γμ0

χM
−αγ K ′

⎞
⎟⎟⎠.

(52)

We will solve Eqs. (51), which define an eigenvalue problem,
using perturbation theory around the propagating spin-wave
mode and about the diffusive mode.

IX. WEAKLY COUPLED MODES

In practice we expect the modes of this system to be nei-
ther noninteracting nor strongly coupled. Rather we expect
one mode to be primarily propagating and one mode to be
primarily diffusive. The goal of this section is to determine
the extent to which the secondary degree of freedom of each
mode is coupled into the primary degree of freedom, as in
perturbation theory.

A. Spin-wave M-θ mode

The zeroth-order spin-wave mode is obtained by setting
m = 0. Then

∂t �M = −γ ��′ − �M
τML

, (53)

∂t �θ = −γμ0

�M
χM

+ αγ ��′. (54)

Assuming the variation eikx−ωt , we have

− iω

(
M

θ

)
=

(
− 1

τML
γ K ′

− γμ0

χM
−αγ K ′

)(
M

θ

)
. (55)

The equation determining the eigenvalues is

det

(− 1
τML

+ iω γ K ′

− γμ0

χM
−αγ K ′ + iω

)

= −ω2 − iω

(
1

τML
+ αγ K ′

)
+

(
α

τML
+ γμ0

χM

)
γ K ′ = 0,

(56)

whose solutions are

ω = − i

2

(
1

τML
+ αγ K ′

)

±
√

−1

4

(
1

τML
− αγ K ′

)2

+ γ 2μ0K ′

χM
. (57)
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We will consider the situation where ω is given. We then write
K ′ in terms of ω:

K ′ = iω
(− 1

τML
+ iω

)
γ
[
α
(− 1

τML
+ iω

) − γμ0

χM

] . (58)

Substituting this into the equation for M, we get(
− 1

τML
+ iω

)
M + γ

iω
(− 1

τML
+ iω

)
γ
[
α
(− 1

τML
+ iω

) − γμ0

χM

]θ = 0, (59)

so the unperturbed modes satisfy

θ = −
[
α

(
− 1

τML
+ iω

)
− γμ0

χM

]
M. (60)

We next use the unperturbed solution of M in the equa-
tion of m. We have[
−ξ

(
Dk2 + 1

τmL

)]
M +

[
−

(
Dk2+ 1

τmL
+ r

)
+ iω

]
m = 0.

(61)

Using k2 = (K ′ − K )/ρs, we can find m in terms M and ω:

m =
ξ
[

D
ρs

(K ′ − K ) + 1
τmL

]
−[

D
ρs

(K ′ − K ) + 1
τmL

+ r
] + iω

M, (62)

with K ′ given in (58) in terms of ω. For this perturbation
calculation to be valid, the values of the material parameters
and ω should make the proportionality coefficient in (62)
much smaller than 1.

B. Diffusion mode from m

We next consider the situation where the amplitude m is
much larger than those of M and θ . The unperturbed mode
then corresponds to the solution of the equation on ∂t m and
∂tθ , with M set to zero:

∂t �m − Dm∇2 �m = − �m
τm

+ �m
τMm

. (63)

Substituting in the wave form of the solutions, we have(
−Dk2 − 1

τmL
− r + iω

)
m = 0. (64)

We will consider the situation where ω is given. We then write
k2 in terms of ω:

k2 = 1

D

(
− 1

τmL
− r + iω

)
. (65)

We thus have

K ′ = ρ0 + ρs

D

(
− 1

τmL
− r + iω

)
. (66)

We next use the unperturbed solution of m in the equa-
tion of M and θ . We have(

− 1

τML
+ iω

)
M + γ K ′θ = −

(
− 1

τML
+ r

)
m, (67)

(
−γμ0

χM

)
M + (−αγ K ′ + iω)θ = γμ0

χM
m, (68)

whose solution is

M = −
(− 1

τML
+ r

)
(−αγ K ′ + iω) + γ 2μ0

χM
K ′(− 1

τML
+ iω

)
(−αγ K ′ + iω) + γ 2μ0

χM
K ′

m, (69)

θ =
(−r + iω) γμ0

χM(− 1
τML

+ iω
)
(−αγ K ′ + iω) + γ 2μ0

χM
K ′

m, (70)

with K ′ given in (66) in terms of ω. For this perturbation
calculation to be valid, the values of the material parameters
and ω should make the proportionality coefficients in these
two equations much smaller than 1.

The total magnetization M + m for this perturbation solu-
tion, which is what would be measured, is given by

M + m =
(

1 + M

m

)
m

=
⎡
⎣1 −

(− 1
τML

+ r
)
(−αγ K ′ + iω) + γ 2μ0

χM
K ′(− 1

τML
+ iω

)
(−αγ K ′ + iω) + γ 2μ0

χM
K ′

⎤
⎦m,

(71)

with K ′ given in (66).

X. SUMMARY AND DISCUSSION

We have developed the theory of spin diffusion in spin
glasses, finding it necessary to invoke the spin accumulation
�m, due to a nonequilibrium distribution of excitations. Al-
though prompted by experiments, at the moment there is a
need for further experiments in order to compare with the
general predictions of the theory, and to determine parameters
appearing in the theory.

The present theory was developed with insulators in mind.
A metallic spin glass, such as Cu doped with Mn, is more
complex [5]. There the randomly located Mn has spin-glass
order, with exchange between two localized Mn spins at irreg-
ular positions having irregular sign. This exchange is believed
to be due to the RKKY interaction, which is mediated by the
Cu host conduction electrons that communicate between the
two Mn’s (see the Appendix). In addition, however, each Mn
spin polarizes the bath of Cu electrons in its vicinity, thus
making the host Cu a (likely weak) itinerant spin glass that
responds to the Mn spin order.

For a spin current to propagate through such a system,
there must be a spin current in both the Cu and the Mn.
Spin currents in Cu are carried by delocalized conduction
electrons by means of a spatially varying nonequilibrium
spin-distribution function. Spin currents in Mn are carried by
localized Mn by means of a spatially varying nonequilibrium
magnon-distribution function. This is a rather complex situa-
tion, likely requiring at the microscopic level a theory for the
spin current that is spatially averaged over both the Cu and the
Mn. That is well beyond the scope of the present work.

However, the present macroscopic theory serves the pur-
pose of describing macroscopic spin currents even in CuMn.
It does not consider the possibility of a charge current,
as can occur in the conductor CuMn, as opposed to the
insulator YIG.
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APPENDIX: ON THE RKKY INTERACTION

The RKKY interaction was initially developed for collinear
nuclear spins interacting indirectly with conduction electrons.
In order to obtain a mechanism for the line broadening ob-
served for nuclei in nuclear magnetic resonance, Ruderman
and Kittel considered indirect exchange mediated by the hy-
perfine interaction between conduction electrons and nuclei
[27]. It took the form Ai j �Ii · �I j between nuclear spins �In. With
kF the host Fermi wave vector and Ri j the separation between
two nuclei, they found an oscillatory and inverse power-law
dependence of the exchange constant Ai j on 2kF Ri j . They
noted that although exchange narrowing will occur for pure
isotopic samples, for naturally occurring isotopic mixtures
such an interaction (being inhomogeneous) can lead to the
observed line broadening.

Kasuya, noting Zener’s phenomenology on the interaction
of core electrons (d states) via the s-d interaction with s-state
conduction electrons [28], then modified the Ruderman and
Kittel approach to treat d-d electron interactions, now medi-
ated by the s-d interaction [29]. Yosida applied these ideas
to CuMn alloys [30]. noting that “the experimental results on
the electronic g-value of the Mn ions and the Knight shift
of the Cu-nuclei can be qualitatively accounted for.” Later
experiments on CuMn alloys at low temperatures indicated a
complex magnetic structure. Van Vleck provided a clarifying
discussion of theoretical details [31], and referred to an earlier
paper by Fröhlich and Nabarro [32] that contains an exchange
interaction between nuclear spins with no dependence on their
relative position. Van Vleck also cites additional papers where
Zener [33] expands on his earlier work [28].

It was later found that when the Mn spins are permitted to
be noncollinear, the spatially oscillating interaction between
randomly placed Mn impurities minimizes the Mn energy for
a seemingly random noncollinear spin structure called a spin
glass [34].
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