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Topological defects, called magnetic hedgehogs, realize emergent magnetic monopoles, which are not allowed
in the ordinary electromagnetism described by Maxwell’s equations. Such monopoles were experimentally
discovered in magnets in two different forms: tetrahedral 4Q and cubic 3Q hedgehog lattices. The spin textures
are modulated by the chemical composition, an applied magnetic field, and temperature, leading to quantum
transport and optical phenomena through movement and pair annihilation of magnetic monopoles, but the
theoretical understanding remains elusive, especially in the regions where different types of hedgehog lattices are
competing. Here we propose a theoretical model that can stabilize both tetrahedral and cubic hedgehog lattices,
and perform a thorough investigation of the phase diagram while changing the interaction parameters, magnetic
field, and temperature, by using a recently developed method that delivers exact solutions in the thermodynamic
limit. We find that the model exhibits various types of topological transitions with changes of the density of
monopoles and antimonopoles, some of which are accompanied by singularities in the thermodynamic quantities,
while the others are hidden with less or no anomaly. We also find another hidden topological transition with pair
annihilation of two-dimensional vortices in the three-dimensional system. These results not only provide useful
information for understanding the existing experimental data but also challenge the identification of hidden
topological transitions and the exploration of emergent electromagnetism in magnetic monopole lattices.

DOI: 10.1103/PhysRevB.107.094437

I. INTRODUCTION

Topological defects are found ubiquitously, from cosmol-
ogy, meteorology, biology, and material science. In particular,
in condensed matter physics, various types of the topological
defects have been discovered, which play an important role
in the properties of matter. Typical examples are found in
magnets, such as domain walls and vortices in swirling spin
textures [1–4]. Among such magnetic topological defects,
magnetic hedgehog and antihedgehog are unique since they
realize magnetic monopole and antimonopole, respectively
[5], which are not allowed in the ordinary electromagnetism
described by Maxwell’s equations—these spin textures have
spin vanishing singularities at the cores, which can be viewed
as source and sink of an emergent magnetic flux quanta arising
from the Berry phase mechanism [6]. They are characterized
by a topological index called monopole charge, which is de-
fined by how many times the spins around the core wraps a
unit sphere. The magnetic hedgehog and antihedgehog have
attracted much interest since they are expected to generate
unique electromagnetic phenomena beyond the ordinary elec-
tromagnetism and also carry information associated with their
topological indices [7,8].

Such magnetic hedgehogs and antihedgehogs were exper-
imentally discovered in MnSi1-xGex in a form of a periodic
lattice structure called the magnetic hedgehog lattice (HL)
[9–16]. Two different types of HLs have been reported de-
pending on x: a tetrahedral HL for 0.3 � x � 0.7 and a cubic
HL for 0.7 � x � 1.0. Both spin structures are regarded as a
superposition of multiple spin helices. The tetrahedral HL is
composed of four spin helices propagating along the direc-
tions from the center to four corners of a tetrahedron, and
the cubic HL is composed of three spin helices propagating

along the three orthogonal directions; hence, they are also
called the 4Q and 3Q HLs (Fig. 1). Similar tetrahedral 4Q
HL was also found in SrFeO3 [17]. In these HLs, uncon-
ventional quantum transport and optical phenomena, such as
the topological Hall effect [9,10,18], the topological Nernst
effect [19], and the magneto-Seebeck effect [20], were ob-
served in an applied magnetic field, presumably associated
with the unique electromagnetism of magnetic monopoles and
antimonopoles. Although further exotic phenomena could be
expected in the competing region between the different types
of HLs, no in-depth research has been reported thus far.

The emergent electromagnetic phenomena in HLs have
also been studied theoretically. For instance, to explain the
stability of HLs, different types of lattice spin models were
proposed by including short-range [21,22] and long-range
multiple spin interactions [23–26] and long-range anisotropic
spin interactions [27,28]. Effects of the magnetic field were
also studied in detail, and interesting topological transitions
were found to occur with pair annihilation of magnetic
monopoles and antimonopoles [23,26]. However, compre-
hensive understanding has been unreached yet, especially
including the competition between different types of HLs.
This is mainly because of the lack of appropriate models and
the huge computational cost for the comprehensive study in
three-dimensional systems.

In this paper, we address the following fundamental ques-
tions regarding: (i) how different types of HLs transform
into each other, (ii) how they respond to an external mag-
netic field, and (iii) how they behave at finite temperature.
All these questions are crucial for not only understanding
of the unique electromagnetism of magnetic monopoles but
also providing a guiding principle for further experimental
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FIG. 1. Cubic 3Q (left) and tetrahedral 4Q (right) HLs, and the possible transitions between them. Main panels show the position of
hedgehogs and antihedgehogs in the 3Q and 4Q HLs with surrounding spins. Enlarged pictures of the spin configurations around the hedgehogs
and antihedgehogs, and the corresponding monopoles and antimonopoles defined by the sources and sinks of the emergent magnetic fields
denoted by the light green arrows are also shown. Top panels show the characteristic wave numbers Qη and the spin helices superposed to form
the HLs. The labeled numbers indicate η, and � denotes the period of the helices. The gray cubes are guides to the eye.

exploration. To answer these questions, we propose a model
that stabilizes two types of HLs, the 3Q and 4Q HLs, at
zero magnetic field and study their competing region while
changing the magnetic field and temperature (Fig. 1). By
using the exact steepest descent method recently developed
by the authors [28], we clarify the phase diagram in the ther-
modynamic limit. Through the analysis, we unveil a variety
of the topological transitions with changes of the density of
emergent magnetic monopoles and antimonopoles. Notably,
these topological transitions, when not accompanied by mag-
netic phase transitions, are “hidden,” namely they show less
or no anomaly in the thermodynamic quantities, such as the
specific heat and the magnetization. We also find another type
of a hidden topological transition not related to monopoles,
caused by pair annihilation of two-dimensional vortices in the
three-dimensional system. It is worth noting that these hidden
topological transitions are hard to detect by numerical studies
such as the conventional brute-forced Monte Carlo simulation
at finite temperature, and their complete identifications are
captured for the first time by using the present exact method.

The structure of the paper is as follows. In Secs. II and
III, we outline the theoretical model and the method, re-
spectively, for the analysis of the magnetic and topological
transitions in the HLs. In Sec. IV, we present the results of
the ground-state phase diagrams including both 3Q and 4Q
HLs, and the magnetic field–temperature phase diagrams for
three representative parameter sets in their competing region.
Finally, Sec. V is devoted to the summary.

II. MODEL

Since we are interested in the competition between differ-
ent types of HLs as observed in MnSi1-xGex, we consider a
model which can stabilize HLs even at zero magnetic field.
A candidate is found in spin lattice models with long-range
interactions mediated by itinerant electrons [23,26], which are
variants of the models studied for various types of swirling
spin textures [25,27–39]. In the previous study [23], two
models were independently studied for the cubic 3Q and
tetrahedral 4Q HLs. To study the competition between the
two HLs, we integrate the two models by interpolating the
interaction parameters. The Hamiltonian is given by

H = 2
∑

η

[
− JηSQη

· S−Qη
+ Kη

N

(
SQη

· S−Qη

)2

− iDη · SQη
× S−Qη

]
−

∑
r

h · Sr, (1)

where

SQ = 1√
N

∑
r

Sre−iQ·r, (2)

Sr = (Sx
r , Sy

r, Sz
r ) denotes the spin degree of freedom at site

r on a simple cubic lattice, and N is the total number of
spins; we consider the classical spin limit where Sr ∈ R3 and
|Sr| = 1, for simplicity. The first term of the Hamiltonian
in Eq. (1) represents an effective long-range spin interaction
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of the Ruderman-Kittel-Kasuya-Yosida type [40–42], where
Qη with η = 1, 2, . . . , 7 are the characteristic wave numbers
given by the nesting vectors of the Fermi surfaces of itiner-
ant electrons in the limit of weak spin-charge coupling [29].
The second term represents an effective biquadratic interac-
tion, which is most dominant in the higher-order perturbation
in terms of the spin-charge coupling [29]. The third term
describes an antisymmetric interaction of the Dzyaloshinskii-
Moriya (DM) type [43,44], where the DM vectors are taken
parallel to the corresponding characteristic wave number as

Dη = Dη

Qη

|Qη| . (3)

The last term in Eq. (1) represents the Zeeman coupling with
an external magnetic field h. For the three interaction terms, to
describe both the cubic 3Q and tetrahedral 4Q HLs, we choose
the characteristic wave numbers as

Q1 = (+Q, 0, 0), Q2 = (0,+Q, 0), Q3 = (0, 0,+Q),

(4)

Q4 = (+Q,−Q,−Q), Q5 = (−Q,+Q,−Q),

Q6 = (−Q,−Q,+Q), Q7 = (+Q,+Q,+Q), (5)

where the former three in Eq. (4) [the latter four in Eq. (5)]
prefer the cubic 3Q (tetrahedral 4Q) HL [23]; see Fig. 1. We
parametrize the coupling constants to interpolate the cubic and
tetrahedral cases:

(Jη, Kη, Dη ) = [J (1 − p),K (1 − p), D(1 − p)], (6)

for η = 1, 2, 3, and

(Jη, Kη, Dη ) = (J p,K p, Dp), (7)

for η = 4, 5, 6, 7, with the mixing ratio 0 � p � 1. The model
stabilizes the cubic 3Q (tetrahedral 4Q) HL at p=0 (p=1)
when both K and D are sufficiently large [23,25]. Thus,
considering that the interaction parameters are derived from
the Fermi surface nesting, the interpolation by p implic-
itly assumes smooth deformation of the Fermi surface with
switching of the nesting vectors between the cubic and tetra-
hedral types. In the following calculations, we take the energy
unit as J = 1 and the lattice constant as unity. We set K = 0.6,
D = 0.3, and Q = 2π/� with � = 8; � corresponds to the
magnetic period of the stable spin textures [23]. We confirmed
that, for some parameter sets, � = 12 gives qualitatively the
same results (not shown here).

III. METHOD

Although the model in Eq. (1) is derived from the previous
ones [23], the systematic study of the phase diagram while
changing the mixing ratio p, the magnetic field h, and tem-
perature T is not a simple task. Indeed, the previous studies
were limited to only the ground state for p = 0 and 1 by
using simulated annealing. In the present study, we adopt a
steepest descent approach recently developed by the authors
[28]. This method can provide an exact solution for a class of
models including Eq. (1) in the thermodynamic limit not only
for the ground state but also at finite temperature. Although
the details of the method is found in Ref. [28], we briefly

describe the framework below to make the present paper to
be self-contained.

A key observation is that the Hamiltonian can be written in
terms of the averaged spins for each sublattice,

Sr0 = 1

NMUC

∑
R

SR+r0 , (8)

where R and r0 are the position vectors of the magnetic
unit cell (MUC) and the internal sublattice site, respectively.
This is because, in the model in Eq. (1), all the magneti-
cally ordered states have the magnetic periods dictated by
the wave numbers Qη in Eqs. (4) and (5), and hence the
MUC always fits into a cube of �3(≡ N0) spins with the
translation vectors (�, 0, 0), (0,�, 0), and (0, 0,�). Thus,
R = �(Nx, Ny, Nz ) and r0 = (rx

0, ry
0, rz

0) with integers Nμ ∈
[0, L) and rμ

0 ∈ [0,�); NMUC is the number of MUC, i.e.,
NMUC = L3. Then, one can write the partition function by
using Sr0 as

Z =
∫ ( ∏

r

dSr

)
e−βH =

∫ [ ∏
r0

dSr0ρLd (Sr0 )

]
e−βH,

(9)

where β = 1/T is the inverse temperature (the Boltzmann
constant kB is set to 1) and ρLd (Sr0 ) is the density of state
for Sr0 . Note that the dimension of integration in Eq. (9) is
reduced from 2NMUCN0 to 3N0. After some algebra using the
Pearson random walk [45,46], we obtain

Z →
∫ (∏

r0

dSr0

)
eNMUCG({Sα

r0
})
, (10)

where

G
({

S
α

r0

})
= − βH

NMUC
+

∑
r0

[
ln

(
4π sinh v0r0

v0r0

)
− v0r0 |Sr0 |

]
, (11)

with ∣∣Sr0

∣∣ = coth v0r0 − 1

v0r0

≡ S
(
v0r0

)
. (12)

From Eq. (10), the partition function in the thermodynamic
limit (NMUC → ∞) is obtained by using the steepest descent
method as

Z ∼ eNMUCG({Sα

r0
})
, (13)

with {Sα

r0
} = argmax{Sα

r0
} G({Sα

r0
}). In other words, the solution

in this method is obtained by maximizing G({Sα

r0
}). It is worth

noting that Eq. (12) is useful for the parametrization of Sr0 by
enabling us to write

Sr0 = S
(
v0r0

)(
cos ϕr0 sin θr0 , sin ϕr0 sin θr0 , cos θr0

)
, (14)

with three real numbers v0r0 , θr0 , and ϕr0 . For the maxi-
mization of G({Sα

r0
}), we use NVIDIA A100 GPU with a

JAX-based [47] library, Optax [48]. As we solve the prob-
lem numerically for each parameter set, the solutions can be
trapped by local minima of −G. To avoid such problems, we
perform the calculations starting with several different initial
conditions and adopt the solution that gives the largest G, as
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TABLE I. Magnetic phases, possible numbers of monopoles and antimonopoles per MUC Nm, and conditions for the order parameters
found in the ground-state and finite-temperature phase diagrams for the model in Eq. (1) with J = 1, K = 0.6, D = 0.3, and � = 8. The list
of the related figures is also shown. The starred Nm are found only at finite temperature. The possible sets of η for nonzero mη are shown in the
form of {η1, η2, . . .} if necessary.

Phase Nm Conditions Related figures

h = 0 3Q 0∗, 4, 8 mη 	= 0 for all η = 1–3. 2, 3(a), 3(b), 4, 11, 12
4Q 16 mη = 0 for all η = 1–3 with mη′ 	= 0 for all η′ = 4–7. 2, 3(d), 4
5Q 0∗, 16 Five of mη are nonzero: {1, 4–7}, {2, 4–7}, and {3, 4–7}. 2, 3(c), 12

h ‖ [100] 1Q 0 One of mη is nonzero: {1}. 4(a), 5(a), 7(a)
3Q 0, 4, 8 (same as 3Q for h = 0) 4(a), 5(a), 7(a)
3Q′ 0 Three of mη are nonzero: {1, 4, 7} and {1, 5, 6}. 4(a), 7(a)
4Q 0, 8, 16 (same as 4Q for h = 0). 4(a), 9(a)
5Q 0∗, 16 Five of mη are nonzero: {1, 4–7}. 7(a)

h ‖ [110] 1Q 0 One of mη is nonzero: {1} and {2}. 4(b), 5(b), 6
1Q′ 0 One of mη is nonzero: {6} and {7}. 4(b), 7(b), 8, 9(b)
2Q 0∗ Two of mη are nonzero: {1, 2}. 5(b), 6
2Q′ 0∗ Two of mη are nonzero: {6, 7}. 7(b), 9(b)
3Q 0, 2, 4, 6, 8 (same as 3Q for h = 0) 4(b), 5(b), 6, 7(b), 8
3Q′ 0∗ Three of mη are nonzero: {1, 4, 7}, {1, 5, 6}, {2, 4, 6}, and {2, 5, 7}. 7(b)
4Q 0, 8, 16, 24∗ (same as 4Q for h = 0) 4(b), 9(b)
5Q 0∗, 4∗, 16 Five of mη are nonzero: {1, 4–7} and {2, 4–7}. 7(b)

h ‖ [111] 1Q 0 One of mη is nonzero: {1}, {2}, and {3}. 4(c), 5(c)
1Q′ 0 One of mη is nonzero: {7}. 4(c), 7(c), 9(c)
3Q 0, 2, 4, 6∗, 8 (same as 3Q for h = 0) 4(c), 5(c), 7(c)
3Q′ 0∗ Three of mη are nonzero: {1, 4, 7}, {2, 5, 7}, and {3, 6, 7}. 7(c)
4Q 8, 16 (same as 4Q for h = 0) 4(c), 9(c), 10
5Q 0∗ (same as 5Q for h = 0) 7(c)

usually done in this type of numerical optimization. We also
confirmed the continuity and concavity of G with respect to
the parameters.

From the optimized values of S
α

r0
, the free energy per spin

is obtained as

f = −G
({

S
α

r0

})
βN0

. (15)

In addition, the internal energy ε and the specific heat C per
spin are computed as

ε = 〈H〉
N

= lim
{Sα

r0
}→{Sα

r0
}

H
N

, (16)

C = ∂ε

∂T
, (17)

respectively, where 〈· · · 〉 denotes the thermal average. As the

real-space spin configuration is given by 〈SR+r0〉 = Sr0 , the
magnetization m and the scalar spin chirality are computed as

m = 1

N0h

∑
r0

Sr0 · h, (18)

χsc = 1

N0h

∑
r0

χr0
· h, (19)

respectively, where h = |h|; χr0
represents the local scalar

spin chirality defined as [23,24]

χγ
r0

= 1

2

∑
α,β,να,νβ

εαβγ νανβSr0 · (
Sr0+να α̂ × Sr0+νβ β̂

)
, (20)

where α, β, γ = x, y, z, εαβγ is the Levi-Civita symbol,
να(β ) = ±1, and α̂(β̂) is the unit translation vector in the α(β )
direction. To identify the magnetically ordered phases, we
define the order parameter as

mη =
√

1

N0
SQη

· S−Qη
, (21)

which corresponds to the square root of the normalized spin

structure factor, with SQ = 1√
N0

∑
r0

Sr0 e−iQ·r0 . Moreover, to
investigate the topological property of the magnetically or-
dered phases, extending the previous studies [22–27] to finite
temperature where the averaged spin lengths shirink, we
identify the monopoles and antimonopoles by computing the
monopole charge in each cubic unit of the cubic lattice from
configurations of normalized spins 〈SR+r0〉/|〈SR+r0〉| through
the solid angle spanned by neighboring three spins [28]. We
also obtain the number of monopoles and antimonopoles per
MUC, Nm, to distinguish different topological phases.

IV. RESULTS

In this section, we show the results obtained for the model
in Eq. (1) by using the steepest descent method described
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FIG. 2. Order parameters mη�
at zero temperature as a function

of the mixing ratio p for the coupling constants in Eqs. (6) and
(7): (a) The entire view for 0 � p � 1 and (b) an enlarged view
for 0.4 � p � 0.6. mη�

are grouped into two as {m1, m2, m3} and
{m4, m5, m6, m7}, and sorted in each group in descending order of
the values of mη�

. The numbers in parentheses in (b) indicate the
numbers of monopoles and antimonopoles per MUC, Nm.

in the previous section. In Sec. IV A, we present the p de-
pendences of the order parameters at zero magnetic field and
zero temperature (Sec. IV A 1), and the p−h phase diagrams
at zero temperature with three different magnetic field direc-
tions, h ‖ [100], [110], and [111] (Sec. IV A 2). In Sec. IV B,
we present the h−T phase diagrams for the three directions
of the magnetic field, focusing on the competing regime be-
tween the 3Q and 4Q HLs, at p = 0.4 (Sec. IV B 1), p = 0.5
(Sec. IV B 2), and p = 0.6 (Sec. IV B 3).

A. Ground-state phase diagrams

1. Zero magnetic field

Figure 2 shows the mixing ratio p dependences of the
order parameters mη�

[Eq. (21)] for the ground state. The label
of wave numbers η are grouped into 1–3 and 4–7, sorted
within each group, and assigned � in descending order as
mη1 � mη2 � mη3 and mη4 � mη5 � mη6 � mη7 .

With an increase of p, the ground state changes from the
3Q phase to the 5Q phase, and then to the 4Q phase, as shown
in Fig. 2(a). In the 3Q phase, not only m1–3 but also m4–7

are nonzero, since m4–7 correspond to higher harmonics of
m1–3, e.g., Q4 = Q1 − Q2 − Q3. Meanwhile, in the 4Q phase,
m1–3 = 0, and only m4–7 are nonzero. In the intermediate 5Q
phase, one of the 3Q components, m1, remains nonzero in
addition to all the 4Q components m4–7. As shown in the
enlarged view in Fig. 2(b), the 3Q–5Q transition at p � 0.517
is discontinuous with jumps of the order parameters, while the
5Q–4Q transition at p � 0.529 is continuous.

FIG. 3. Ground-state spin configurations and positions of
monopoles and antimonopoles for (a) the 3Q state with Nm = 8 at
p = 0.4, (b) the 3Q state with Nm = 4 at p = 0.5, (c) the 5Q state
with Nm = 16 at p = 0.52, and (d) the 4Q state with Nm = 16 at
p = 0.6. The color of arrows represents the [111] component of the
spins, S[111]

r , as indicated in the inset of (a). The magenta and cyan
spheres represent the monopoles (hedgehogs) and antimonopoles
(antihedgehogs), respectively. The right panels show the top view
of the HLs (top) and the distribution of the order parameters mη

(bottom).

In the entire range of p, the ground-state spin configuration
contains topological defects, monopoles and antimonopoles,
indicating that all the 3Q, 4Q, and 5Q states are HLs. The
number of monopoles and antimonopoles per MUC, Nm, is
indicated in the parentheses in Fig. 2(b), and the ground-
state spin configurations, the positions of the monopole and
antimonopoles, and the distributions of mη for representative
parameters at p = 0.4, 0.5, 0.52, and 0.6 are shown in Fig. 3.
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Such a closer look reveals additional phase transitions within
the 3Q phase: two discontinuous transitions at p � 0.499 and
p � 0.509, where Nm is reduced from 8 to 4 and recovered
from 4 to 8, respectively, as shown in Fig. 2(b). This means
that an intermediate 3Q phase with Nm = 4 intervenes in the
3Q phase with Nm = 8. At these discontinuous transitions,
mηl also changes discontinuously: mη2 = mη3 for the Nm = 8
phase, while mη2 > mη3 for the Nm = 4 phase. Thus, these
transitions occur between the magnetic phases with different
symmetries, accompanied by topological changes. In addi-
tion, we find phase transitions within the Nm = 8 state: a
continuous one from mη1 = mη2 = mη3 to mη1 > mη2 = mη3 at
p � 0.467 and a discontinuous one at p � 0.475. We do not
discuss these transitions in this paper because they are not rel-
evant in the topological point of view. All the phases with dif-
ferent Nm are summarized in the top row for h = 0 of Table I.

Let us make two remarks. One is on the competition be-
tween the 3Q and 4Q phases. In Fig. 2, the 3Q region is
slightly wider than the 4Q one. This is presumably because the
characteristic wave numbers of the 4Q components coincide
with the higher harmonics of those of the 3Q components in
the present model, which may work in favor of stabilizing the
3Q phase over 4Q. The other remark is on the intermediate 5Q
phase. This is a peculiar phase with spontaneous symmetry
breaking by selecting one of the 3Q wave numbers, which has
never been reported in experiments to our knowledge. While
further theoretical studies are necessary on the stability of
this phase in a wider parameter range, our result would stim-
ulate the experimental exploration in the competing regime
between the 3Q and 4Q HLs.

2. Magnetic field dependence

Figure 4 shows the p−h phase diagram for the cases of h ‖
[100], h ‖ [110], and h ‖ [111]. At h = 0, only the 3Q and 4Q
phases appear and the intermediate 5Q phase found in the pre-
vious section is absent because of the low resolution in the pa-
rameter setting; here the calculations are done for every 0.05
with respect to p. When the magnetic field is applied, both
3Q and 4Q phases remain stable, but in most cases, they turn
into a single-Q phase (1Q or 1Q′) before the saturation to the
forced ferromagnetic (FFM) phase, which is connected to the
paramagnetic (PM) state at finite temperature. The stability of
the 3Q and 4Q phases depends on the relative directions of h
and Qη: When h is applied in parallel to one of Qη, the 3Q and
4Q phases turn into the single-Q phase characterized by Qη ‖
h at a relatively weak magnetic field, and the single-Q phase is
stable in a relatively wider field range; see Fig. 4(a) for the 3Q
case where Q1 ‖ h and Fig. 4(c) for the 4Q case where Q7 ‖ h.
In the other field directions, the 3Q and 4Q phases remain
more stable, and the single-Q phases become narrower; the
extreme case is the 4Q case under h ‖ [100] in Fig. 4(a), which
shows direct saturation to FFM without any single-Q phase.

It is worth noting that the relative stability between the 3Q
and 4Q states does not change so much under the magnetic
field, namely the phase boundaries between them are almost
independent of h within the present resolution. This is sim-
ilar to the experimental results for MnSi1-xGex [14]. In the

FIG. 4. Ground-state phase diagrams on the p−h plane for
(a) h ‖ [100], (b) h ‖ [110], and (c) h ‖ [111]. The calculations
are done for every 0.05 (0.1) with respect to p (h). The col-
ored regimes indicate the magnetically ordered phases, while the
white regimes indicate the forced ferromagnetic (FFM) phase. The
numbers in parentheses represent the number of monopoles in a
MUC, Nm.
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competing region near p = 0.5 in h ‖ [100], however, we find
complex successive phase transitions from 3Q to 3Q′ and to
1Q before the saturation. The 3Q′ phase is found only in the
finite field region, and the magnetic order is composed of a
mixture of the 3Q and 4Q components: two of the 4Q com-
ponents {m4, m7} or {m5, m6} and one of the 3Q component
m1. Interestingly, the spin texture in the 3Q′ phase exhibits
two-dimensional modulation on the [1̄1̄1] or [1̄11] plane since
the three wave numbers are coplanar. We will discuss an inter-
esting field direction dependence of the scalar spin chirality in
this two-dimensional 3Q′ phase in Sec. IV B 2.

Both 3Q and 4Q phases exhibit various types of topological
transitions accompanied by changes of Nm under the magnetic
field. Note that the density of monopoles and antimonopoles
always change discontinuously in our model where the
MUC is fixed by Qη; all such discontinuous changes can be
detected by the changes of Nm. In the 4Q case, Nm decreases
monotonically, from 16 to 8 for all the field directions, and
then from 8 to 0 before the transition to FFM for h ‖ [100] or
to 1Q′ for h ‖ [110]. In contrast, in the 3Q case, Nm does not
always decrease monotonically and shows more complex field
dependence. For example, in the case of h ‖ [110] near p = 0,
Nm changes as 8 → 6 → 2 → 6 → 2 before the transition
to the 1Q phase, as shown in Fig. 4(b). We will study how
these topological transitions evolve with temperature and how
thermodynamic quantities behave at these transitions in the
next section.

B. Magnetic field–temperature phase diagrams

In this section, we present the results of the magnetic
field–temperature phase diagrams. Besides magnetic phase
transitions, we discuss topological transitions associated with
changes of Nm caused by varying the temperature and the
magnetic field. Focusing on the competing region between
the 3Q and 4Q phases, we show the results for three values of
p: p = 0.4, 0.5, and 0.6 in Secs. IV B 1, IV B 2, and IV B 3,
respectively.

1. p = 0.4

Let us begin with the case of p = 0.4, which is close to
the competing region but still in the 3Q phase at zero field;
see Figs. 2 and 4. Figure 5 shows the h−T phase diagrams
at p = 0.4 for three different directions of the magnetic field,
h ‖ [100], [110], and [111] (left panels). At h = 0, the ground
state is the 3Q HL with Nm = 8, namely, four monopole-
antimonopole pairs within the MUC; see Fig. 3(a). The 3Q
HL remains stable against raising temperature, and shows a
phase transition to the PM phase at T � 0.52 (see Appendix
for the details).

In an applied magnetic field, the 3Q phase remains stable
with changes of Nm, and it undergoes phase transitions to
the 1Q phase and then to the PM phase with an increase of
the magnetic field at low temperature, as seen in the ground
state in Sec. IV A 2. In contrast, we find different behaviors
in the high-temperature region; the system undergoes a phase
transition to the 2Q phase before entering into PM in h ‖ [110]
[Fig. 5(b)] and a direct transition from the 3Q phase to PM in
h ‖ [111] [Fig. 5(c)]. In addition, within the 3Q phase we find
topological transitions that are not seen in the low-temperature
region: the transition from Nm = 8 to 0 in h ‖ [100] [Fig. 5(a)]

FIG. 5. Magnetic field–temperature phase diagrams (left) and
h−T maps of the scalar spin chirality χsc (right) for (a) h ‖ [100],
(b) h ‖ [110], and (c) h ‖ [111] at p = 0.4. The calculations are done
for every 0.05 (0.02) with respect to h (T ). The magenta dashed line
in the left panel of (b) indicates the parameter range for Fig. 6. The
gray dashed lines in the right panels represent the phase boundaries
for guides to the eye.

and Nm = 6 to 4 in h ‖ [110] [Fig. 5(b)]. As shown in the
right panels of Fig. 5, χsc has nonzero values in the entire
regions of the 3Q phases in the magnetic field, including
the topologically trivial one with Nm = 0. We find that χsc

is drastically reduced at the topological transitions where Nm

becomes zero, and it vanishes at the transitions to the 1Q, 2Q,
or PM phases either continuously or discontinuously.

Let us closely look at the phase transitions under the mag-
netic field at finite temperature, focusing on the case of T =
0.45 in h||[110], where the intermediate 2Q phase appears
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in addition to the multiple 3Q phases with different Nm.
Figures 6(a)–6(c) show h dependences of mη, the specific heat
per spin C, the field derivative of the magnetization dm/dh,
Nm, and χsc. When h is applied, the spiral component m3,
which is perpendicular to the magnetic field (Q3 ⊥ h), de-
viates from the other 3Q components (m1 = m2) due to the
symmetry breaking by h and decreases as increasing h, as
shown in Fig. 6(a). With further increasing h, m3 continuously
vanishes at h � 0.305 as m3 ∝ |h − hc|1/2, and the system
turns into the 2Q phase. At the same time, the higher harmon-
ics m4–7 also vanish as m4–7 ∝ |h − hc|1/2. At the transition,
both C and dm/dh show a jump, as shown in Fig. 6(b).

In addition to this magnetic phase transition, the system
undergoes successive topological transitions within the 3Q
phase at h � 0.238 and 0.270, where Nm changes stepwise as
Nm = 8 to 6 and to 4 as shown in Fig. 6(c). They are associated
with annihilations of a pair of monopole and antimonopole per
MUC. Interestingly, these transitions are not accompanied by
any anomalies in C and dm/dh [green arrows in Fig. 6(b)], in
stark contrast to the magnetic phase transition at h � 0.305
where the topology also changes as Nm vanishes. We also
note that χsc does not show any anomalies at these topological
transitions, while it decreases rapidly along with the decrease
of Nm after showing a broad maximum in the Nm = 8 phase,
as shown in Fig. 6(c). Thus, the topological transitions with
changes of Nm, when they are not accompany by the magnetic
phase transition, are “hidden” transitions that do not show
any singularities in the thermodynamic quantities. We note
that similar hidden transitions were found in the previous
study of the ground state [23], but their features, especially
at finite temperature, have not been analyzed because of the
high computational cost and less accuracy in the numerical
simulations.

Through the magnetic phase transition from 3Q to 2Q at
h � 0.305, the spin texture changes from the three- to two-
dimensional one. Figure 6(d) shows the spin configuration
and the positions of monopoles and antimonopoles in the 3Q
phase close to the critical field. The spin structure is three
dimensional, but the modulation in the direction of Q3 (z
direction) is weak as m3 is small compared to m1 and m2

as shown in the inset. When entering into the 2Q phase, the
modulation in the z direction is completely eliminated as m3

becomes zero, and the spin texture becomes two dimensional.
Figures 6(e)–6(g) show the spin configurations on a (001)
slice in the 2Q phase near the transition. In this region, we find
a vortexlike texture. To identify vorticies and antivorticies, we
compute the vorticity defined by the sum of the four relative
angles ∈ (−π, π ] between the neighboring spins surrounding
each square plaquette after projecting onto the (001) plane: It
takes (−)2π for the (anti)vortex. As a result, we reveal that
the 2Q state for 0.305 � h � 0.365 consists of two vortex-
antivortex pairs per MUC, whose cores are indicated by the
orange and blue plaquettes in Figs. 6(e) and 6(f). We show
that the vortices and antivortices disappear at h � 0.365, sug-
gesting another topological transition. Again C and dm/dh do
not show any singularities, while both shows a broad hump
around the topological transition, as shown by the blue arrow
in Fig. 6(b).

FIG. 6. Magnetic field dependences of (a) mη, (b) C and dm/dh,
and (c) Nm and χsc. The calculations are done for h ‖ [110] at T =
0.45 and p = 0.4; see the magenta dashed line in the left panel of
Fig. 5(b). The data for m4–7 in (a) and χsc in (c) are multiplied by fac-
tors of 10 and 104, respectively, for better visibility. The solid lines in
(a) indicate functions proportional to |h − hc|1/2. The green and blue
arrows in (b) indicate the hidden topological transitions associated
with monopoles and vortices, respectively. (d) Spin configurations
and positions of monopoles and antimonopoles at h = 0.3. The inset
shows distribution of mη. Two-dimensional spin configurations on
a (001) slice at (e) h = 0.305, (f) h = 0.350, and (g) h = 0.400 in
the 2Q phase. The orange and blue plaquettes represent the cores of
vortices and antivortices.
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FIG. 7. Magnetic field–temperature phase diagrams (left) and
h−T maps of χsc (right) for (a) h ‖ [100], (b) h ‖ [110], and (c) h ‖
[111] at p = 0.5. The magenta dashed line in the left panel of
(b) indicates the parameter range for Fig. 8. The other notations are
common to those in Fig. 5.

2. p = 0.5

Next, we show the results for p = 0.5. Figure 7 summa-
rizes the phase diagrams and χsc on the h−T plane. At h = 0,
the ground state is the 3Q HL with two pairs of monopoles and
antimonopoles (Nm = 4); see Fig. 3(b). With increasing T , the
system undergoes successive transitions before entering into
the PM state above T � 0.433 (see Appendix for the details).

In an applied magnetic field, the system undergoes com-
plex successive transitions, as shown in Fig. 7. In particular,
the 3Q phase experiences multiple changes of Nm at low and

intermediate temperatures. Similarly to the case of p = 0.4,
χsc has nonzero values in all the 3Q phases in the magnetic
field, as shown in Fig. 7(b). While increasing h or T , we find
another 3Q phase dubbed 3Q′ in all the field directions before
going to the 1Q or 1Q′ phase. Interestingly, in the 3Q′ phase,
χsc is zero for h ‖ [100] and [111] but nonzero for h ‖ [110].
This peculiar behavior is understood as follows. The spin
configuration is similar to the one in the 3Q′ phase found
in the ground state in Sec. IV A 2, which is two dimensional
due to the coplanar arrangement of the three ordering wave
numbers. In this situation, χsc = 0 when the magnetic field
is parallel to the two-dimensional plane, because

∑
r0

χr0
in

Eq. (19) becomes perpendicular to the plane. This condition
holds for h ‖ [100] and h ‖ [111] but not for h ‖ [110]. For
example, when {1, 4, 7} is the set of η for nonzero mη, that is
commonly seen in all the field directions, its corresponding
plane is (011̄) that is perpendicular to [100] and [111] but
not to [110]. In addition, we note that χsc is nonzero in the
5Q phase under the magnetic field despite being topologically
trivial but is zero in the 2Q′ phase appearing at finite h and T
as the 2Q phase in the case of p = 0.4.

Let us discuss the magnetic and topological transitions in
the 3Q phase, by taking the case of T = 0.1 in h||[110] as an
example [magenta dashed line in Fig. 7(b)]. Figure 8 shows
the magnetic field dependences of mη, C, dm/dh, Nm, and
χsc. When h is applied, mη show a complex field dependence;
from the anomalies in mη, we identify two magnetic phase
transitions within the 3Q phase at h � 0.309 and h � 0.495.
These transitions are of second order and purely magnetic
without a change of Nm; C and dm/dh show a jump, as shown
by the purple arrows in Fig. 8(b). In addition to these magnetic
phase transitions, we find four topological transitions associ-
ated with the changes of Nm as Nm = 4 → 6 → 4 → 2 → 0.
Similarly to the case of p = 0.4 in Fig. 6(b), all these tran-
sitions are hidden with no singularities in C and dm/dh, as
shown by the green arrows in Fig. 8(b). It is, however, worth
noting that they exhibit clear humps in both C and dm/dh
except for the one at h � 0.479, in contrast to the p = 0.4
case. As plotted in Fig. 8(c), χsc shows a sharp rise at the
transition with Nm = 4 → 6. After the increase through the
topological transitions with Nm = 6 → 4 → 2 and showing
a peak in the Nm = 2 phase, χsc rapidly decreases at the
transition with Nm = 2 → 0, and goes to zero discontinuously
at the magnetic phase transition to the 1Q′ phase.

3. p = 0.6

Finally, we show the results for p = 0.6, which is on the
4Q side in the competing region at zero field; see Figs. 2
and 4. Figure 9 shows the h−T phase diagrams and χsc. At
h = 0, the ground state is the 4Q HL with Nm = 16, which
remains stable until the phase transition to the PM phase at
T � 0.52. In an applied magnetic field, the system undergoes
a direct transition from the 4Q phase to the PM phase for
h ‖ [100], but it shows an additional phase transition to the
1Q′ phase for h ‖ [110] and [111]. In addition, the 2Q′ phase
appears at finite T under h ‖ [110], similarly to the case of
p = 0.5 in Fig. 7(b). In the 4Q phase, Nm varies with T and
h. χsc is nonzero in the entire region of the 4Q phase and
becomes large in the Nm = 8 phase at low temperature. The
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FIG. 8. Magnetic field dependences of (a) mη�
, (b) C and dm/dh,

and (c) Nm and χsc. The calculations are done for h ‖ [110] at
T = 0.1 and p = 0.5; see the magenta dashed line in the left panel
of Fig. 7(b). The insets in (b) are magnified views of the blue- and
orange-boxed areas in the main panel. The data for χsc in (c) are
multiplied by a factor of 102 for better visibility. The green and
purple arrows in (b) indicate the hidden topological transitions and
the continuous magnetic phase transitions, respectively.

largest value of Nm = 24 is found at finite temperature under
h ‖ [110].

Let us discuss the transitions including the 4Q HL with the
largest Nm = 24 by taking the case of T = 0.12 in h||[110]
[magenta dashed line in Fig. 9(b)]. Figure 10 shows the mag-
netic field dependences of mη, C, dm/dh, Nm, and χsc. In
this range of h, Nm changes from 16 to 24 at h � 0.479 and
from 24 to 8 at h � 0.517. Let us first discuss the transition at
h � 0.479. We find that this is a hidden topological transition
with no singularities in mη and C, while dm/dh shows a hump
as indicated by the green arrow in Fig. 10(b). Figures 10(d)
and 10(e) show the configurations of spins and monopoles in
the Nm = 16 and Nm = 24 phases, respectively. The intriguing
aspect of this topological transition is that the monopoles and
antimonopoles are pair created for the increase of h without
a magnetic phase transition. Although there are several exam-
ples of pair annihilation for the increase of the magnetic field
[23–26], this is the first example of pair creation in the 4Q
HLs to the best of our knowledge.

Next let us discuss the transition at h � 0.517. This is a
first-order magnetic phase transition with small jumps of mη.

FIG. 9. Magnetic field–temperature phase diagrams (left) and
h−T maps of χsc (right) for (a) h ‖ [100], (b) h ‖ [110], and (c) h ‖
[111] at p = 0.6. The magenta dashed line in the left panel of
(b) indicates the parameter range for Fig. 10. The other notations
are common to those in Fig. 5.

Through the discontinuous change of the spin configuration,
Nm also changes from 24 to 8; see Figs. 10(e) and 10(f). Inter-
estingly, we find that the phase transition is accompanied by
changes in the complex phases of the Fourier components Sμ

Qη
,

as plotted in Fig. 10(a); we here plot mod [arg(Sz
Q4–7

), π/�],
where mod[x, y] ≡ x − y�x/y�, as the complex phase has
arbitrariness of multiples of π/� corresponding to spatial
translation. Note that the importance of such phase degree of
freedom in topological spin textures has also been pointed out
in Refs. [34,49].
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FIG. 10. Magnetic field dependences of (a) mη, modulo π/�

of the argument of Sz
Qη

(mod[arg(Sz
Qη

), π/�]), (b) C and dm/dh,
and (c) Nm and χsc for h ‖ [110] at T = 0.12 and p = 0.6. The
green arrow in (b) indicates the hidden topological transition. Spin
configurations and positions of monopoles and antimonopoles at
(d) h = 0.45, (e) h = 0.50, and (f) h = 0.55. The insets show dis-
tributions of mη.

V. SUMMARY

In summary, we have theoretically investigated topological
transitions driven by external magnetic fields and temperature
in emergent magnetic monopole lattices. Motivated by the
recent experimental discovery of the monopole lattices in
magnets, we have proposed a spin model that can stabilize
both cubic 3Q and tetrahedral 4Q HLs and studied the topo-
logical nature of the magnetic and thermodynamic properties.
The ground-state phase diagrams (Figs. 2 and 4) and the mag-
netic field–temperature phase diagrams (Figs. 5, 7, and 9) have
been obtained precisely using the recently developed exact
steepest descent method that is crucial to identify the topo-
logical transitions in the thermodynamic limit. Through the
comprehensive analyses, we have found a variety of hidden
topological transitions which do not show singularities in the
macroscopic physical quantities such as the specific heat, the
magnetization, and the net scalar spin chirality, whereas the
other magnetic transitions with topological changes exhibit
critical behaviors like in the conventional phase transitions.
Some of the hidden topological transitions show humps in the
magnetic field and temperature dependences of the macro-
scopic quantities like crossovers, but the others do not—the
latter are hardly visible in macroscopic measurements. These
findings indicate that one needs to be extremely careful to
identify such topological transitions associated with the emer-
gent magnetic monopoles. It is not clear whether the presence
or absence of humps in the macroscopic quantities is just
at the quantitative level or there are qualitatively different
topological transitions, but this issue is left for future research.

While our model is constructed by simply integrating the
models for the 3Q and 4Q HLs, it reproduces well some
aspects of the experimental results for MnSi1-xGex by regard-
ing x as the mixing ratio p of the magnetic interactions; the
relative stability of the two HLs is sensitive to p but almost in-
sensitive to the magnetic field h (Figs. 2 and 4). Furthermore,
our model predicts unprecedented 5Q states both with and
without magnetic monopoles in the competing region between
the 3Q and 4Q HLs and a different type of topological tran-
sition associated with pair annihilation of two-dimensional
magnetic vortices and antivortices in the 2Q state appearing
only at finite temperature under a magnetic field. For fur-
ther quantitative comparison including these new findings,
however, experimental studies of the single crystals are indis-
pensable. Furthermore, it would be important to elaborate on a
more sophisticated model by taking into account, e.g., the spin
and charge degrees of freedom of conduction electrons, the
single-ion magnetic anisotropy, short-range magnetic interac-
tions, magnetic field dependences of the coupling constants
as well as the lattice structures, and randomness by chemical
substitutions. In particular, explicit consideration of conduc-
tion electrons is expected to be important for detecting the
topological transitions: The electronic structure of conduction
electrons coupled to the spin textures are expected to be signif-
icantly affected with discontinuous changes of the monopole
density, since the monopoles and antimonopoles can work as
scatterers for electrons. Last, although the quantum effects
could also be important even in three-dimensional systems,
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FIG. 11. Temperature dependences of (a) mη�
and (b) C at h = 0

and p = 0.4. The black solid and dashed lines in (a) indicate func-
tions proportional to |T − Tc|1/2 and |T − Tc|3/2, respectively.

their theoretical analyses are technically difficult in general
and are left for future research. We hope the present results
stimulate such future experimental and theoretical studies for
developing the emergent electromagnetism.
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APPENDIX: FINITE-TEMPERATURE TRANSITIONS
AT ZERO MAGNETIC FIELD

Figure 11 shows the temperature dependences of the or-
der parameters mη and the specific heat per spin C at h = 0
for p = 0.4. Near the critical temperature Tc, m1–3 exhibit
the critical behavior of the mean-field universality class as
m1–3 ∝ |T − Tc|1/2, while m4–7 behave differently as m4–7 ∝
|T − Tc|3/2. This indicates that m1–3 are the primary order pa-
rameters, and m4–7, which correspond to higher harmonics of
m1–3 as discussed in Sec. IV A 1, are induced as the secondary
order parameters. We note that the mean-field universality
class is consistently understood from the fact that the range
of the interactions in Eq. (1) is infinite. We find that C shows
a jump at Tc and becomes zero for T > Tc, which is also
consistent with the mean-field universality class. We note that
this mean-field type criticality changes as the model is mod-
ified to be more realistic, for example, by introducing decay

FIG. 12. Temperature dependences of (a) mη�
and (b) C and Nm

at h = 0 and p = 0.5. The black solid lines in (a) indicate functions
proportional to |T − Tc|1/2.

in the long-range interaction [27]. For p = 0.6, we confirm
the primary order parameters and the specific heat behave
essentially the same as those for p = 0.4.

The temperature dependences of mη, C, and Nm for p=0.5
are shown in Fig. 12. At T � 0.175, the system shows a
first-order phase transition to another 3Q HL with Nm = 8,
where mη show discontinuous changes: The primary 3Q com-
ponents change from m1 > m2 > m3 to m1 > m2 = m3, as
shown in Fig. 12(a). At the same time, C shows a delta
function–like singularity, as shown in Fig. 12(b). Thus, this
is a discontinuous phase transition between the 3Q HLs with
different magnetic and topological properties. In contrast, the
next transition at T � 0.275, where Nm changes from 8 to 0 by
annihilation of four pairs of monopoles and antimonopoles, is
a hidden topological transition: C as well as mη does not show
any anomalies as indicated by the green arrow in Fig. 12(b),
similarly to those with Nm = 8 → 6 → 4 at p = 0.4 in the
previous section.

When T is further increased, a second-order phase transi-
tion occurs from 3Q to 5Q at T � 0.285. At this transition,
two of m1–3 vanish as mη ∝ |T − Tc|1/2, leaving one nonzero
component of 3Q in addition to the four 4Q ones. While the
nonzero magnetic components are common, the 5Q state is
topologically different from that found in the ground state
in Fig. 2, as the present one have no monopoles (Nm = 0).
Thus, this continuous transition is purely magnetic, taking
place between the topologically trivial phases. We note that
all m4–7 show the criticality of |T − Tc|1/2 at the transition
to the high-T PM state at T � 0.433, indicating that the 4Q
components are not secondary but primary order parameters,
unlike those in the 3Q phase in Fig. 11.
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