
PHYSICAL REVIEW B 107, 094435 (2023)

Non-Hermitian dynamics for a two-spin system with PT symmetry
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A system of interacting spins that are under the influence of spin-polarized currents can be described using
a complex functional, or a non-Hermitian (NH) Hamiltonian. We study the dynamics of two exchange-coupled
spins on the Bloch sphere. In the case of currents leading to PT symmetry, an exceptional point that survives
also in the nonlinear system is identified. The nonlinear system is bistable for small currents and it exhibits
stable oscillating motion or it can relax to an equilibrium point. The oscillating motion of the two spins is akin
to synchronized spin-torque oscillators. For the full nonlinear system, we derive two conserved quantities that
furnish a geometric description of the spin trajectories in phase space and indicate stability of the oscillating
motion. Our analytical results provide tools for the description of the dynamics of NH systems that are defined
on the Bloch sphere.
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I. INTRODUCTION

Effective non-Hermitian (NH) Hamiltonians [1,2] have
been employed for the description of classical [3,4] and quan-
tum systems [5,6] that are coupled to the environment by
dissipative or other forces. The observation that NH Hamil-
tonians that are invariant under the combination of parity
and time reversal (PT ) foster real spectra [5,7] has led to a
series of theoretical and experimental studies. A significant
amount of work has focused on optical systems with balanced
gain and loss such as in optical beam propagation [8] and
single-mode lasers [9]. More recently, magnetic systems with
PT symmetry have been proposed [10–13] and systems with
gain and loss [14–17], with the latter reports focusing on
degeneracies, called exceptional points (EPs), in the spectrum
of the linear system, were the sensitivity of the system is
enhanced. Effects of EPs were demonstrated for magnonic
systems which possess two different loss factors [18].

Spin systems are studied extensively in relation to mag-
netic materials [19] motivated by applications in magnetic
recording, nanoscopic sensors, antennas [20], computing ap-
plications, and neural network implementations [21]. Probing
ferromagnets (and other magnetic materials) is done most effi-
ciently by spin torques that are due to a spin-polarized current.
This acts on the magnetic moments in the material in a way
that may combine energy gain and loss and it drives magne-
tization dynamics [22]. Spin-transfer torque nano-oscillators
(STNOs) can be constructed that give rise to magnetization
oscillators due to injection of dc spin-polarized current [23].
A PT -symmetric system of this kind with a single spin was
studied in Ref. [10]. The synchronization of chains of STNOs
in order to produce large power is a main challenge in this area
[24,25].

We propose a PT -symmetric system of two interacting
spins or magnetic moments that can realistically be con-
structed when we invoke suitable spin-torque effects. We
show that this is described by a complex function instead
of a real Hamiltonian. This gives a paradigm of a realistic

nontrivial system on the Bloch sphere. We show that the
nonlinear system exhibits oscillating motion that is connected
with the real eigenvalues of the linearized system. As a con-
sequence, in the case of ferromagnets, one can design an
appropriate setup for obtaining large-amplitude synchronized
magnetization oscillations. Furthermore, this method can be
extended to a chain of spins or oscillators. For the full non-
linear system, we derive two conserved quantities that make
an explicit connection between the NH system and the Hamil-
tonian one, while they also furnish a geometric description
of the spin trajectories in phase space. The existence of con-
served quantities indicates that magnetization oscillations of
large amplitude are expected to be stable.

Spin systems are crucial for quantum computing, and ob-
servations on a PT -symmetric single-spin system have been
reported [26]. Furthermore, an effective spin Hamiltonian is
obtained in various physical systems. An example is a spin
Hamiltonian obtained for qubits in an exciton polariton con-
densate, which are externally controllable by applied laser
pulses and are coupled via a coherent tunneling term [27].
Finally, it is well known that the possible quantum states for
a single qubit can be represented on a Bloch sphere. Our an-
alytical results on complex Hamiltonians could provide tools
for a more complete and elegant description of the dynamics
of interacting spins on the Bloch sphere in magnetic and other
systems.

The paper is organized as follows. In Sec. II, we give the
formulation of a spin system using a complex functional. In
Sec. III, we give the complex function for a system of two
spins coupled by exchange. In Sec. IV, we give analytically
simple periodic solutions for the spin dynamics. In Sec. V,
we derive two conserved quantities and give their geometric
meaning. Section VI contains our concluding remarks.

II. A COMPLEX FUNCTION FOR SPINS

We consider a spin system described via the magnetiza-
tion vector m = (mx, my, mz ) assumed to have a fixed length
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normalized to unity, |m| = 1. If E denotes the magnetic en-
ergy, the conservative torque on the magnetization is f =
−∂E/∂m. A polarized spin current that is injected in the
system may produce an additional torque and the normalized
equation of motion is [22]

∂m
∂t

= m × ∂E

∂m
+ α m × ∂m

∂t
− β m × (m × p), (1)

where p is the spin current polarization, β is a parameter
proportional to the polarized current, and we have included
a Gilbert damping term with parameter α. In the case of a fer-
romagnetic material, the time variable is scaled to 1/(γμ0Ms)
where Ms is the saturation magnetization and γ is the gyro-
magnetic ratio.

The stereographic projection from the unit sphere |m| = 1
to the complex plane is given by the complex variable

� = mx + imy

1 + mz
. (2)

This can be inverted to give the magnetization components

mx = � + �

1 + ��
, my = 1

i

� − �

1 + ��
, mz = 1 − ��

1 + ��
, (3)

where the bar denotes complex conjugation. The stereo-
graphic projection variable will make manifest the non-
Hermiticity of the model and it will be central in the
formulation of the present work.

The equation of motion for �, equivalent to Eq. (1), reads

(i + α) �̇ = −1

2
(1 + ��)2

(
∂E

∂�
+ iβ

∂EST

∂�

)
, (4)

where we have defined the function

EST = −m · p. (5)

Formula (4) suggests the definition of a complex function that
includes the spin-torque term,

F = E + iβEST, (6)

so that the equation of motion for � takes the compact form

(i + α) �̇ = −1

2
(1 + ��)2 ∂F

∂�
. (7)

The function F will be called the complex Hamiltonian.
As a basic example, if we have an external magnetic field

h = (0, 0, h) giving rise to the energy E = −m · h, and the
spin polarization is p = (0, 0, 1), then F = −(h + iβ )mz and
the equation of motion is

(i + α) �̇ = −(h + iβ )�. (8)

III. TWO EXCHANGE-COUPLED SPINS

We proceed to consider two magnetization vectors or spins
interacting via exchange. These may represent two domains
or layers in a magnetic material [28], or two effective spins in
another physical system.

We denote the two vectors by m1, m2 and assume that they
have equal length, |m1| = |m2| = 1. Except for the exchange
interaction, we include an easy-axis anisotropy along z, and

an external field h = hêz. The energy is

E = −J m1 · m2 − κ

2
[(m1,z )2 + (m2,z )2] − h (m1,z + m2,z ),

(9)
where J > 0, κ > 0 are the exchange and anisotropy param-
eters, respectively, and m1,z, m2,z denote the z components
of the two vectors. We further consider that spin-polarized
currents are injected in the two domains m1, m2, with polar-
ization in two opposite directions, p = ±êz. (Such a strategy
for achieving PT symmetry is mentioned in [3] and attributed
to [29].) The opposite polarizations could be achieved, e.g., in
the case of two coupled ferromagnetic layers, by injecting a
current through the layer separating the two magnetic layers
[15], or by two different currents through layers adjacent to
each one of the magnetic layers. Spin current polarization with
a component perpendicular to the sample plane was recently
demonstrated [30,31]. The equations of motion are

ṁ1 = −m1 × f 1 + αm1 × ṁ1 − βm1 × (m1 × êz ),

ṁ2 = −m2 × f 2 + αm2 × ṁ2 + βm2 × (m2 × êz ), (10)

where the dot denotes time differentiation and the effective
fields are

f 1 = − ∂E

∂m1
= Jm2 + κ m1,zêz + h êz,

f 2 = − ∂E

∂m2
= Jm1 + κ m2,zêz + h êz.

We will assume in the following h > 0, β > 0. Positive
parameter β means that spin torque forces m1 to the north
pole and m2 to the south pole. Equations (10) have four fixed
points. Two fixed points correspond to both m1, m2 pointing
at the north or at the south pole,

m1 = m2 = êz, (P1)

m1 = m2 = −êz, (P2)

and two further fixed points correspond to the vectors pointing
at opposite poles,

m1 = êz, m2 = −êz, (P3)

m1 = −êz, m2 = êz. (P4)

For the study of the stability of the fixed points as well as
for using the concepts of non-Hermiticity, we proceed to the
formulation of the system using the stereographic projections
(2) of each of the spins, denoted by �1,�2. We write the
complex Hamiltonian of Eq. (6) for the system of two spins,

F = − J m1 · m2 − κ

2
[(m1,z )2 + (m2,z )2]

− h (m1,z + m2,z ) + iβ (m2,z − m1,z ). (11)

This can be written in terms of the stereographic variables
using Eqs. (3). For example, the exchange term is

−Jm1 · m2 = 2J
(�1 − �2)(�1 − �2)

(1 + �1�1)(1 + �2�2)
. (12)
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The equations of motion for �1,�2, from Eq. (7), read

(i + α) �̇1 = J
1 + �1�2

1 + �2�2
(�2 − �1) − κ

1 − �1�1

1 + �1�1
�1

− (h + iβ )�1,

(i + α) �̇2 = J
1 + �1�2

1 + �1�1
(�1 − �2) − κ

1 − �2�2

1 + �2�2
�2

− (h − iβ )�2. (13)

System (13) is PT -symmetric when we neglect the damping
term by setting α = 0. The terms with β act as gain and loss,
but note that not each separate one of them can be classified
as giving only gain or only loss. This is unlike in previous
works on NH magnetics [14,15,17,32], where damping and
antidamping torques were assumed [33].

The solution of Eq. (13) �1 = 0, �2 = 0 corresponds to
the fixed point (P1) where both vectors point at the north pole.
We can study the behavior of the system close to the fixed
point if we assume |�1|, |�2| � 1 and linearize the equations.
We have the linearized system (for α = 0)

i�̇1 = −(ω0 + iβ )�1 + J�2, ω0 = J + κ + h,

i�̇2 = −(ω0 − iβ )�2 + J�1 (14)

that has the form of a standard linear PT -symmetric dimer
model. For β � J , we define an angle θ via

sin θ = β

J
, 0 � θ � π, (15)

and have the solution

�1 = A eiωt , �2 = A eiθ eiωt , (16)

with angular frequency

ω = ω0 − J cos θ. (17)

For every β � J , Eq. (15) gives two angles θ1, θ2 with θ2 =
π − θ1 (assuming θ1 < π/2) and thus two frequency values
are given by Eq. (17). For 0 � θ = θ1 � π/2, we obtain an
acoustic branch and for π/2 � θ = θ2 � π , we obtain an op-
tical branch. States (16) correspond to periodic motion of both
spins with equal amplitudes |�1| = |�2|. Equivalently, one
can say that the spins have equal z components, m1,z = m2,z,
while precession occurs around the z axis.

For β > J , the angular frequency has an imaginary part,

ω = ω0 ± iJ
√

(β/J )2 − 1, (18)

which means that |�1|, |�2| will generically grow in time and,
thus, the fixed point is unstable. A corresponding analysis for
the fixed point (P2) gives the same stability results, that is,
precessional motion for β � J and an instability for β > J .

In order to study the fixed point (P3), we use the
transformation �2 = 1/�2 for the second spin. Then, (P3)
corresponds to �1 = 0, �2 = 0. The equations of motion (13)
become (for α = 0)

i �̇1 = J
1 − �1�2

1 + �2�2
(�1 + �2) − κ

1 − �1�1

1 + �1�1
�1

− (h + iβ )�1,

TABLE I. Stability regimes for the four fixed points. The results
of linear stability analysis agree with numerical simulation results for
the nonlinear system. We are confined to the case J, β > 0.

Stable Unstable

P1 β � J β > J
P2 β � J β > J
P3 κ � 2J or β � √

κ (2J − κ ) κ < 2J and β <
√

κ (2J − κ )
P4 β > 0

i �̇2 = J
�1�2 − 1

1 + �1�1
(�1 + �2) − κ

�2�2 − 1

�2�2 + 1
�2

− (h + iβ )�2. (19)

In order to study stability, we assume �1, �2 � 1 and lin-
earize the equations to obtain

i�̇1 = (J − κ − h − iβ )�1 + J�2,

i�̇2 = (−J + κ − h − iβ )�2 − J�1. (20)

Assuming solutions

�1 = A1eiωt , �2 = 1

�2
= A2eiωt ,

we obtain the condition

(ω − h − iβ )2 = κ (κ − 2J ). (21)

In the case

κ � 2J ⇒ ω = h ±
√

κ (κ − 2J ) + iβ, (22)

we have that iω has a negative real part, −β, giving asymptotic
stability for every β > 0. In the case

κ < 2J ⇒ ω = h + i[β ±
√

κ (2J − κ )], (23)

we have that

β �
√

κ (2J − κ ) (24)

gives asymptotic stability, while

β <
√

κ (2J − κ ) (25)

gives instability. The right side in Eq. (23) has a maximum
equal to J at κ = J . This means that, for β > J , the fixed point
is stable for every value of κ .

Finally, for the fixed point (P4), we can follow a similar
procedure and find that it is unstable for every value of β >

0, κ > 0. This is a consequence of the fact that our choice of
positive β forces m1, m2 away from the south and north pole,
respectively; that is, it forces the system away from point (P4).
Table I summarizes the results for the stability of the fixed
points.

The linear stability results of this section determine cases
where fixed points are unstable. On the other hand, in the cases
where the linear system is stable (with a real frequency), no
conclusive result can be drawn for the nonlinear system (as
dictated by standard dynamical systems theory). Further study
of the stability will be given in Sec. IV B.
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IV. NONLINEAR OSCILLATIONS

A. Amplitude and frequency

We proceed to study solutions of the nonlinear system (13).
We start by assuming solutions of the form (16) that is, perfect
oscillations where the two spins differ by a phase. Substituting
in Eqs. (13), we obtain

|A|2[J (1 − e−iθ ) + κ + ω − h − iβ]

+ [J (eiθ − 1) − κ + ω − h − iβ] = 0,

|A|2[J (1 − eiθ ) + κ + ω − h + iβ]

+ [J (e−iθ − 1) − κ + ω − h + iβ] = 0.

The two equations are identical if condition (15) holds, and
they reduce to

|A|2[J (1 − cos θ ) + κ + (ω − h)]

+ [J (1 − cos θ ) + κ − (ω − h)] = 0.

This obtains the angular frequency as a function of the ampli-
tude (as expected for nonlinear oscillators),

ω = 1 − |A|2
1 + |A|2 [J (1 − cos θ ) + κ] + h. (26)

For the interpretation of this result, one should note that
(1 − |A|2)/(1 + |A|2) gives the z component of m1, m2. Sim-
ilarly to the linear case, we have an acoustic and an optical
branch for nonlinear magnetization oscillations. Their fre-
quencies are given by Eq. (26) for the two solutions θ = θ1, θ2

of Eq. (15). Related observations were reported in [18] for a
passive magnonic system.

Equation (15) implies an exceptional point at β = J for
the nonlinear system. This means that the system possesses
periodic orbits for β < J but these are not sustained for β > J .
Furthermore, at β = J , Eq. (15) gives a single solution θ =
π/2; the two frequencies coalesce to a single one and we have
only one nonlinear oscillation solution (16). The exceptional
point of the nonlinear system coincides with that obtained for
the linearized system (14). The stability of the periodic orbits
in the nonlinear system will be studied numerically in the next
subsection.

We conclude the subsection by making some further re-
marks on Eq. (26) and assuming h = 0 for simplicity. The
frequency is invariant under the transformation A → 1/A.
This corresponds to the invariance of the model under the
transformation m3 → −m3. For small amplitude, |A| → 0, the
spins are close to the north pole of the Bloch sphere and
Eq. (26) reduces to the result (17) of the linear model. The
limit |A| → ∞ is allowed and it corresponds to the spins
being close to the south pole of the sphere. The frequency
of oscillation has maximum absolute value for m close to the
north (A → 0) or the south pole (|A| → ∞).

In the case that both spins point on the equator, |A| = 1,
there is no spin precession, ω = 0, according to Eq. (26) for
h = 0. Therefore, the configurations �2 = eiθ�1, for |�1| =
|�2| = 1, give a continuum of fixed points of the system.
These are additional to the four fixed points P1–P4 discussed
in Sec. III. The new fixed points are obviously unstable, as
any deviation from the equator would result in spin precession

around the z axis, which means, the spins would go away from
their fixed-point positions.

B. Numerics

We simulate numerically the system when it is below the
exceptional point, for β < J , and find that it follows the pre-
cessional eigenstates (16) of the nonlinear system if the initial
spin configuration is prepared so that it agrees with Eqs. (15)
and (16). Figure 1(a) shows an example of spin precession
for the acoustic branch. Figure 1(c) shows an example of spin
precession for the optical branch. The graphs show the x and
the z components of the magnetization vector. The frequency
of precession is given by Eq. (26) and the result is verified
in the graphs by the periodicity of the x components of the
magnetization vectors.

Furthermore, for an initial condition that is close to the
eigenstate (16), we obtain quasiperiodic motion where the
z components of the spins oscillate while the spins precess
around the z axis. An example is shown in Fig. 1(b), for an
initial condition close to the one that gave the acoustic branch
periodic motion in Fig. 1(a). Another example is shown in
Fig. 1(d), for an initial condition close to the one that gave the
optical branch periodic motion in Fig. 1(c). Two frequencies
are involved in this motion. The precessional motion fre-
quency is close to (26), while the periodicity of the oscillation
of the z component of the spin gives a second frequency
apparently unrelated to the spin precession frequency.

For the simulations in Fig. 1, we have chosen parameters
such that condition (24) is satisfied, and the system is expected
to be bistable as inferred from Table I. We run a further
simulation using the same parameter set, but now choosing
an initial condition close to the point (P3). We find that the
system goes asymptotically to this fixed point, as shown in
Fig. 2. This verifies the bistability of the system.

In the case that β satisfies condition (25), only (P1), (P2)
are stable. Starting from any initial condition the system goes
into a periodic or a quasiperiodic motion similar to those
shown in Fig. 1.

Finally, when we cross the exceptional point, for β > J ,
the fixed points (P1), (P2) are unstable due to the imaginary
part in the eigenvalues (18). Then, (P3) is the only stable fixed
point and the system goes to that asymptotically from any
initial condition.

We conclude the section with a note about the remarkable
periodicity in the dynamics of this system. The quasiperi-
odic motion observed in many of the simulations cannot be
considered as a direct consequence of the results obtained
in Sec. III for the linearized equations. It is rather due to a
partial or complete integrability of the system. The periodic
and quasiperiodic dynamics can be anticipated due to the
existence of the integrals that will be given in Sec. V.

V. CONSERVED QUANTITIES

A. Energy and magnetization

The existence of integrals of motion is implied by the cor-
respondence between the PT -symmetric Hamiltonian with a
Hermitian one [34]. This is further supported by the existence
of periodic and quasiperiodic solutions of the system of equa-
tions (10). It has been shown that a class of PT -symmetric
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FIG. 1. We simulate Eqs. (13) with parameters J = 1, κ = 0.2, h = 0 and spin-torque parameter β = 0.8. The first and the third compo-
nents of the magnetization m1,x (t ), m2,x (t ) and m1,z(t ), m2,z(t ) are shown. (a) Using an initial condition that agrees with Eqs. (15) (for θ < π/2)
and (16), we obtain spin precession in the acoustic branch, that is, oscillations around the nonlinear eigenstate (16). (b) When we choose the
initial condition close to the values used in (a), we obtain oscillations of the z component of the spins in addition to precessional motion.
(c) Using an initial condition that agrees with Eqs. (15) (for θ > π/2) and (16), we obtain spin precession in the optical branch. (d) Similar
simulation to (b) for the optical branch.

nonlinear Schrödinger dimers admit a Hamiltonian and are
completely integrable systems [35–37].

We will derive integrals of motion for the undamped
(α = 0) system. We start by noting that, in the absence of spin
torque (β = 0), the energy (9) and also the total magnetization
along the symmetry axis

Mz = m1,z + m2,z (27)

are conserved quantities. When β �= 0, the time derivative of
the energy is

dE

dt
= −β

(
E − J − κ

2
M2

z + κ

)
M− (28)

and the time derivative of Mz is
dMz

dt
= −β MzM

−, (29)

where we have defined the quantity

M− = m1,z − m2,z (30)

that will enter many calculations in this section.
Equations (28), (29) suggest that we define the quantity

G = E − J + κ

2

(
M2

z + 2
)
, (31)

whose time derivative has the form
dG

dt
= −β GM−. (32)

Equation (32) together with Eq. (29) give the conserved quan-
tity

I1 = E − J + κ
2

(
M2

z + 2
)

Mz
. (33)
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FIG. 2. We use the same parameter values as in the simulation
in Fig. 1 so that β >

√
κ (2J − κ ) = 0.6. We use an initial condition

close to the fixed point (P3). We observe that the system goes asymp-
totically to this fixed point.

We can make further progress if we now confine ourselves
to the exchange model, i.e., κ = 0. We have the conserved
quantity

I1 = Eex − J

Mz
. (34)

This is valid also in the presence of a field, h �= 0.

B. Exchange model, first integral

We will proceed by using the Stokes variables defined as

S0 = |�1|2 + |�2|2, S3 = |�1|2 − |�2|2,
S1 + iS2 = 2�1�2. (35)

The following result will prove central,

d

dt
(S1 + iS2) = − i J

4
M− (S1 + 2 + iS2)2. (36)

If we define w = S1 + 2 + iS2, then Eq. (36) is

dw

dt
= iγ w2, (37)

where γ is implicitly defined. This equation gives invariant
circles ww̄ − R(w + w̄) = 0, or

(S1 + 2 − R)2 + S2
2 = R2, (38)

where R ∈ R is an arbitrary constant. Figure 3 shows exam-
ples of these circles. Solving for R, we find that a conserved
quantity is explicitly written as

(S1 + 2)2 + S2
2

S1 + 2
= 2R. (39)

FIG. 3. The geometry of Eq. (38) and Eq. (41). Note that R may
also be negative (then the center of the circle would be at S1 < −2).

Equation (39) reproduces the result in Eq. (34). In order to
see this, we write (34) in terms of the Stokes variables,

I1 = J
(S1 + 2)2 + S2

2

S2
1 + S2

2 − 4
. (40)

Both Eqs. (39) and (40) are quadratic in S1, S2, and they give
the same family of circles.

We conclude this subsection with some remarks. The point
S1 + iS2 = −2 has a special role in this formulation, as it
gives a fixed point of Eq. (36). It corresponds to �1�2 =
−1 ⇔ m1 = −m2.

If we consider anisotropy κ �= 0, the integral (33) does not
represent simply a curve on the (S1, S2) plane but a more
complicated surface in the space (S1, S2, S3).

A comparison of the results of the present section can be
made with the more extensively studied system of two coupled
nonlinear Schrödinger equations with cubic nonlinearity. The
system has two conserved quantities that were reported in
[38], and more extensively explained in Refs. [39–41]. A
calculation similar to that in Eq. (36) gives a form dw/dt =
iγ ′ w with γ ′ some quantity independent of w; cf. Eq. (37).
The solutions are a family of circles with the center at the
origin of the plane (S1, S2).

C. Exchange model, second integral

We write Eq. (38) in the parametric form

S1 + iS2 = R − 2 + Reiφ, 0 � φ < 2π, (41)

whose geometric meaning is shown in Fig. 3. We substitute
Eq. (41) in Eq. (36) and obtain

d

dt
[tan (φ/2)] = R

2
J M−. (42)

Equation (42) gives the rate at which we move on a circle
defined in Eq. (38). An example of the trajectory during the
motion on the (S1, S2) plane is shown in Fig. 4.

We can now combine Eq. (42) with Eq. (29) and obtain a
second conserved quantity

I2 = tan (φ/2) + R

2

J

β
ln |Mz|. (43)
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FIG. 4. We simulate Eqs. (13) with parameters J=1 and β=0.8
(we set κ = 0, h = 0, and α = 0). The gray dotted line shows the
circle (39) and the red arc shows the trajectory on the (S1, S2) plane.
All Stokes variables present oscillating motion in time (not shown).

In Fig. 3, we see that

tan(φ/2) = sin φ

1 + cos φ
= S2

S1 + 2
,

and the conserved quantity (43) is written in terms of the
Stokes variables as

I2 = S2

S1 + 2
+ R

2

J

β
ln

∣∣∣∣∣2
4 − (

S2
1 + S2

2

)
(S0 + 2)2 − S2

3

∣∣∣∣∣, (44)

where we have used

Mz = 2
4 − S2

0 + S2
3

(S0 + 2)2 − S2
3

= 2
4 − (

S2
1 + S2

2

)
(S0 + 2)2 − S2

3

.

The integral (44) could also be obtained by a combination
of Eqs. (29) and (36). However, the method used in this sub-
section is a more transparent one as it is based on geometric
arguments.

Finally, we note that if the system of equations could be
produced by a Hamiltonian, the existence of the two integrals
of motion would imply its complete integrability [37].

VI. CONCLUDING REMARKS

A system of interacting spins that are under spin-transfer
torque can be described by a complex function, or a non-
Hermitian Hamiltonian. We give the formalism for obtaining
the complex function that makes manifest the PT symmetry
when this is present. We have studied the nonlinear dynamics
and the exceptional point for a system of two exchange-
coupled spins in a case of PT symmetry. This introduces a
paradigm for the dynamics of non-Hermitian systems defined
on the sphere.

We have identified the regime for periodic precessional
motion of the two spins, and its stability. The periodic motion
corresponds to a locking of the complete system in sustained
magnetization oscillations. The synchronization of the oscilla-
tions of the two spins, due to PT symmetry, could lead to an
answer to the long-standing problem of the synchronization
of spin-transfer torque nano-oscillators (STNOs) [24,25]. The
rich spin dynamics for the spin system can be further used to
study nonmagnetic systems which are described by effective
spin variables (e.g., as in polariton condensates [27]).

The identification of conserved quantities in the system
offers an explanation for the numerical observation of stable
oscillatory behavior also in the nonlinear system. This finding
will have consequences for NH magnonics if the method
could be generalized to a chain of spins. We have found
one conserved quantity in the general case. In the exchange
model, a second one is found by exploiting the simple form of
the first conserved quantity. In the general case, for nonzero
anisotropy, it is likely that a second conserved quantity exists.
It appears, however, technically difficult to identify its analyt-
ical form.

The present work introduces a NH system of interacting
spins based on the standard modeling for the effect of spin
torques in magnetic materials, i.e., including the Slonczewski
spin-torque term in the interacting spins dynamics. It is thus
amenable to realistic extensions that will possibly include
further energy gain and loss effects, to layered systems (or
a spin chain) with different gain and loss properties in the
layers, and to NH magnonics.
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