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Electrical control of antiferromagnetic domain walls in Weyl semimetals
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The electric-field-induced angular force on the Néel vector in antiferromagnetic (AFM) Weyl semimetals
(WSMs) is theoretically investigated. Unlike in the ferromagnetic (FM) counterparts, the magnetic textures in
the AFM WSMs, such as the domain walls (DWs) appear to lack the torsion in the magnetization and, thus,
unable to benefit from this highly efficient mechanism that originates from the axial magnetic effect. Contrarily,
our calculations illustrate that the addition of the Dzyaloshinskii-Morya interaction can introduce a twist in
the magnetization around the DW location, giving rise to a nonzero axial magnetic field. This axial magnetic
field, when combined with an external electric field, can lead to an imbalance in the fermion density of Weyl
cones of opposite chirality and, thus, a spatially localized net electron spin polarization. The resulting effective
exchange field can exert an angular force on the AFM textures for spatial movement, which can be significant
in certain AFM WSMs even under a moderate external electric field. The dynamics of the DW motion under
this emergent angular force is analyzed by considering the balance of energy absorption and dissipation. Our
investigation reveals the need to account for the contribution of the exchange dissipation mechanism beyond
the typical Gilbert-like (relativistic) term to compensate the unusual superlinear rate of energy absorption by
the AFM textures. The obtained DW velocity vs electric-field characteristics show a significant speedup for the
Néel DWs in the AFM WSMs over the counterparts in the FM WSMs as well as those in the nontopological
magnets. The analysis also elucidates the dependence of the DW motion on the DW chirality in these materials.
Our results clearly indicate the significance of the energy-efficient axial magnetic effect in the dynamics of spin
textures in AFM WSMs with broken inversion symmetry.
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I. INTRODUCTION

In the incipient field of spintronics, device-enabling phys-
ical processes that utilize the exceptional properties of
antiferromagnets (AFMs), such as fast switching dynamics
and suppressed stray magnetic fields have become a major
point of interest as documented in the recent reviews [1–7].
The long-standing challenges in the electrical detection of
the state of the AFM order parameter can now be resolved
with the aid of anisotropic magnetoresistance and spin-Hall
effect (see, for instance, Refs. [3,6]). The approaches based on
a spin-polarized electrical current (such as the spin-transfer,
spin-orbit, and Néel spin–orbit torques) have successfully
demonstrated the control of magnetic dynamics in collinear
AFMs where a large driving current density (107–108 A/cm2)
is invariably required [8–10] as in the comparable ferromag-
netic (FM) systems. Other, potentially more energy efficient
mechanisms to induce an effective torque have also been
explored for currentless Néel vector switching in nanopar-
ticles [11]. In the case of AFM textures, such as a domain
wall (DW), electrical manipulation becomes more challeng-
ing, particularly, for currentless processes as a sufficiently
strong spin torque must be applied over the entire trace of DW
propagation [12–14]. Even for those mediated by the spin-
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polarized (thus, spin) current, the necessary high electrical
current density employed over a substantial duration causes
unwanted Joule heating.

An alternative, potentially more-energy-efficient approach
for the electrical control of magnetic textures was proposed
recently by exploiting the unique properties of Weyl semimet-
als (WSMs) [15–17]. These materials possess a relativisticlike
linear dispersion for three-dimensional electrons, resembling
Weyl fermions, when the Fermi energy is located close to
the valley-related Weyl nodes. The topological protection of
WSMs is characterized by the broken inversion, or time rever-
sal, or both symmetries (P and T , respectively); thus, Weyl
fermions can coexist with magnetically ordered crystals. A
crucial advantage of such a topologically nontrivial magnetic
WSM (particularly, a FM WSM) is the emergent exchange
field of Weyl fermions and the subsequent torque induced
by the axial anomaly [15]. More specifically, an imbalance
in the carrier chirality caused by the anomaly (i.e., an axial
current j5) leads to net spin polarization due to the strong
spin-orbit coupling, whereas the curl of the magnetization
plays the role of an axial magnetic-field B5. The resulting
torque is determined by B5 and the applied electric-field
E (rather than the spin-polarized current in the conventional
spin torque mechanisms). The location of nonzero B5 is asso-
ciated with that of magnetic textures (such as, a DW) where
absorption of the electric energy (i.e., energy loss) is expected
to be much smaller than the corresponding operation in a
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conventional magnet. Even when the textures are driven by
an external magnetic field instead, FM WSMs are expected to
offer similar advantages [17].

The prospect of correspondingly efficient electrical control
of magnetic textures provides a strong motivation to exam-
ine the axial magnetic effects in AFM WSMs. However, a
cursory analysis suggests that they may not benefit from this
effect due to the absence of net magnetization (thus, B5 = 0).
More fundamentally, the ground state of bipartite collinear
AFM WSMs possesses the combined T P symmetry, hence,
retaining the double degeneracy of the band structure that
is incompatible with Weyl fermions [18–20]. As such, the
remedy may be to utilize the weakly FM structures of low
crystalline symmetry. It is well known that the AFM sub-
lattices when combined with strong spin-orbit coupling, can
undergo canting through the Dzyaloshinskii-Moriya interac-
tion (DMI) in the crystals with broken P symmetry. The
resulting appearance of a small but finite net magnetization
makes them akin to weak FMs. Moreover, temporal evolution
of an AFM texture unavoidably induces a finite magnetic
moment, which also breaks the T P symmetry and restores
the electronic band structure of Weyl fermions.

Building on these observations, we theoretically investi-
gate the effect of an external electric field on the Néel vector
dynamics in low-symmetry AFM WSMs. Our analysis clearly
illustrates that the axial current and net electron-spin polar-
ization can indeed appear in an AFM texture subject to the
DMI. The resulting angular force on the Néel vector (associ-
ated with the corresponding spin torque on each sublattice)
enables efficient electrical control of its dynamics. Further
investigation reveals the characteristics of transient AFM DW
motion by considering the balance of energy absorption and
dissipation in the magnetic texture. The distinctive features of
electrically controlled DW dynamics in the AFM WSMs are
highlighted in comparison with those in the FM counterparts.

II. THEORETICAL MODEL

A. General approach

Since the focus is to examine the distinctive qualitative
characteristics of the magnetic texture dynamics, the details
of the electronic band structure and its topological properties
in AFM WSMs (which can be readily found in the literature
[19–22]) are not critical in the present analysis except the
presence of multiple Weyl node pairs associated with the
broken inversion symmetry. Accordingly, we start with a min-
imal Hamiltonian describing an electron with momentum k
and spin s in the vicinity of a Weyl point at Kn that is, interact-
ing with spin moments S j localized at lattice sites j = jA for
sublattice A and j = jB for sublattice B of the AFM texture,

Hn = ηnh̄vF (k − Kn) · s −
∑

jA

α jA S jA · s −
∑

jB

α jB S jB · s.

(1)

Here, ηn (= ±1) denotes the chirality of the Weyl cone n and
vF denotes the Fermi velocity of the electron. For simplicity,
we consider the type-I WSM ignoring the possible tilt of the
cone in the first term of Eq. (1). The strength of the carrier-ion
exchange interaction in the second and third terms is described

by the exchange integrals α jA(B) , which are proportional to the
electron density at the lattice sites jA(B).

In the case when the carrier density does not show an
appreciable spatial variation at each sublattice site (i.e., α jA =
α jB ) and the dimensions of the AFM textures (e.g., the DW
width) are sufficiently larger than the lattice constant, the
macroscopic spin moments

∑
S jA(B) (∼ MA(B)) can be repre-

sented by the continuous sublattice magnetizations MA(B) =
MA(B)(r). Since both the structure local magnetization M(r)
and the Néel vector L(r) can then be expressed as MA(r) +
MB(r) = 2Msm(r) and MA(r) − MB(r) = 2Msn(r), respec-
tively, with the sublattice magnetization Ms, the Hamiltonian
in Eq. (1) may be reduced to a more conventional form for
node n as

Hn = ηnh̄vF (k − Kn) · s − Jm · s, (2)

where constant J signifies the strength of the exchange inter-
action.

Applying this model to a magnetic texture dynamics takes
an additional dependence of m(r) and n(r) on time t ; i.e.,
m(r, t ) and n(r, t ). As in the FM WSMs, the key feature
of the Hamiltonian given in Eq. (2) elicits the formal anal-
ogy of the term A5 = Jm/qe with the vector potential in
the classical electrodynamics provided the Fermi velocity vF

mimics the light velocity, and qe is the unit electron charge
[15,23]. Such a vector potential would subject the electrons
to an axial electric-field E5 = − 1

vF
∂t A5 = − J

vF qe
∂t m and an

axial magnetic-field B5 = ∇ × A5 = J
qe

∇ × m, whose signs
depend on the chirality ηn of the Weyl cone n. Thus, it is
not surprising that the anomalous Hall current jn(∼ B5 × E)
induced in the presence of an external electric-field E dif-
fers for the Weyl fermions in the cones of different chirality.
The resulting net imbalance in the global Hall current when
summed over all Weyl nodes sets a finite axial current j5 =∑

n jn (or
∑

+ jn − ∑
− jn as a difference of the currents with

+ and − chirality). On the other hand, the spin-momentum
interlock in the Hamiltonian [Eq. (2)] establishes identity
jn = ηnqevF 〈s〉 that determines a finite density of electron spin
polarization 〈s〉 = ζB5 × E. The factor ζ can be evaluated
under the relaxation-time approximation (tr) in the quan-
tum limit or a quasiclassical approach applied for the dense
Landau levels [15]. In comparison, the contribution of the ax-
ial electric-field (E5) usually drops out of consideration due
to its small strength [23]. Unlike the FM WSMs, where the
induced net electron spin polarization (thus, the effective field)
can exert directly a propulsive spin torque τ = (J�/h̄)m ×
〈s〉 (� being the volume per magnetic ion) on the magnetic
textures [15,16], the effect appears to be more complex for the
Néel vector dynamics in the AFM counterparts as described in
the following section.

Before proceeding further, let us discuss briefly the appli-
cation of the model Hamiltonian [i.e., Eq. (2)] to the realistic
AFM WSMs. In the FM WSMs (thus, with broken T ), one
can conveniently presume the simplest structure of two nodes
n = 1, 2 with opposite chirality ηn = ±1 under the P sym-
metry (i.e., a single pair of Weyl nodes) [15]. However, the
AFM WSMs with a necessary weak magnetism via the DMI
requires a more complex case with both T and P as well
as the combined T P symmetry broken. As such, they must
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FIG. 1. Néel vector textures (black arrows) in the 180◦ (a) Bloch
and (b) Néel DWs in an AFM WSM strip (on the x − y and
x − z planes, respectively). The hard-axis ê is oriented along the
(a) ẑ or (b) ŷ direction. Without the DMI, the moving DWs generate
the magnetization (of kinematic origin; red arrows) around the DW
location with a fixed direction (a) along or (b) perpendicular to the
direction of DW propagation (i.e., z). The reference angle ϕ0 = 0◦ is
selected as shown for convenience.

contain, at least, two pairs of Weyl nodes of opposite chi-
rality (i.e., n = 1, 2 and n = 3, 4). In the scarcity of AFM
WSMs identified, thus, far reflecting the early stage of its
research, a material interesting in this regard is YbMnBi2

of space-group p4/nmm. It is a crystal in which magnetic
ions (Mn) arrange a C-type AFM structure [24–26]. The
AFM state displays four Dirac points under the combined
T P symmetry, which preserves double degeneracy of the
electronic bands. The necessary breaking of the remaining
symmetry is introduced to the system when a portion of
Bi atoms located on the plane farther away from Mn ions
are substituted by defects (such as vacancies) or impurities. In
the case of Bi vacancies, a recent calculation showed that the
correspondent DMI creates an effective exchange field (via
the canted spins of magnetic ions) capable of forming two
pairs of topologically protected gapless band structure around
the Fermi level [26]. Each of these nodes revealed a Weyl-
type dispersion law at a modest exchange field described
by the canonical Hamiltonian [Eq. (2)]. More generally, the
desired AFM WSM structures can be realized in a solid
solution YbMn(Bi1−xZx )2 with a minimally tangible concen-
tration of vacancies or substitution by an atom Z isovalent
to Bi [26]. Other examples are expected for this class of
materials as the requirement is relatively straightforward
to meet.

B. Exchange field of an axial current

The structure under consideration is an AFM WSM strip
placed under an electric field whose direction coincides with
that of the DW propagation along the z axis. More specifically,
it is assumed that the interaction at the interface with the
substrate gives rise to a broken C4 symmetry perpendicular
to the easy x axis. This structural anisotropy can establish
a hard axis ê and the conditions amenable for the emer-
gence of a 180◦ DW as depicted in Fig. 1. The arrangement

ê ‖ ẑ = (0, 0, 1) supports a Bloch DW formation [Fig. 1(a)],
whereas ê ‖ ŷ = (0, 1, 0) shapes a Néel DW [Fig. 1(b)].
In the exchange approximation, such a disposition establishes
the Néel vector n (= L/2Ms) located on the plane normal to
the hard axis. It sets the unit vector n of the Bloch (Néel)
DW to be on the x − y (z − x) plane, whose direction can
be described in term of the azimuthal angle ϕ measured
from the x axis, respectively; i.e., n = (cos ϕ, sin ϕ, 0) [or
(cos ϕ, 0, sin ϕ)].

A basic solution for the 180◦ DW moving with a velocity
v can benefit from a soliton representation against a reference
angle ϕ0 [14],

ϕ − ϕ0 = ±2 arctan(exp ξ ), (3)

in terms of a self-similar variable with relativisticlike scaling,

ξ = z − vt√
1 − v2

. (4)

Here, dimensionless length z = zωr/vm, time t = tωr , and
velocity v = v/vm < 1 are used in place of those in phys-
ical units (i.e., z, t, v). In addition, ωr and vm denote the
AFM resonant frequency and the magnon maximal velocity,
respectively. Equation (3) satisfies the boundary conditions
ϕ − ϕ0 = 0 at z → −∞ and ϕ − ϕ0 = ±π at z → ∞ in
which ± determines the chirality of the magnetic textures. The
DW forms around z = vt with an effective width π

√
1 − v2

that shrinks as the velocity increases.
The application of a similar model [i.e., Eqs. (3) and (4)]

to a FM DW texture directly describes the magnetization
distribution m in terms of the azimuthal angle ϕ [i.e., m(ϕ)].
By contrast, the AFM case generates a weak magnetization
of two independent sources. The first one has the kinematic
origin in the strong interlayer exchange interaction leading
to a tilt in the sublattice magnetizations proportional to ṅ ×
n (where ṅ ≡ d

dt n). This produces a magnetization in the
AFM DW,

mk = ωr

γ Hex

v

2
√

1 − v2 cosh ξ
ê, (5)

where Hex is the effective field of the AFM sublattice ex-
change interaction. The red arrows in Fig. 1 illustrate the mk

distribution along the AFM WSM strip. As the unidirectional
mk clearly does not exhibit any twist (i.e., torsion), its contri-
bution to the axial magnetic field is expected to be negligible
and, thus, ignored in following consideration.

Another source of the weak magnetization has a relativistic
nature of the spin-orbit interaction. This can be sufficiently
strong in the WSM to generate a magnetization md larger
than mk especially when the DW is not moving very fast. The
particular dependence of md on the AFM-order parameter n
stems from the magnetic symmetry that has a lot of variety
[27]. To focus on the qualitative analysis of the DW dynamics
in the AFM WSM, we restrict consideration to the instance
of an easy-axis crystal with broken inversion symmetry (thus,
enabling the DMI) as discussed earlier. The corresponding
Néel vector can be described on a two-dimensional plane (e.g.,
x − y or x − z depending on the orientation of the hard-axis
ê ‖ ẑ or ŷ shown in Fig. 1). Under such conditions, the contri-
bution of the spin-orbit interaction to the magnetic energy can
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be written in the form of Dzyaloshinskii’s invariants [27]; i.e.,

Dan = wD(nxmy − nymx ) − w1(nxmy + nymx ) for ê ‖ ẑ,

(6)

and

Dan = wD(nzmx − nxmz ) − w1(nzmx + nxmz ) for ê ‖ ŷ.

(7)

Here, wD denotes the strength of the DMI, and w1 represents
the relatively weak effect of the asymmetry induced by the
structure anisotropy. Then, the term Dan leads to a weak mag-
netization, which can be expressed as [28]

mB = H−1
ex [−(HD + H1)ny, (HD − H1)nx, 0] (8)

or

mN = H−1
ex [(HD − H1)nz, 0,−(HD + H1)nx], (9)

in the Bloch and Néel DWs, respectively. The effective fields
HD and H1 are defined as wD/2Ms and w1/2Ms.

The following analysis shows that this weak magnetiza-
tion results in efficient control of the DWs in both textures
since it deflects the AFM magnetization mB[N] from the hard
axis [27,28]. Note that a strong spin-orbit interaction in the
WSM induces HD of sizable strength that can be sufficient to
overcome thermal fluctuations randomizing the DW motion
[14]; details of the thermal effects are outside the scope of
the current investigation. Adopting the expression of the DW
textures specifies the contribution of the DMI to the total
magnetization as

mB =
(

− dD + d1√
1 + e2ξ

,
(dD − d1)√

1 + e−2ξ
, 0

)
, (10)

mN =
(

dD − d1√
1 + e2ξ

, 0,− dD + d1√
1 + e−2ξ

)
, (11)

where the normalized forms dD = HD/Hex and d1 = H1/Hex

are used. Then, the axial magnetic field introduced by the
DMI-related magnetization can be written in each Weyl
cone as

BB
5 = η

ωrJ

qevm

√
1 − v2

(
(dD − d1)e2ξ

(1 + e2ξ )3/2
,− (dD + d1)e−2ξ

(1 + e−2ξ )3/2
, 0

)
,

(12)

BN
5 = η

ωrJ

qevm

√
1 − v2

(
0,− (dD − d1)e2ξ

(1 + e2ξ )3/2
, 0

)
(13)

for the Bloch and Néel DWs, respectively. Vectors BB
5 and

BN
5 lie on the plane perpendicular to the direction of DW

propagation. In both cases, the axial fields are well localized
around the instantaneous location z ≈ vt of the DW.

As discussed above, the external electric-field E combined
with the intrinsic axial field B5 generates an axial current
j5, which is associated with the electron-spin polarization
density 〈s〉 around the DW. In the subsequent analysis, our
consideration is limited to the linear response regime where
both the conventional electric current jc and the induced spin
current j5 are proportional to the strength of E. This restriction
presumes a small deviation of the nonequilibrium electron
distribution function from its equilibrium state. Taking into

FIG. 2. Distribution of the effective exchange magnetic field h
(black arrows) around the (a) Bloch and (b) Néel DWs in an AFM
WSM strip. In both cases the chiral anomaly results in the spin
polarization of Weyl fermions, which mediates the exchange fields.

account the relatively low density of states around the Weyl
nodes, the suitable electric fields cannot be very strong. An
appropriate range of the electric field is estimated later in
the discussion. The appearance of the axial current j5 and
net spin polarization 〈s〉 subjects the AFM DW texture to a
inhomogeneous nonstationary effective magnetic-field Hel =
γ −1h̄−1J�〈s〉, where γ is the gyromagnetic ratio. A straight-
forward calculation can lead to the final solutions for the
effective field of the Weyl fermions,

hB = E

E0

√
1 − v2

(
− (1 + d1/dD)eξ

(1 + e2ξ )3/2
,− (1 − d1/dD)e2ξ

(1 + e2ξ )3/2
, 0

)
,

(14)

hN = E

E0

√
1 − v2

(
− (1 − d1/dD)e2ξ

(1 + e2ξ )3/2
, 0, 0

)
, (15)

which are given with an electric-field E = (0, 0, E ) for the
Bloch and Néel DWs, respectively. The expressions adopt
dimensionless units, i.e., h = ω−1

r γ Hel .
The nonzero components of h are shown in Fig. 2. In the

case of a Bloch DW [Fig. 2(a)], the direction of the driving
field varies along the DW texture, significantly reducing the
net effect of the fieldlike angular force. By contrast, the con-
tribution of the unidirectional effective field along the Néel
DW texture hN [Fig. 2(b)] appears cumulative and can, thus,
be more efficient. Equations (14) and (15) also introduce a
parameter E0 in units of the electric field, whose magnitude
depends on the strength of the axial magnetic field. Although
a strong B5 can lead to the formation of well-defined cyclotron
orbits within the relaxation time approximation, this condi-
tion is rather unlikely in realistic AFM WSMs with a weak
magnetization. Thus, it is reasonable to adopt a quasiclassical
approach when evaluating E0 under the relaxation-time ap-
proximation [15],

E0 = 3π2h̄4vF vm

qeJ2�μt2
r dD

, (16)
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where μ denotes the chemical potential. In the case of one pair
of nodes, tr depicts the relaxation time between the two cones
of opposite chirality. For the structures, such as those under
consideration with, at least, two pairs of Weyl nodes n = 1, 2
and n = 3, 4 (e.g., +1 for n = 1, 2 and −1 for n = 3, 4),
the relaxation can involve multiple channels. Although the
transitions within the nodes of the same chirality are more
important to establish the conventional current, all criss-cross
transfers between pairs of opposite chirality set the value
of imbalance in the anomalous Hall current. In the case of
four internode relaxation channels, (i) K1 ↔ K3, (ii) K2 ↔ K4,
(iii) K1 ↔ K4, and (iv) K2 ↔ K3 reverse the chirality, whereas
(v) K1 ↔ K2 and (vi) K3 ↔ K4 do not. The correspondent
three characteristic times, i.e., ta for transitions (i) and (ii);
tb for (iii) and (iv); and tc for (v) and (vi), describe the rate of
relaxation processes for fermions and their spin polarization.
In the manner of the relaxation-time approximation, the net
effect of these transition processes on the effective field h
may be combined into a single empirical parameter tr as in
Eq. (16). The order of magnitude for tr is estimated to be in
several picoseconds.

The same quasiclassical approximation is applied to exam-
ine the upper range Emax of the electric field beyond which
the validity of Ohm’s law is in question. It can be estimated
as a field at which the chiral imbalance in the electron pop-
ulation becomes comparable (or approximately equal) to that
of equilibrium electrons in the conduction band; i.e., Emax ∼
μ/qevFtr . Thus, the applicability of Eqs. (14) and (15) is
restricted approximately by the inequality,

E

E0
<

Emax

E0
= J2�μ2trdD

3π2h̄4v2
F vm

. (17)

A set of typical values vF = 4 × 107 cm/s, � = 2 ×
10−22 cm3, J = 0.6, μ = 0.2 eV, tr = 3 ps, and dD = 4 ×
10−2 along with vm = 6.5 × 107 cm/s adopted from a well-
known room-temperature AFM gives E0 
 2, Emax/E0 
 2,
or Emax 
 4 kV/cm [29,30]. The suggested range of E indi-
cates a relatively small strength of the effective field h when
compared to the corresponding effective field in FM WSMs
[15]. Nevertheless, a much faster response of the AFM tex-
tures on the external forces [11] can overcome the attenuation
of electron spin polarization, revealing the potential advantage
of AFM WSMs. A further discussion can be found later in
Sec. III.

C. DW dynamics

The effective field [i.e., Eq. (14) or (15)] exerts a fieldlike
angular force 
 to the AFM order parameter n via the angular
acceleration ϕ̈ (≡ d2

dt2 ϕ) of its rotation, which is given as [31]


B[N] = −ḣz[y] + 1
2 sin 2ϕ

( − h2
x[z] + h2

y[x]

)
. (18)

The term proportional to sin 2ϕ in Eq. (18) highlights the
impact of the axial fields on the angular force in the WSM
(thus, Weyl-type angular force) compared to that generated
in a conventional system (e.g., via an electrical current in a
heavy metal adjacent to a nontopological AFM [14]). Since
hz[y] = 0 according to Eqs. (14) and (15), this term becomes

the only one responsible for the effective force in the Bloch
and Néel DWs,


B = 1

8(1 − v2)

E2

E2
0

(
1 + d2

1 /d2
D

)
tanh ξ − 2d1

(cosh ξ )3
, (19)


N = 1

(1 − v2)

E2

E2
0

(1 − d1/dD)2e5ξ

(1 + e2ξ )3
. (20)

As mentioned above, the inequality E � Emax limits the ap-
plicability of both Eqs. (19) and (20).

The angular force 
B[N] applied to the order parameter
rotating with a velocity ϕ̇ establishes the rate of energy ab-
sorption by the moving DW as W B[N]

in = ∫

B[N]ϕ̇dz [14],

W B
in = d1

6dD

E2

E2
0

v

1 − v2
, (21)

W N
in = (1 − d1/dD)2

24

E2

E2
0

v

1 − v2
. (22)

As expected, the stationary AFM texture does not absorb the
electromagnetic energy. Moreover, the electric field affects the
Bloch DW through the weak structure anisotropy d1 (� dD)
on the easy plane, which makes the driving of the Bloch DW
less efficient than that of the Néel DW. The difference stems
fundamentally from the alternating (vs uniform) direction of
the DMI assisted effective magnetic field around the DW as
it is qualitatively illustrated Fig. 2. In both cases, the energy
absorption rate reveals a superlinear dependence on the DW
velocity. This makes the usual relativistic (i.e., pertaining to
the spin-orbit interaction) Gilbert-like dissipation mechanism
with a dissipation function,

Rr = λṅ2 = λ
v2

2
√

1 − v2
, (23)

insufficient to control the DW velocity. Thus, an additional
mechanism of DW energy relaxation beyond the relativistic
term in Eq. (23) must be considered.

A similar requirement to control the ultrafast dynamics in
multilayer magnets necessitated to account for the exchange
relaxation terms [32–34]. In a collinear AFM, they can be
represented as an additive to the dissipation function [1,28],

Re = λ1(∇[n × ṅ])2 + λ2n̈2, (24)

where Onsager’s relaxation parameters λ1 and λ2 survive even
at zero spin-orbit interaction. Thus, the exchange relaxation
can be of the same order of magnitude as the relativistic
Gilbert terms λ [1,35]. The origin of the first term in Eq. (24)
has a spin-diffusion nature that usually prevails over the sec-
ond term at a low velocity v � 1 [28]. Incorporating Re along
with Rr to the net dissipation function modifies the depen-
dence of the outgoing power on the DW velocity,

Wout = λ
v2

√
1 − v2

+ λ1

6

v2

(1 − v2)3/2
+ λ2

4

v4

(1 − v2)3/2
.

(25)

It is remarkable that this dissipation function is equally appli-
cable for Bloch and Néel DWs.

At low velocities, the dissipation Wout ∼ v2 is apparently
unable to divert the power Win ∼ v supplied to the Bloch
or Néel DW. Accordingly, the excess power absorbed would
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FIG. 3. AFM DW velocity as a function of time driven by the
emergent angular force under an electric field E = 0.5E0 and d1 =
0.1dD. Curves 1 and 2 are for the Néel DW, while curves 3 and 4
correspond to the Bloch DW. At t = 0, the DW is in a stationary state
(i.e., v = 0). The damping parameters are assumed to be λ = 0.01
(curves 1 and 3) and λ = 0.05 (curves 2 and 4), respectively, while
λ1 = 0.09 and λ2 = 0.06 are applied to all cases.

result in the acceleration of the DW motion whose energy in-
creases with the velocity. To quantify this effect, it is necessary
to evaluate the energy of the AFM texture [ϕ̇t (∂L/∂ϕ̇t ) − L]
in terms of the Lagrangian L = 1

2 ϕ̇2
t − 1

2 ϕ̇2
z − 1

8 sin2 2ϕ of
the DW, where ϕ̇i ≡ ∂

∂i ϕ (i = x, t) [14]. A straightforward
calculation reveals the implicit DW energy dependence on
the velocity as EDW (v) = 1

2 (1 − v2)−1/2. Thus, the temporal
evolution of the DW velocity obeys the equation,

dv(t )

dt

v

2(1 − v2)3/2
= W B[N]

in − Wout. (26)

In the nontrivial case of v �= 0, the above expression
reduces to

dvB[N]

dt
= E2

B[N]

E2
0

√
1 − v2 − λv(1 − v2) − λ1

6
v − λ2

4
v3,

(27)

where

E2
B = d1

6dD
E2, (28)

and

E2
N = (1 − d1/dD)2

24
E2. (29)

III. RESULTS AND DISCUSSION

Numerical solutions of Eq. (27) with parameter values
adopted from the FM WSM [15] and typical AFM crystals
[6,26,28,29] (as specified in Sec. II B) show that the DW start-
ing its acceleration with v = 0 reaches a higher velocity faster
with the smaller dissipation terms even at the same electric-
field E (Fig. 3). This behavior is akin to the transient electron
transport well known in semiconductors. Evidently, a larger
excess power as a result of a smaller loss in the initial stage
translates into a larger effective force that can push the DW to
a higher speed more rapidly. Once the DW velocity becomes
sizable (vs vm), the driving force [i.e., the first term on the right

FIG. 4. Steady-state AFM DW velocity vs. applied electric field
for Néel (curves 1 and 2) and Bloch DWs (curves 3 and 4) driven
by the Weyl-type angular force under a condition d1 = 0.1dD. The
range of the electric field is limited by Emax (≈2E0). The damping
parameters λ1 = 0.09 and λ2 = 0.06 are assumed for all cases, while
λ = 0.01 (curves 1 and 3) and λ = 0.05 (curves 2 and 4) are used,
respectively.

side of Eq. (27)] starts to diminish whereas the drag grows
quickly (in particular, the Re terms) at the same time, bringing
further acceleration to a stand still (at a higher steady-state
value of vs). One interesting observation, in contrast to the
FM WSMs [15], is that the Néel DW tends to gain speed faster
than the Bloch counterpart. This is consistent with the discus-
sion made earlier in Sec. II C on the varying direction of the
effective field hB generated by the axial current in the Bloch
DW [see also Fig. 2(a)]. The resulting compensation at the
leading and trailing edges of the DW significantly weakens the
induced net angular force. In comparison, the accumulative
contribution of the unidirectional field hN amplifies the effect
of the DMI on the angular force in the Néel DW [Fig. 2(b)].

The steady-state velocity vs for a given electric field can be
obtained from the condition in which the balance between the
incoming and outgoing power is achieved (i.e., at Wout = Win).
Figure 4 provides the resulting DW velocity vsapplied electric
field in AFM WSMs. At a low E , the steady-state velocity
vs grows proportional to E2 due to the quadratic dependence
of the angular forces on E for both DW modes [Eqs. (19)
and (20)] (see also Ref. [1]). Similar to the discussion in
Fig. 3, the leading driving term decreases with the increasing
velocity (thus, the electric-field E ). This saturation behavior
is seen most prominently in the case with the highest velocity
(i.e., curve 1) as the effect becomes significant only when the
DW velocity approaches to the ultimate value v → 1 (i.e., the
magnon maximal velocity vm). Curve 2 follows suit at higher
electric fields, asymptotically converging at vm. By compar-
ison, curves 3 and 4 (for the Bloch DW) remain virtually
unaffected by the deviation from the E2 dependence since the
velocity remains low within the field range considered (i.e.,
E � Emax).

The observed quadratic dependence also leads to an in-
teresting phenomenon of velocity invariance when the sign
(i.e., polarity) of the applied electric field changes. This is in
stark contrast to the FM counterparts where the DW velocity
reverses accompanying that of the induced spin torque (thus,
the applied electric field) [15]. In the absence of an alternating
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field [i.e., nonzero ḣz[y] in Eq. (18)], the direction of the DW
movement in an AFM WSM is actually determined by the
mutual orientation of the Néel vectors in both domains. The
particular Bloch DW texture shown in Fig. 1(a) corresponds to
the Néel vector orientation of ϕ = 0◦ in the left-side domain
and ϕ = 180◦ in the right side. In such a case, the positive
change in ϕ (i.e., 0◦ → 180◦) prescribes the DW transfer
toward the right-side domain, i.e., v > 0. Likewise, the Néel
DW illustrated in Fig. 1(b) is also with a positive DW velocity
where the Néel vector orientations in the left- and right-side
domain edges are set to ϕ = 0◦ and ϕ = 180◦, respectively.
On the other hand, the DW moves in the opposite direction
(i.e., v < 0) when the chirality of the DW is reversed.

The analysis provided above for electrical control of the
DWs in the AFM WSMs clearly illustrates the unique features
stemming from the weak ferromagnetism of the AFM DWs.
Namely, the most important consequence is that the DMI
mediates an axial current in an electric field. This develops
a force available to push both Bloch and Néel DWs along
the AFM WSM strip. The efficiency of the torque induced
in FM vs the angular force in AFM WSM thin films can be
compared by following the estimation provided in Ref. [15].
Using the same set of parameters applied to evaluate Emax, the
authors of Ref. [15] found that an electric-field E = 1 kV/cm
can establish the DW velocity vs ∼ 2.8 × 105 cm/s in FM
WSMs. On the other hand, our calculation as summarized in
Fig. 4 indicates a velocity of ∼ 2.6 × 107 cm/s for the Néel
DW (curve 1) that is almost two orders of magnitude higher.
Note also that the field strength E ∼ 1 kV/cm corresponds
to a relatively modest electrical current density of ∼ 1.5 ×
107 A/cm2. At this level of the driving current density, the
DW velocity in the conventional AFMs is expected to reach
a value that is an order-of-magnitude smaller (e.g., ∼2.4 ×
106 cm/s [12]).

Our quantitative estimation, as described, is based on a
set of material parameter values, some of which are derived
from FM counterparts rather than the desired AFM WSMs.
Recent ab initio calculations of β − Fe2PO5 [36], Bi2MnSe4

[37], and LiTi2O4 with D4-crystalline point-group symmetry
[38] have added potential instances of AFM WSMs to the list
of candidates including Mn3X (X=Ge, Sn), X2Ir2O7 (X=Nd,
Y, Eu), and YbMn(Bi1−xZx )2 [19,26]. However, the lack of
an available set of parameters remains a key challenge to a
limited number of AFM WSMs identified, thus far. Although
the actual AFM WSM structures may possess the properties
different from those assumed, no physical obstacle is expected
in applying the approach developed in this paper to more
realistic cases.

IV. SUMMARY

We examine the nontrivial effect of an external electric
field on the Bloch and Néel DWs in AFM WSMs with

broken inversion symmetry. A formal analogy with the mass-
less Dirac Hamiltonian in the Weyl cones of opposite chirality
enables the description of the electron exchange interaction
with a magnetic moment in terms of the axial vector potential.
As the torsion in this vector potential (thus, in the magne-
tization distribution of the Néel vector textures) expresses
itself as an axial magnetic field, the unidirectional kinematic
magnetization of a moving AFM DW cannot produce the
effective axial field. By contrast, our investigation illustrates
that the introduction of a DMI can provide the necessary twist
in the magnetization distribution. The resulting nonzero axial
magnetic field, when combined with an external electric field,
induces an imbalance in the Hall currents of the Weyl cones
of opposite chirality (i.e., the axial anomaly), leading to a net
electron spin polarization via the strong spin-orbit coupling.
Finally, the spin-polarized Weyl fermions create an effective
exchange field that affects the Néel vector texture in the form
of a fieldlike angular force capable of moving the DW. The
effect of multiple Weyl-node pairs is treated empirically in a
relaxation-time approximation.

The DW response to this emergent force is analyzed in
an AFM WSM strip by considering the balance (or imbal-
ance) between the absorbed and dissipated powers. The results
reveal that this Weyl-type mechanism is significantly less ef-
fective in driving the Bloch DW than the Néel counterpart.
The difference appears to be due to the more symmetrical
nature of the Bloch DW texture, leading to the angular forces
applied at the leading and trailing edges largely compensating
each other. As such, the net contribution derives only from
a relatively weak magnetic anisotropy on the easy plane.
By contrast, such an additional asymmetry is not needed
for the Néel DW, making its electrical control quite efficient
compared to other magnetoelectric mechanisms. Indeed, our
numerical evaluation illustrates that the Néel DW in AFM
WSMs can achieve a significant speedup in the obtained
DW velocity vs electric-field characteristics over the counter-
parts in the FM WSMs. When compared to nontopological
magnets, the Weyl-type angular force appears to be much
more energy efficient in driving the magnetic textures. Our
results also show that the particularities of the axial mag-
netic field dictate the direction of the AFM DW motion to
be invariant to the polarity of the applied electric field. Al-
though this feature could impose a limitation in the practical
applications despite the high-energy efficiency, the unique
dependence on the chirality of the magnetic textures presents
interesting physics and may prove to be useful in multidomain
structures.
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