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Two-component density functional theory study of quantized muons in solids
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The quantum effect of light nuclei in materials is usually considered as lattice vibration and zero-point
motion from an ab initio perspective. Here we start from full-quantized particles and take the muon as an
example, considering the two-body quantized system of the muon and the electrons within two-component
density functional theory, which can calculate the related two-body wave functions directly and automatically
taking into account the quantum effect of the muon. We first simulate the two-body correlation energy and the
pair-correlation function by quantum Monte Carlo, then construct a two-body self-consistent loop to solve the
two-body density and then the hyperfine couplings are estimated. This is an attempt to reveal the quantum effect
of light nuclei in materials from a different perspective. We finally find this fundamental method agrees better
with experiments and shows good potential for further such calculations.
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I. INTRODUCTION

Quantum zero-point motion (ZPM) of nuclei plays an im-
portant role in materials that contain light nuclei (mainly the
hydrogen nuclei, but also some other particles like the positive
muon, deuterium, tritium, etc.). In the case of implanted pos-
itive muon (μ+, simply abbreviated as muon below) in muon
spin relaxation (μ+SR) technology, a beam of the polarized
muon is injected into materials, the local magnetic field of the
stopping muon can be inferred from the angular distribution of
the decay positrons due to the procession of muon spin under
the local magnetic field. The quantum ZPM of the stopping
muon would directly influence the experiments due to the light
mass of the muon (∼1/9 of a proton). Since μ+SR can give
a high-accuracy experimental observation of the hyperfine
couplings of the muon in materials, it becomes possible to
study the quantum effect of the muon in calculations and may
be further extended to other such situations such as hydrogen
in materials.

In earlier works, as density functional theory (DFT) can
effectively predict the local position of the muon in host
materials, the contact hyperfine magnetic field or muon spin
evolution at muon sites are calculated [1–9]. These works
are based on point-like muon and some of them considered
the ZPM effect of muon or atoms by vibrational states and
improve the agreement with experiment than point-like case
[1,7,9,10]. However, on the one hand, the accuracy can also
be further improved. On the other hand, most of the present
works use the phonon method, which is based on some ap-
proximation (harmonic approximation, for example) and is
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restricted in different species of materials. Thus, a common
and accurate method which can naturally include the quantum
effect of light nuclei like the muon is worth being improved.

Within the framework of DFT, two-component density
functional theory (TCDFT) is an algorithm that naturally con-
tains the quantum effect of both components. This algorithm
has been successfully implanted into the positron-electron
system [11–14]. Intuitively, muon can also be treated as a
heavier positron (while in previous works it is usually treated
as a lighter nucleus), which plays a similar role with elec-
trons in materials, thus the quantum effect of the muon is
completely included without further dealing. The key prob-
lem of TCDFT, as well as the normal DFT for electronic
systems, is the exchange-correlation functional, which cannot
be expressed by a simple analytical formula and is usually
parametrized by a further approach (taking the density as
the only variable). Local density approximation (LDA) is the
simplest and roughest one. By assuming that all interaction
energy terms are only dependent on the density of the elec-
trons (and the density of the other component in TCDFT), the
exchange-correlation functional can be parametrized through
some accurate energy calculations in homogenous gas sys-
tems. This should be the first step in muon-electron DFT
study. Another reason for limiting more degrees of freedom
such as the gradient of density is that the correlation functional
of the muon-electron already has two variables (the density of
the muon and electron) because of the localized states of the
muon. Thus, in this work, we simulate a series of homogenous
muon-electron gas systems and parametrize the correlation
energy form of Ec(n+, n−) within LDA, then it is possible to
calculate the density of the muon directly using TCDFT.

Another problem arises from the calculation of the hy-
perfine couplings. If the muon is treated as a fixed point
with the Born-Oppenheimer (BO) approximation, some meth-
ods are able to calculate the contact (spin) density of the
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electrons (projector augmented-wave and its reconstruction
method [15], for example), thus the hyperfine couplings of the
muon can be estimated. However, when the quantum effect of
the muon is expected to be included, it is no longer suitable
to treat the muon as a point. Although some previous works
considered the ZPM and the wave function of the muon by
other approaches, the muon is usually treated as the points
sampling by its wave function, where the BO approximation
still plays a role. Using a pair-correlation function (PCF)
together with TCDFT we are able to estimate the true contact
two-body density from the calculated one-body density, so it
is also introduced in this work.

In other words, what we are considering here differs from
the nucleus-like muon and the phonon methods in several
respects.

(1) Both the muon and the electrons are fully quantized.
The wave functions of the electrons and the muon are cal-
culated from the Kohn-Sham equation and single-particle
Schrödinger equation, respectively, each being self-consistent
with the other. The vibrational states of the muon and some
relative approaches are unnecessary.

(2) The interaction between the muon and the electrons is
described by the Coulomb potential and correlation potential
of their density.

(3) The contact density enhancement is described by
the PCF.

The correlation energy and the PCF are simulated using the
variational Monte Carlo (VMC) and diffusion Monte Carlo
(DMC) methods [16,17] as implemented in CASINO [18], then
parametrized by LDA. Thus the contact spin density can be
calculated directly from the two-body wave function and the
BO approximation of the muon is completely abandoned.

II. TCDFT SYSTEM

TCDFT is a DFT-based theory to study two-body systems,
the most widely used example of TCDFT may be the positron-
annihilation lifetime calculation. When the switch is made
from the positron-electrons system to the muon-electrons sys-
tem, the fundamental equations (without spin) are

[− 1
2∇2 + V −

ion + VH + Vxc + V −
coul + V −

corr

]
ψ− = ε−ψ− (1)

for the electrons (Kohn-Sham equation) and

[
− 1

2M
∇2 + V +

ion + V +
coul + V +

corr

]
ψ+ = ε+ψ+ (2)

for the muon (single-particle Schrödinger equation). Where
Vion is the Coulomb potential from the positive nuclei in
the material or the pseudopotential from the ions. VH is the
Hartree potential of electrons (or of the valence electrons
in the case of the pseudopotential). Vxc is the exchange-
correlation potential between electrons. Vcoul is the Coulomb
potential from the muon to electrons or from electrons to the
muon. Vcorr is the two-body correlation potential and ψ is the
wave function. M is the mass of the muon. There is only
one muon present in the sample at any time, so there is no
muon-muon interaction term.

The two-body correlation potential can be expressed as

V ±
corr = δEcorr[n+, n−]

δn±
, (3)

where Ecorr is the two-body correlation energy, which can
be estimated from the relaxation energy of the homogeneous
system in QMC. It is worth noting that the correlation energy
functional is not unique, different approximations may give
completely different results. Different approximation here
means not only the chosen parametric form (LDA, GGA,
or something else), but also the simulation method of the
standard systems (the QMC of homogenous systems, ZPE
of vibrational states of some molecular systems [19], for ex-
ample). In this work, a simple form simulated by QMC and
parametrized within LDA is used, as discussed below.

The next step is to apply the local spin density ap-
proximation (LSDA) method to Eqs. (1) and (2). The
equations become[− 1

2∇2 + V −
ion + VH + Vxc + V − + V −

corr − μBBxc
]
ψ−

↑

= ε−
↑ ψ−, (4)

[− 1
2∇2 + V −

ion + VH + Vxc + V −
coul + V −

corr + μBBxc
]
ψ−

↓

= ε−
↓ ψ−, (5)

where ↑ and ↓ stand for spin-up and spin-down electrons, re-
spectively, and Bxc is the so-called local exchange-correlation
magnetic field of electrons. Because the magnetic moment of
the muon is much smaller than that of the electron, assuming
that the spin state of the muon does not influence the electrons’
states. Considering that the spin states of the muon are thought
to be detected by experiments and are not calculated here, thus
Eq. (2) does not divide into two parts.

Within the framework of TCDFT, the calculated wave
function is the one-body wave function from the average field,
the product of the one-body density of electrons and the muon
is not the true two-body density. The enhancement contact
effect can be described by PCF:

γαβ (r, r′)

= Nα (Nβ − δαβ )

·
∫

�∗(r, r′, r3, . . . , rN)�(r, r′, r3, . . . , rN)dr3 . . . drN∫
�∗(r1, r2, . . . , rN)�(r1, r2, . . . , rN)dR

,

(6)

or

γαβ (r, r′) = nα (r)nβ (r′)gαβ (r, r′), (7)

where γ signifies the diagonal elements of the two-particle
density matrix. α, β are particle symbols, with mass, charge,
and spin(↑ or ↓). Here α and β stand for muon(s) and elec-
tron(s), respectively (γ is thought to be independent of the
spin due to LDA). r is the particle coordinate, � is the many-
body wave function, N is the total number of particles, n is
the one-body density of particles. g is the PCF, which stands
for the enhancement from one-body density to true two-body
density. What we are interested in here is the zero distance
enhancement, which means the contact density enhancement
of the muon and electrons, gμ,e(re = rμ, n+, n−), written as
g(0; n+, n−) or g(0).
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In summary, the equations we actually solve are Eqs. (4),
(5), and (2) . The hyperfine contact field of the muon is
obtained from

Bcont =
∫

2μ0

3
μBρs(r)g(0; r)|ψμ(r)|2d3r, (8)

where Bcont is the contact hyperfine field, μ0 is the perme-
ability of the vacuum, μB is the magnetic moment of the
electron, ρs is the spin density of electrons obtained from
TCDFT, and r is the spatial coordinate of the muon, g(0; r) is
the g[0; n+(r), n−(r)]. Additionally we can use the the contact
hyperfine coupling A:

A =
∫

2μ0

3
γeγμρs(rμ)g(0; r)|ψμ(r)|2d3r. (9)

γe is the electron gyromagnetic ratio and γμ is the muon
gyromagnetic ratio.

III. QMC STUDY OF THE PCF AND CORRELATION
ENERGY

Now some QMC simulation is necessary for the parametric
form of the PCF and the two-body correlation energy. A sim-
ilar QMC simulation has been done in the positron-electron
system [20]. Within the LDA, the PCF and the correlation
energy are described by a functional of the density component
of the electrons and the muon, thus homogeneous gas systems
for the muon and the electrons are simulated.

A Slater-Jastrow-backflow (SJB) [21,22] trial wave func-
tion is used with plane-wave orbits

�SJB
PW = eJ (R)[φi(r−

↑ + ξ (R))][φ j (r−
↓ + ξ (R))]

· [φI (r+
↑ + ξ (R))][φJ [r+

↓ + ξ (R))], (10)

where R are the positions of all the particles, φ is the plane-
wave basis. r−

↑ and r−
↓ are the positions of up- and down-spin

electrons, respectively (a similar definition for r+), and [...]
denotes a Slater determinant. J (R) is the Jastrow exponent
and ξ (R) is the backflow displacement.

The Jastrow exponents are first optimized using the VMC
variance-minimum scheme [23]. Then all parameters are op-
timized together and then a DMC calculation is done.

In the main results of this work, only the u term is used
in the Jastrow exponent. The DMC time step is set to 0.001
a.u. The spin dependence is set to be 1 (uμ,μ �= uμ,e �= ue,e).
The PCF and correlation energy results are directly estimated
from DMC calculation. The target population of walkers of
DMC is 1000. There may be some possible ways to improve
the accuracy of QMC.

(1) Use several different time steps of DMC in each sys-
tem and extrapolate the energy linearly to zero time step
and/or use the average of the PCF.

(2) Include more correlation terms, the p term of the
Jastrow exponent, for example. Or set more particle groups
for the u term (increase the spin dep. parameter).

Although the QMC calculations are not as accurate as
possible in this work due to the large number of systems to
be calculated, the results can still be used as an approximation
(an example of the finite-size error is shown in Table I, the
p term becomes important for achieving consistent results in

TABLE I. The calculation stability of n+ 	 n−, r+
s = 0.3. EVMC

and EDMC are in a.u. per particle, while var. of VMC and V −
corr are in

a.u. The V −
corr is gotten from the total energy difference between the

system with and without electron(s), and divided by Ne. In this work,
half of the particles are spin-up and the other half are spin-down.

Nμ Ne If a EVMC Var. of VMC EDMC V −
corr

28 0 F −2.4528 0.6248 −2.4713
28 1 F −2.3995 1.2502 −2.4214 −1.0251
28 0 T −2.4579 0.3576 −2.4714
28 1 T −2.3996 0.7574 −2.4205 −0.9941
54 0 F −2.4479 0.9225 −2.4676
54 1 F −2.4197 1.3373 −2.4398 −0.9371
54b 2 F −2.3935 1.8710 −2.4133 −0.9476
54 0 T −2.4533 0.5786 −2.4673
54 1 T −2.4186 1.0958 −2.4395 −0.9410
54 2 T −2.3944 1.4516 −2.4133 −0.9571
108 0 F −2.4444 1.5329 −2.4603
108 1 F −2.4274 2.0411 −2.4436 −0.6410
108 2 F −2.4120 2.3260 −2.4293 −0.7572
108 0 T −2.4470 1.1700 −2.4602
108 1 T −2.4264 1.7628 −2.4437 −0.8833
108 2 T −2.4133 2.0173 −2.4305 −0.9369

aWith the p term in Jastrow for both the muon-and-electron and
only-muon system, and the use of the particle group of uμ↑,μ↑ �=
uμ↑,μ↓ �= uμ,e �= ue↑,e↑ �= ue↑,e↓ for the muon-and-electron system
(while u↑,↑ �= u↑,↓ is always used for the only-muon and only-
electron system of this work).
bMain result setting.

large systems). It should be noticed that, because the cor-
relation energy can be sensitive to tge 1e − 4 a.u. level of
the total energy per particle, more accurate QMC simulations
are worth being improved upon (the PCFs do not change
obviously when improving the wave function or expanding
the simulation cell size). Some calculated g(r) are shown in
Fig. 1 as examples.

A series of systems with different densities are simulated
and a linear interpolation form of g(0; R, n−) (R = n+/n−)
while n+ ∼ n− (0.2 � R � 10) is used, written as g1, the
data points are shown in Tables II and III. When n+ 	 n−
or n+ 
 n−, the PCF is fitted by a simple polynomial. [r+

s =
(3/4πn+)1/3, r−

s also. All units are in a.u. in this article if not
declare.] (g3 is plotted in Fig. 2, g2 is plotted in Fig. 3)

g2 = g(0, rs) = 1 + 0.84829rs + 1.2337r2
s

− 0.33670r3
s + 0.10023r4

s , (n+ 	 n−, rs = r+
s ), (11)

g3 = g(0, rs) = 1 + 2.0047rs + 0.16537r2
s

− 0.83218r3
s + 0.06222r4

s , (n+ 
 n−, rs = r−
s ). (12)

Note that g2 and g3 here do not satisfy the low-density limit
(where g should be expanded to r3

s with a specific three-order
coefficient) because, in our calculation, this density region
does not exist and thus a simple form with high goodness is
used.
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FIG. 1. Some g(r) results. r−
s = (3/4πn−)1/3, r+

s also. (a) PCF calculated from 54 electrons and 2 muons, as a function of distance r and
r−

s , (b) PCF calculated from 54 muons and 2 electrons, as a function of distance r and r+
s , (c)PCF calculated from 28 muons and 28 electrons,

as a function of distance r and muon or electrons density. All g(0) are estimated from the extrapolation of g(r).

The final PCF used in calculation is

g(0) =
⎧⎨
⎩

g1, 10 � R � 0.2,

g2, R > 10,

g3, R < 0.2.

(13)

As for the two-body correlation energy, it is simulated by

Ec,v = Ev (Ne + Nμ) − Ev (Ne) − Ev (Nμ), (14)

where Ec,v is the correlation energy per volume, the energy
Ev stands for the total energy per volume of the system
of the muon-and-electron, only-muon, and only-electron, re-
spectively. Note that this equation is for n+ ∼ n−, if one
component is much larger than the other one, the energy of
the minor component is not reduced due to the zero-density
approximation. The two-body correlation energy per volume
for n+ ∼ n− is well fitted by a similar form with Ref. [19]

FIG. 2. g(0) for n+ 
 n−, calculated from 54 electrons and 2
muons system. The fitting curve is the g3 in Eq. (12).

(data points are also shown in Tables II and III)

Ec,v (n+, n−) = an+n− + bn−(n+)3/2

1 + cn+n− + dn−(n+)3/2
, (15)

where a = −1.4265e − 01, b = 1.8365e − 02, c =
5.2581e − 01, d = −8.6401e − 02.

In most of the areas where the muon distributes, the
condition of n+ 	 n− is satisfied (there is ∼98% of the
muon for n+ > 3n−). The two-body correlation potential of
the muon is ignored because QMC shows a tiny correla-
tion potential (∼0.01 a.u.) for n± if n± 	 n∓, and V +

corr =
∂Ec,v (n+, n−)/∂n+ is also approaching to zero while n+ ∼
n−. Thus only V −

corr is necessary, V −
corr = ∂Ec,v (n+, n−)/∂n−

is implanted for n+ ∼ n−, written as V1. The V −
corr in the

condition of n+ 	 n− is fitted by (Fig. 4)

V2 = V −
corr(rs) = A−1r−1

s + A0 + A1rs − 0.603 · A2r2
s

1 + B1rs + A2r2
s

, (16)

FIG. 3. g(0) for n+ 	 n−, calculated from 54 muons and 2 elec-
trons system. This corresponds to g2 in Eq. (11).
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TABLE II. g(0) and energy results for n+ ∼ n− (all units are in a.u.). Ne and Nμ are the number of electrons and muons, respectively. EVMC

and EDMC are the total energy per particle of VMC and DMC calculations, respectively. Ec,v is the correlation energy per volume. Note that the
p term of the Jastrow exponent is not included in these results. These g(0) results are used for the linear interpolation of g1.

r−
s Ne Nμ EVMC Var. of VMC EDMC g(0) Ec,v

0.5 50 10 2.5361 5.5739 2.5301 1.912 −0.079867
0.5 50 20 1.9651 7.9296 1.9573 1.802 −0.11822
0.5 50 30 1.5119 9.2961 1.5026 1.735 −0.14036
0.5 50 40 1.1399 10.506 1.1300 1.668 −0.15361
0.5 50 50 0.82982 11.969 0.81878 1.642 −0.16486
0.5 20 40 0.0045016 9.1490 −0.011308 1.496 −0.21625
0.5 20 60 −0.65883 11.498 −0.67614 1.426 −0.23487
0.5 10 40 −1.0673 7.5686 −1.0868 1.408 −0.25297
0.5 10 50 −1.4161 8.4173 −1.4378 1.370 −0.28931
0.5 6 60 −2.3644 8.1920 −2.3883 1.304 −0.35307
1 50 10 0.34015 1.5389 0.33521 3.608 −0.010138
1 50 20 0.17680 1.9837 0.17026 3.238 −0.015040
1 50 30 0.042346 2.8402 0.035306 3.146 −0.017932
1 50 40 −0.068311 2.6988 −0.075506 2.850 −0.018953
1 50 50 −0.16535 2.9664 −0.17198 2.699 −0.019797
1 20 40 −0.45670 2.0564 −0.46655 2.196 −0.022893
1 20 60 −0.69485 2.2835 −0.70340 2.036 −0.025059
1 10 40 −0.85500 1.5069 −0.86678 1.875 −0.025929
1 10 50 −0.99327 1.7741 −1.0055 1.796 −0.0296620
1 6 60 −1.41380 1.5289 −1.4285 1.602 −0.0335080
1.5 50 10 0.0047909 0.87636 0.0010200 7.349 −0.0032764
1.5 50 20 −0.079582 1.3435 −0.085975 6.586 −0.0049671
1.5 50 30 −0.14743 1.6273 −0.15473 5.945 −0.0058625
1.5 50 40 −0.20428 1.9735 −0.21127 5.132 −0.0061346
1.5 50 50 −0.25261 1.7194 −0.25948 4.351 −0.0061731
1.5 20 40 −0.41731 1.0196 −0.42394 3.301 −0.0065547
1.5 20 60 −0.55155 1.3125 −0.55891 2.789 −0.0068703
1.5 10 40 −0.65030 0.72408 −0.65854 2.434 −0.0074654
1.5 10 50 −0.73377 0.76206 −0.74209 2.374 −0.0077752
1.5 6 60 −1.0034 0.65561 −1.0141 1.934 −0.0086923
2 50 10 −0.087144 0.48578 −0.0914171 13.44 −0.0014769
2 50 20 −0.14516 0.88460 −0.152671 13.11 −0.0023820
2 50 30 −0.18335 1.0327 −0.194159 9.463 −0.0027470
2 50 40 −0.22402 1.4379 −0.231775 9.365 −0.0029621
2 50 50 −0.25209 1.1464 −0.259798 7.120 −0.0028700
2 20 40 −0.36140 0.64263 −0.367448 4.903 −0.0028777
2 20 60 −0.45348 0.66237 −0.458628 3.934 −0.0029746
2 10 40 −0.52126 0.40610 −0.527668 3.572 −0.0029051
2 10 50 −0.58099 0.41474 −0.586912 3.100 −0.0031573
2 8 80 −0.78067 0.45659 −0.787404 2.644 −0.003359

where A−1 = −2.4200e − 1, A0 = −3.7089e − 2,
A1 = 3.25863e − 3, A2 = 1.0985e − 2, B1 = −2.6441e − 1.
Here rs stands for r+

s . The final correlation potential of the
electrons is

V −
corr(n

+, n−) =
{

V1, R � 10,

V2 + (V1 − V2)e−α·(R−10), R > 10.
(17)

The positive number α would influence the results in some
sense. It is necessary due to the lack of high-R correlation
potential data. In this work, α is chosen to be 1, to accord
with the experimental data of the vacuum case, as shown in
Sec. V. Then the parametric form of the PCF and the two-body
correlation potential is determined and the contact field can be
calculated after Eqs. (4), (5), and (2) are solved.

IV. CALCULATION DETAILS OF TCDFT

To solve Eqs. (4), (5), and (2) with known V ±
corr, a two-body

self-consistent loop is introduced, as shown in Fig. 5.
The electronic part of the calculation is carried out using

QUANTUM ESPRESSO [24] (QE). Vext is the extra potential
produced by the muon. It is introduced as

Vext(r′) =
∫

n+(r)d3r
|r − r′| + V −

corr(r
′) (18)

Vtot = V0 + Vext, (19)

where V0 is the total potential of the normal QE calculation
and Vtot is the total potential used in our calculation.

The ground-state wave function of the muon can be solved
by the finite difference (FD) method [25] in real space, with
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TABLE III. Continuation of Table II.

r−
s Ne Nμ EVMC Var. of VMC EDMC g(0) Ec,v

2.5 50 10 −0.11678 0.34371 −0.12274 21.05 −0.00079217
2.5 50 20 −0.15498 0.84858 −0.17023 21.36 −0.0012726
2.5 50 30 −0.19848 1.0209 −0.20934 19.92 −0.0016751
2.5 50 40 −0.21420 1.5499 −0.23317 16.95 −0.0017716
2.5 50 50 −0.23403 1.6314 −0.24991 14.84 −0.0016966
2.5 20 40 −0.31422 0.46621 −0.32154 7.338 −0.0015353
2.5 20 60 −0.37877 0.84938 −0.38845 5.504 −0.0015073
2.5 10 40 −0.43661 0.26382 −0.44152 4.588 −0.0015627
2.5 10 50 −0.48113 0.27748 −0.48645 4.355 −0.0015056
2.5 8 80 −0.63925 0.27666 −0.64447 3.012 −0.0017843
3 50 10 −0.13118 0.29548 −0.13561 39.54 −0.00050355
3 50 20 −0.15695 0.8430 −0.17277 32.77 −0.00075110
3 50 30 −0.20074 0.94993 −0.21377 35.39 −0.0011199
3 50 40 −0.20904 2.0101 −0.22748 29.81 −0.0011406
3 50 50 −0.22925 1.1362 −0.24254 22.3 −0.0011754
3 20 40 −0.27854 0.45654 −0.28823 11.31 −0.00096176
3 20 60 −0.33447 0.37753 −0.33923 7.895 −0.00093066
3 10 40 −0.37560 0.20156 −0.380328 7.249 −0.00093910
3 10 50 −0.41247 0.20693 −0.417078 5.993 −0.00092946
3 8 80 −0.54136 0.19328 −0.54551 4.261 −0.00098069
4 50 10 −0.13389 0.21792 −0.141213 79.2 −0.00023542
4 50 20 −0.17292 0.40531 −0.186722 82.8 −0.00043639
4 50 30 −0.20137 0.77837 −0.214190 83.0 −0.00057497
4 50 40 −0.22669 1.8108 −0.249600 86.1 −0.00080102
4 50 50 −0.21379 2.8923 −0.253479 69.5 −0.00084602
4 20 40 −0.23935 0.43204 −0.247805 29.64 −0.00053030
4 20 60 −0.26798 0.29127 −0.274671 16.55 −0.00045265
4 10 40 −0.29654 0.23315 −0.301643 13.78 −0.00043827
4 10 50 −0.31192 0.26347 −0.325029 10.86 −0.00038674
4 8 80 −0.41570 0.23299 −0.419468 6.84 −0.00040340
3 50 10 −0.13211 0.31458 −0.138133 152 −0.00059900
5 50 20 −0.17467 0.35618 −0.183428 157 −0.00024381
5 50 30 −0.20189 0.61550 −0.213352 156 −0.00034042
5 50 40 −0.20374 1.5759 −0.227992 161 −0.00039366
5 50 50 −0.21729 1.6893 −0.242832 195 −0.00045757
5 20 40 −0.20284 0.33349 −0.219094 65.0 −0.00030663
5 20 60 −0.22351 0.48179 −0.233212 38.8 −0.00027496
5 10 40 −0.23978 0.23380 −0.248893 26.44 −0.00020729
5 10 50 −0.26583 0.17423 −0.273128 19.57 −0.00027533
5 8 80 −0.33802 0.16793 −0.342108 10.01 −0.00022212

the known V +(r) from the electronic part, thus no wave func-
tion basis for the muon is necessary. Another reason to use real
space is that the boundary condition of the localized muon
is easy to be set in real space. Otherwise, the muon would
distribute at many local sites of the crystal with very low local
density; this is not the physical image we expect.

In the electronic part of QE, a 3 × 3 × 3 supercell was used
for metals and diamond, while a 2 × 2 × 2 supercell was used
for CaF2 and NaF, with the Perdew-Burke-Ernzerhof (PBE)
[26] functional and optimized norm-conserving Vanderbilt
(ONCV) [27] pseudopotentials. The cutoff of the wave func-
tion is not less than 120 Ry. A uniform Monkhorst-Pack [28]
mesh grid was used for the k points. (4 × 4 × 4 for CaF2, NaF
and diamond, 6 × 6 × 6 for metals. The magnetic moment per
atom without muon is examined before calculation in metals.)

As for the FD method for the muon, it is iterated by [25]

ψN+1
i, j,k =

∑
l,m,n ψN

lmn

6 + 2Mh2(Vi jk − EN )
, (20)

EN =
∑

i, j,k

[∑
l,m,n ψN

lmn − 6ψN
i jk + Vi jk

∣∣ψi jk

∣∣2]
∑

i jk

∣∣ψN
i jk

∣∣2 , (21)

ψerror =
∑
i jk

∣∣ψi jk

∣∣2 · |eq_left − eq_right|
|eq_right| , (22)

where the indices i, j, k enumerate the real-space mesh; l ,
m, n run over the nearest neighbors of (i, j, k), six points in
total. M is the mass of the muon, h is the pace of mesh, N is
the iteration step number, V is the total potential of the muon,
and E is the eigenenergy of the muon. In the iteration error
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FIG. 4. Correlation potential of electrons calculated from
54 muons and 2 electrons. This corresponds to V2 in Eq. (16).

estimation, eq_left and eq_right are the left side and right side
of Eq. (2), at (i, j, k). The convergence threshold is 10−4 for
ψerror and 10−9 Ry for EN –EN−1. Note that this FD method
requires an orthogonal lattice. If one has a nonorthogonal

FIG. 5. TCDFT loop. + stands for muon, − stands for electrons.
At present, the lattice optimization calculation using muon density
(the arrow of lattice relax) is not implanted due to the calculation ef-
ficiency, the point-like muon optimization structure is simply applied
in this work. Further study about the full relax calculation should be
improved in the future.

TABLE IV. Hyperfine couplings in vacuum with different α.

α 0.5 0.8 1.0 1.2 1.5 2.0

A (MHz) 4429 4445 4455 4465 4472 4482

lattice, the localized muon space is interpolated to an orthog-
onal space to calculate the wave function of the muon, then
after the FD calculation the wave function is interpolated back
to the lattice basis.

Then the density of the muon and the electrons are replaced
alternately until the calculated hyperfine couplings almost
do not change. In this work, about five two-body cycles are
applied for each material, thus the final error is under 0.005
Tesla or 10 MHz.

V. RESULTS AND DISCUSSION

As mentioned above, a semi-empirical parameter α is nec-
essary due to the lack of high-density data. To find a good α,
several values of α are used in a vacuum (use a fake hydrogen
atom in a vacuum, as discussed, followed for the muonium
case) and we find the hyperfine constant A is very close to the
experiment if α is simply set to be 1 (considering that both the
calculation and experiments have an error, we simply choose
it to be a simple number within the error bar of the calculation
instead of according to the experiments perfectly.) Some re-
sults are shown in Table IV. The convergent density of α = 1
is shown in Fig. 6. The calculated A is 4455 MHz, while the
point-like muon result is 4711 MHz and the experiment data
are 4463 MHz. So we fix its value to be 1 in all calculations
of this work. Note that the g(0) of this work is not multiplied
by N/(N + 1) [20], where N is the total number of particles in
a system. If this correction is chosen, the α would be smaller,
the final results would not change obviously due to the offset
of g(0) and the calculated contact spin density.

As an example of the muonium case, we calculate three
simple nonmetallic materials with different crystal structures.

FIG. 6. Convergent density of vacuum for α = 1.
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TABLE V. Results of contact magnetic field (Tesla) or contact
hyperfine coupling (MHz). Note that all calculated results in this
work have an error bar of ∼0.005 Tesla or 10 MHz due to the TCDFT
convergence fluctuation.

Point-like Phonon- This
Material muona correctedb work Experimentc

Fe-bcc −1.25 T −1.07 T −1.076 T −1.11 T
Co-hcp −0.73 T −0.68 T −0.603 T −0.58 T
Co-fcc −0.79 T −0.64 T −0.614 T −0.61 T
NaF 4389 MHz 4293 MHz 4513 MHz 4642 MHz
CaF2 4610 MHz 4564 MHz 4469 MHz 4479 MHz
Diamond 4251 MHz 3597 MHz 4088 MHz 3711 MHz
Vacuum 4711 MHz 4455 MHz 4463 MHz

aReferences [2,5,29].
bReferences [2,7,29].
cReferences [30–35].

A hydrogen atom is defined at the muon site, but the pseu-
dopotential of this hydrogen is reduced in the total potential.
That means, in this case, Eq. (18) is changed to be

Vext(r′) =
∫

n+(r)d3r
|r − r′| + V −

corr(r
′) − Vps,H (r′). (23)

Since the plane-wave basis and the starting wave function
of electrons in QE are expanded by the atoms’ positions, a
group of plane-wave expansion and a starting polarization
around the muon site are defined by this method, thus the
electronic orbits around muon are diagonalized as a hydrogen-
like orbit with the center at the muon site. If this method is not
chosen, the electronic plane-wave orbits are only expanded by
the atoms of the host material, thus the electrons are treated as
“superpositions of other atomic orbits with just an external
potential around the muon sites.” These two methods can give
different convergent results because the wave-function basis
and the starting density are completely different. Intuitively,
the muonium state is close to the hydrogen-like state, thus
the “fake hydrogen” method is applied. In fact, if this method
is not applied, the polarization of the electrons around muon
sites cannot be found by LSDA. This may be why point-like
muon results in fluorides are not far from the experiments in
the muonium case due to the similar orbit states.

The calculated contact hyperfine couplings above are in
Table V. The convergent results of TCDFT show that the wave
function of the muon is close to being a Gaussian although we
did not fix its form. The local density of the muon is obvi-
ously larger than in phonon-corrected methods. Even though
point-like muon or phonon methods are able to acquire good
agreements with experiments, TCDFT is not worse than them
with the semi-empirical parameter α.

In the case of μ+ in metals, the contact field appears due
to the magnetization of the host materials. However, different
from the muonium case, the polarization of electrons is close
to point-like results whether a hydrogen atom at the muon site
is defined. If a hydrogen atom is defined, the contact field
results are −1.261 T, −0.717 T, and −0.750 T for Fe-bcc,
Co-hcp, and Co-fcc, respectively. These results are close to
the point-like muon case. If a hydrogen atom is not defined,
the contact field results become smaller and show wonderful

FIG. 7. Convergent density for (a) NaF, plotted from (0,0,0) to

(2,2,2), muon site is (
1

4
,

1

4
,

1

4
). (b) CaF2, from (0,0,0) to (2,2,2),

muon site is (1,1,1). (c) Diamond, from (0,0,0) to (2,2,2), muon site is

(
2

3
,

2

3
,

2

3
). (d) Fe-bcc, from (0,0,0) to (2,1,0), muon site is (

1

2
,

1

4
,0).

(e) Co-fcc, from (0,
1

2
,

1

2
) to (3,

1

2
,

1

2
), muon site is (

1

2
,

1

2
,

1

2
).

(f) Co-hcp, from (0,1,
3

4
) to (3,−2,

3

4
), muon site is (

1

3
,

2

3
,

3

4
). Crys-

tal structures with the muon can be found in Refs. [1,5,29].

agreements with the experiments (see Table V). As discussed
above, while the muon is thought to be bare in this case, it
would be better not to define such a fake hydrogen atom and
the contact field results agree with that. This may be also why
the point-like results are obviously bigger and not as good as
it is in the muonium case. All convergent density results above
are shown in Fig. 7.

Thus, TCDFT is tested in some basic systems and the
results are surprisingly good, the errors compared with other
works are shown in Fig. 8. There are still some possible ways
to improve the accuracy.

(1) Use the wave function of the muon to optimize the
lattice structure until getting fully convergent.
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FIG. 8. Relative errors of different methods. Dashed curves are a
guide to the eye.

(2) Further study about the two-body correlation func-
tional. Develop an accurate V ±

corr for all regions of n+ and n−,
especially for the high-R region. Or try to use some approxi-
mation beyond LDA (GGA, for example).

(3) Use some mixing method to iterate the two-body den-
sity instead of direct replacements.

Finally, we establish the calculation frame for muon-
electron system within TCDFT and do some example
calculations in basic systems. The calculation errors of this
work mainly come from the formula of the two-body cor-
relation energy and the PCF (as well as the exponential
approximation of the correlation potential), this may be the
most obvious weakness of TCDFT. However, on the one hand,
such an approximation is already better than the point-like
muon and phonon methods. On the other hand, the parametric
form is adjustable, it would be possible to change its formula
or include an empirical parameter to achieve the purpose of
calculating correctly for a specific species of materials. Thus,
TCDFT shows its good potential for further such calculations
in studying the quantum effect of the particles like muon in
materials.
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