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Computation of high-frequency magnetoelastic waves in layered materials
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The direct calculation of magnetoelastic wave dispersion in layered media is presented using an efficient,
accurate computational technique. The governing, coupled equations for elasticity and magnetism, the Navier
and Landau-Lifshitz equations, respectively, are linearized to form a quadratic eigenvalue problem that deter-
mines a complex web of wave-number–frequency dispersion branches and their corresponding mode profiles.
Numerical discretization of the eigenvalue problem via a spectral collocation method (SCM) is employed
to determine the complete dispersion maps for both a single, finite-thickness magnetic layer and a finite
magnetic-nonmagnetic double-layer. The SCM, previously used to study elastic waves in nonmagnetic media,
is fast, accurate, and adaptable to a variety of sample configurations and geometries. Emphasis is placed on the
extremely high-frequency regimes being accessed in ultrafast magnetism experiments. The dispersion maps and
modes provide insight into how energy propagates through the coupled system, including how energy can be
transferred between elastic- and magnetic-dominated waves as well as between different layers. The numerical
computations for a single layer are further understood by a simplified analytical calculation in the high-frequency,
exchange-dominated regime where the resonance condition required for energy exchange (an anticrossing)
between quasi-elastic and quasi-magnetic dispersion branches is determined. Nonresonant interactions are shown
to be well approximated by the dispersion of uncoupled elastic and magnetic waves. The methods and results
provide fundamental theoretical tools to model and understand current and future magnetic devices powering
spintronic innovation.
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I. INTRODUCTION

The coupling between a material’s vibrational and spin
degrees of freedom is a fundamental feature of magnetic ma-
terials. While the existence of this coupling has been known
for over a century [1–5], most theoretical research has focused
on the low-frequency regime [6–9] while analytical studies
emphasize simple geometries such as the bulk [10,11] or thin
film [9] limits. Many of the magnetic devices that enable
current and future spintronic/magnonic applications are mul-
tilayer stacks of magnetic and nonmagnetic materials [12–14].
Furthermore, the ultrashort optical or acoustic pulses being
used to demagnetize samples in ultrafast magnetism [15,16]
or to approach the plastic limit of a solid in ultrafast magnetoa-
coustics [17], respectively, are known to excite the extremely
high-frequency (EHF) band (30–300 GHz) [18–20].

Magnetoelastic coupling [6,9,10,21–23] and layering ef-
fects on the dispersion of purely elastic waves [24–27],
separately, are active areas of research, but few studies exist
that combine them. Although much of the original theoretical
work on magnetoelastic coupling is many decades old [10,28–
34], recent technological advances have revived and expanded
interest in magnetoelastic waves. At the heart of this growth
is the drive to enable energy transfer between phonons and
magnons. For example, recent research has studied magnetic
spin currents in thin layers, particularly with applications to
spintronics and magnonics [12–14]. This interest has led to
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experimental advances in the study of magnetoelastic inter-
actions [21–23,35–37], in part with the goal of generating
spin waves by mechanical motion and vice-versa [6,38]. Other
recent applications of magnetoelastic effects include compu-
tation [39], logic structures [40], antennas [41], and smart
materials [42].

Similarly, there are many physical applications for calcu-
lating the dispersion of elastic waves in a layered material,
all of which are made more general by the introduction of
magnetic coupling. One application is nondestructive evalu-
ation, where elastic waves are excited in a material in order
to identify defects or other internal properties [27,43,44]. If a
material is magnetic, one must take this property into account
[45,46]. Elastic waves in layered materials arise naturally in
the geophysical sciences, such as in the propagation of seismic
waves [43,47,48]. Some have found value by incorporating
magnetic effects there as well [49].

Past analytical studies of magnetoelastic waves have pri-
marily focused on either the bulk d → ∞ or thin film kd � 1
limits, where k is the angular wave number and d is the
material thickness [9–11]. These limits admit exact analytical
solutions for the dispersion curves, which provide important
insight into the nature of phonon-magnon energy conversion.
Application of a phenomenological spin wave decomposition
has also recently been proposed [50]. The finite thickness
regime, where boundary effects must be considered, is more
complicated and largely unstudied analytically [6].

A traditional method for determining the dispersion
of elastic waves in layered media is the general matrix
method (GMM), which involves a complex exponential
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profile ansatz in the direction of layering [24,27,51,52]. A
previous numerical study of magnetoelastic waves utilized
a GMM-type approach to trace individual magnetoelastic
dispersion curves for surface waves in a magnetic film on
a semi-infinite substrate [34]. However, the complexity of
the magnetoelastic equations makes the GMM approach im-
practical for multiple, finite thickness layers. Another, very
recent study, utilized post-processing of coupled elastic-
micromagnetic, time-dependent simulations to determine the
dispersion curves of a single-layer magnetoelastic wave guide
by extracting space-time frequency curves for certain configu-
rations of initial, boundary data [9]. Both of these approaches
are quite computationally intensive. To our knowledge, the
full dispersion map of a magnetoelastic, layered material has
never been determined directly.

Despite the typical layered geometry of magnetic devices
and the high frequencies now being accessed, there are few
developed theoretical tools for investigating magnetoelastic
wave propagation and little in the way of comprehensive
descriptions for these common configurations and operating
regimes. In this paper, we directly compute wave-number–
frequency dispersion maps and the corresponding vertical
mode profiles of magnetoelastic, layered materials using the
spectral collocation method (SCM), an accurate, fast numer-
ical method to compute dispersion maps and mode profiles
for single and multiple, finite thickness magnetic and elastic
layers. A recent innovation for calculating elastic dispersion
in nonmagnetic materials, the SCM utilizes a discretiza-
tion at special points (zeros of Chebyshev polynomials) and
differentiation matrices for derivatives in the direction perpen-
dicular to the layering in order to achieve efficient, accurate
computation [25,26,53]. The linearized magnetoelastic equa-
tions result in a quadratic eigenvalue problem. For a fixed
wave number, each eigenvalue corresponds to a frequency
branch and the corresponding eigenvector is an interpolant for
the vertical mode profiles of magnetic and elastic components
in each layer. The mode profiles are used to classify dispersion
branches in terms of the energy residing in elastic or magnetic
components and in which layer the energy is concentrated.
Using the SCM, we calculate and analyze full magnetoelastic
dispersion maps for a yttrium-iron-garnet (YIG) single layer,
YIG on a nonmagnetic gadolinium gallium garnet (GGG) sub-
strate, and nickel (Ni) on a nonmagnetic silicon nitride (Si3N4)
substrate. This method is shown to be easy to implement and
is rapidly convergent, with computational times measured in
minutes on a conventional laptop computer.

For magnetoelastic boundary value problems, other
discretization methods such as traditional finite differences
applied to N equispaced grid points, exhibit errors that
decrease algebraically O(N−n) for some n. Usually, n = 2 is
used in practice. The SCM method benefits from its superior
accuracy because interpolation at the nonuniform Chebyshev
points is almost optimal in a certain sense, achieving errors
that decrease faster than any power of N for smooth functions
[54,55]. We observe almost exponential convergence O(e−N )
in our computations (see the validation study in Appendix B),
hence many fewer grid points are required to obtain accurate
results with the SCM method than for traditional finite dif-
ferences, providing significant computational speedup. About
N = 12 grid points per layer is sufficient for the regimes

studied here to achieve high resolution. Furthermore, the
clustering of Chebyshev grid points near interfaces ensures
high resolution of surface modes and other interfacial mode
features.

Our numerical computations are complemented by an an-
alytical calculation in the EHF, exchange-dominated regime
that is used to explicitly determine magnetoelastic dispersion
curves in a single, finite thickness ferromagnetic layer. We
find that crossings between phonon and magnon dispersion
branches can be resonant or nonresonant in the presence of
magnetoelastic coupling. If the vertical mode profiles are of
the same order, they are resonant and an anticrossing ap-
pears. Anticrossings result in the transfer of energy between
quasielastic and quasimagnetic dispersion branches with a
well-defined gap width linearly proportional to the magnetoe-
lastic coupling. If the waves are nonresonant, no anticrossing
occurs, and the dispersion branches intersect with very weak
modification that is proportional to the square of the mag-
netoelastic coupling. Our calculations also show that the
magnetoelastic gap width decreases with increasing frequency
and decreasing wave number.

Our work is also motivated by recent experiments where an
ultrafast x-ray free electron laser (XFEL) was used to excite
and measure far-from-equilibrium conditions in layered mag-
netic samples [20,56,57]. Because of this, we focus primarily
on EHF, exchange-dominated interactions with a perpendicu-
lar applied field. However, these choices are incidental to the
applicability of the SCM approach. The SCM is quite general
and can be readily applied to similar problems involving in-
plane fields, lower frequencies, more complex anisotropies,
and even nonplanar geometries. We will demonstrate some of
this versatility by presenting dispersion curves for multiple
materials and sample sizes in the EHF band as well as in the
more traditional single GHz regime.

The outline of this work is as follows. After introducing
the Navier and Landau-Lifshitz equations for elasticity and
magnetism in Sec. II, their linearization about a perpendicu-
larly magnetized, static configuration in Sec. III results in a
quadratic eigenvalue problem in differential form. An asymp-
totic analysis of this eigenvalue problem, neglecting dipole ef-
fects, for weak magnetoelastic coupling in Sec. IV determines
the resonance condition for anticrossings and phonon-magnon
energy transfer. In Sec. V, we introduce the spectral colloca-
tion method (SCM) and use it in Sec. VI to compute disper-
sion maps for single and double layer films of various thick-
nesses. Finally, we conclude with a discussion in Sec. VII.

II. GOVERNING EQUATIONS

This section summarizes the equations for magnetoelastic
waves mostly following [9,58], with additional material syn-
thesized from other references including [10,11]. Additional
helpful sources regarding magnetic and elastic waves include
[28,30,34,59–62].

A. Energy density

The energy density of a magnetoelastic material consists of
the following components [9]:

Etot = Edip + Eex + EZ + Ean + Eel + Ekin + Ec. (1)
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These terms represent, from left to right, the energy density
due to dipole (demagnetization) effects, exchange interac-
tions, the Zeeman effect (applied field), anisotropy energy,
elastic potential, kinetic energy, and magnetoelastic coupling.
For a material with magnetization vector M, the first three
energy density quantities are calculated as

Edip = −μ0

2
(M · Hdip), (2)

Eex = Aex

Ms
|∇M|2, (3)

EZ = −μ0(M · H0). (4)

where Aex is the exchange stiffness coefficient, Ms is the sat-
uration magnetization of the material, μ0 = 4π × 10−7 H/m
is the magnetic permeability of free space, Hdip is the induced
field by the magnet, which is computed here under the mag-
netostatic approximation of Maxwell’s equations by assuming
that wave speeds are much smaller than the speed of light [see
Eq. (11)], and H0 is an applied external field. The intrinsic
crystalline anisotropy energy density Ean depends on the ma-
terial’s favored direction of magnetization. For a magnetically
cubic material, this is calculated as [59]

Ean = K1

M2
s

∑
i �= j

M2
i M2

j + K2

Ms
M2

1 M2
2 M2

3 .

In the materials of interest here, the intrinsic crystalline
anisotropy is weaker than the other energy terms [21,63]. In
the interest of simplicity, we will ignore it but its incorporation
into the computation of magnetoelastic dispersion is straight-
forward because it is a local, undifferentiated effective field
term.

Under Hooke’s Law, which assumes a linear relationship
between stress and strain, the elastic energy density is calcu-
lated as [10,64]

Eel = 1

2

∑
i, j

σi jεi j, (5)

where σ is the stress tensor and ε is the strain tensor. Kinetic
energy for the displacement u is calculated as

Ekin = ρ

2
|ut |2, (6)

where ρ is the material density.
The coupling energy for a cubic material is calculated as an

expansion of anisotropy and elastic energy around the strain ε

and the magnetization M as [10]

Ec = B1

M2
s

(
ε11M2

1 + ε22M2
2 + ε33M2

3

)
+ 2B2

M2
s

(ε12M1M2 + ε23M2M3 + ε31M1M3). (7)

The coupling coefficients in an isotropic medium are defined
as B1 = −3μλ100 and B2 = −3μλ111, where μ is the Lamé
coefficient and λ100 and λ111 are dimensionless coupling coef-
ficients for a particular material.

The total energy in the magnetic material occupying the
region U is calculated by a volume integral of the energy

density,

E =
∫

U
Etotdx. (8)

Equilibrium states of a magnetoelastic material are local min-
ima of the total energy E (8).

B. Magnetism

The relaxation from a nonequilibrium state of the magne-
tization vector M(x, t ), defined within the region U ⊂ R3 is
governed by the Landau-Lifshitz-Gilbert equation [60,65,66],

∂M
∂t

= −|γ |μ0M × Heff + α

Ms
M × ∂M

∂t
,

Heff = − 1

μ0

δE

δM
.

(9)

where α is the nondimensional Gilbert damping parameter
and |γ | = 1.76 × 10−11 rad/Ts is the gyromagnetic ratio for
an electron. One important property of (9) is that the mag-
nitude of M is conserved, and this magnitude is called the
saturation magnetization Ms of the material, i.e., |M| = Ms.
Consequently, it is often convenient to refer to the normalized
vector field ζ = M/Ms so that |ζ| = 1.

The effective magnetic field Heff is calculated as the vari-
ational derivative of the total energy (8) with respect to
magnetization [67]. Since there are five components of the
energy (1) that depend on M, the effective magnetic field can
be decomposed into five corresponding components,

Heff = Hdip + Hex + H0 + Han + Hc. (10)

The dipole field Hdip, also known as the stray field or
the demagnetizing field, is obtained by solving Maxwell’s
equations [67–69], in which the magnetization induces a mag-
netic field. We will assume the magnetostatic approximation,
which ignores the time variation of electric fields, reducing
Maxwell’s equations to

∇ · B = 0, (11a)

∇ × Hdip = 0, (11b)

where B is the total magnetic induction field

B = μ0(Hdip + M). (11c)

The appropriate boundary conditions are [69]

B · n = continuous, x ∈ ∂U, (11d)

Hdip × n = continuous, x ∈ ∂U, (11e)

lim
|x|→∞

Hdip = 0, x ∈ UC\∂U, (11f)

where ∂U is the boundary of U . The exchange field is due to
the property that ferromagnetic materials tend to align spins
along a common direction [67] and is given by

Hex = �2�M, (12)

where � is the exchange length of the material defined as �2 =
2Aex/(μ0M2

s ). Physically, � represents the length scale where
exchange effects are dominant. For lengths much larger than
�, dipole effects dominate.
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Although the materials considered here are magnetically
cubic, we will assume that the effect of this anisotropy on the
total effective field is small enough so that it can be ignored.
Finally, the effective field due to magnetoelastic coupling can
be calculated from the coupling energy density (7) as

Hc = − 2

μ0Ms

⎡
⎢⎣

B1ε11ζ1 + B2(ε12ζ2 + ε13ζ3)

B1ε22ζ2 + B2(ε12ζ1 + ε23ζ3)

B1ε33ζ3 + B2(ε13ζ1 + ε23ζ2)

⎤
⎥⎦. (13)

The boundary conditions for magnetism are free spin, i.e.,

∇n · M = 0, x ∈ ∂U, (14)

where n is the unit vector normal to the surface, and ∇n · M
represents the divergence in the direction of n.

Recently, inertial effects have been observed in mag-
netic samples driven at 0.4–1.0 THz frequencies [70]. Inertia
drives spin nutation corresponding to the relaxation of an-
gular momentum. Inertia can be modeled by the addition
of a second derivative in time term proportional to ατ/T
to the Landau-Lifshitz-Gilbert equation (9) [71,72]. Here,
τ is the material-dependent angular momentum relaxation
time—estimated and recently measured for NiFe and CoFeB
[70], to be in the 1–100 ps range—and T is the precessional
timescale—about 10 ps–1 ns here. Inertial effects may be
relevant when the effective field contribution, scaling with
the nondimensional parameter ατ/T , is comparable to other
effective field terms of interest. For the materials in the present
study, we estimate ατ/T to be no larger than 10−3 (and much
smaller in many cases) whereas the nondimensional magne-
toelastic coupling strength is ε ≈ 0.02 [see Eq. (41)]. Since
the EHF regime studied here is below the THz frequency
range and magnetoelastic coupling is sufficiently strong in the
materials studied, we neglect inertia [72].

C. Elasticity

The elastic displacement u in the linear regime is governed
by the equation

ρutt = f , f = ∇ · σ = ∇ · δE

δε
. (15)

With constant temperature, the variational derivative of energy
is the stress tensor δE

δε
= σ . We assume an isotropic elastic

material and neglect acoustic damping. Then, Hooke’s law
for the total stress σ in terms of the strain ε depends on two
parameters,

σ = λtr(ε)I + 2με.

The constants λ and μ are the Lamé moduli with units of
stress. For small displacements, we can in general approxi-
mate the total strain tensor ε as

εi j = (∂ jui + ∂iu j )/2.

Combining the above equations, we obtain a forced Navier
equation for homogeneous, linear, isotropic magnetoelastic
deformations

(λ + 2μ)∇(∇ · u) − μ∇ × ∇ × u + f (m) = ρü, (16)

FIG. 1. The experimental medium for which we are calculating
the magnetoelastic dispersion relation: 100 nm of silicon nitride
(Si3N4), a nonmagnetic substrate, supporting 50 nm of nickel,
surrounded by a vacuum. For modeling purposes, the material is
considered to be infinite in the x1 and x2 directions.

where f arises from the magnetoelastic coupling energy Ec.
When f ≡ 0 (i.e., with no magnetic effects present), by a
Helmholtz decomposition we can recover the two bulk speeds
of sound for an isotropic material [61], the shear speed cS and
the longitudinal speed cL

cS =
√

μ/ρ, cL =
√

(λ + 2μ)/ρ, (17)

subject to the ordering cS < cL. The variational derivative of
the coupling energy Ec yields the magnetic component of the
stress δEc

δε
= σ c. The divergence of the magnetic stress f =

∇ · σ c is the forcing term in the Navier equation,

f = 2B1

⎡
⎢⎢⎢⎣

ζ1
∂ζ1

∂x1

ζ2
∂ζ2

∂x2

ζ3
∂ζ3

∂x3

⎤
⎥⎥⎥⎦ + B2

⎡
⎢⎢⎢⎣

ζ1
(

∂ζ2

∂x2
+ ∂ζ3

∂x3

) + ζ2
∂ζ1

∂x2
+ ζ3

∂ζ1

∂x3

ζ2
(

∂ζ1

∂x + ∂ζ3

∂x3

) + ζ1
∂ζ2

∂x1
+ ζ3

∂ζ2

∂x3

ζ3
(

∂ζ1

∂x1
+ ∂ζ2

∂x2

) + ζ1
∂ζ3

∂x1
+ ζ2

∂ζ3

∂x2

⎤
⎥⎥⎥⎦.

(18)

For an elastic material, the boundary conditions at the surface
are

f surf = σn, x ∈ ∂U . (19)

where f surf is the traction force per unit surface (or stress) at
the boundary.

III. LINEARIZED MAGNETOELASTIC EQUATIONS

A. Physical assumptions

We consider two magnetic and nonmagnetic materials.
They are chosen for their use in recent experiments, their low
magnetic damping in the case of YIG, and their relatively
large magnetoelastic coupling. One of the double layers we
study consists of 100 nm of Si3N4 supporting a 50 nm layer
of nickel. See Fig. 1 for a schematic. Besides this material
sample, we will also study a 30 nm single layer of YIG
and both 30 nm/50 nm, 200 nm/300 nm YIG/GGG double
layers. YIG has been classically studied in the context of
magnetoelastic interactions due to its very low magnetic
damping (cf. [11,34]), and GGG is a natural substrate for YIG
[34]. YIG and GGG have the added advantage of comparable
shear speeds of sound, which will simplify the visualization
of their dispersion relations. The material parameters are
shown in Table I.
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TABLE I. Parameter values for the four materials studied in this
paper. The parameter values for Si2N3 were chosen from the ranges
given by Ref. [74] in order to minimize the shear speed, allowing for
easier visualization.

Ni [73] Si2N3 [74] YIG [11,63] GGG [75]

cL (m/s) 6040 8000 7200 6400
cS (m/s) 3000 4500 3800 3500
ρ (kg/m3) 8900 3250 5170 7080
B1 (MJ/m3) 9.38 [76] X 3.5 X
B2 (MJ/m3) 10 [76] X 7 X
� (nm) 7.72 [77] X 17.3 X
Ms (kA/m) 480 [77] X 140 X

In this paper, we assume that all materials are elastically
isotropic, and that the magnetic lattice is cubic. We also
assume that the material is infinitely wide in the transverse x1

and x2 directions, the displacements are small and therefore
linear, and the waves of interest propagate in the x1 direc-
tion. We will limit ourselves to materials with either a single
magnetic layer, or a single magnetic layer on a nonmagnetic
substrate, with the magnetic layer in both cases vertically
localized to 0 < x3 < d .

The nondimensional Gilbert damping parameter α is as low
as 3 × 10−5 for YIG [78]. Nickel is a metallic ferromagnet
where α was measured to be 0.024 [79]. The nondimensional
magnetoelastic coupling strength is estimated to be ε ≈ 0.02
for YIG and Ni [see Eq. (41)] so is much stronger than
damping in YIG. Our focus here is on the real frequency
response due to magnetoelastic coupling of layered devices
in the EHF regime, hence we will neglect magnetic damping
for our analysis, which is a reasonable physical assumption
for YIG and transition metal alloys. Therefore all but one
presented computational example is for YIG. We compute
the magnetoelastic dispersion of Ni/SiN while neglecting
damping, even though its strength is comparable to magnetoe-
lastic coupling, in order to convey the robustness of the SCM
method to material properties. Damping introduces a nonzero
imaginary part to the frequency corresponding to wave atten-
uation and a nonzero frequency linewidth [34]. Large enough
damping could smear out the resonant frequency anticrossings
predicted here.

We assume that a magnetic field H0 is applied in the
x3 direction, perpendicular to the plane of the material, so
that H0 = [0 0 H0]T . The magnetic field is sufficiently strong
that, in the absence of waves, the magnetization is saturated
in the x3 direction. This occurs when H0 � Ms. In order to
ensure saturation magnetization in the vertical direction, we
choose μ0H0 = 0.25 T for the calculations involving YIG,
and μ0H0 = 0.65 T for the calcluations involving nickel.

It is important to stress that nearly all of these assumptions
can be relaxed without reducing the effectiveness of the SCM
approach, which is very versatile. SCM can be readily gen-
eralized to situations with other geometries, more complex
elastic or magnetic anisotropies [25], and to other physical
effects such as magnetic/acoustic damping and spin inertia.
What we focus on here is a minimal but realistic model of
the physics of layering and magnetoelastic coupling in the
ultrafast regime.

B. Elastic equations

We look for linear wave solutions of the form

u(x, t ) =
⎡
⎣A1(x3)

A2(x3)
A3(x3)

⎤
⎦ei(kx1−ωt ). (20)

Inserting (20) into (16) and dividing out the common expo-
nential factor yields, after substituting in the speeds (17),

−ω2A1 = −c2
Lk2A1 + c2

SA′′
1 + (

c2
L − c2

S

)
ikA′

3 + f1

ρ
, (21a)

−ω2A2 = c2
S (A′′

2 − k2A2) + f2

ρ
, (21b)

−ω2A3 = c2
LA′′

3 − c2
Sk2A′′

3 + (
c2

L − c2
S

)
ikA′

1 + f3

ρ
, (21c)

where a prime denotes differentiation with respect to x3. Here,
fi/ρ should also be understood to be divided by the common
exponential factor.

C. Magnetic equations

For small oscillations, we linearize the magnetic waves
around the vertical saturation magnetization as

M(x, t ) = M0 + m(x, t ),

=
⎡
⎣ 0

0
Ms

⎤
⎦ +

⎡
⎣m1(x3)

m2(x3)
0

⎤
⎦ei(kx1−ωt ),

(22)

where m1, m2 � Ms. As justified earlier, we will neglect the
damping in (9) to obtain an undamped Landau-Lifshitz equa-
tion, also known as the Larmor torque equation,

∂M
∂t

= −γμ0M × Heff . (23)

Given the linearization (22), the exchange field (12) has the
form Hex = �2(m′′ − k2m).

In order to determine the field due to dipole effects Hdip

we must first solve the magnetostatic Maxwell equations (11).
Since the dipole field is curl free, it is the gradient of a scalar

Hdip =
⎧⎨
⎩

−∇φ+, d < x3,

−∇φ, 0 < x3 < d,

−∇φ−, x3 < 0.

(24)

We follow Ref. [69] to obtain a simplified equation for the
dipole field. In the absence of waves, M = M0 in (22) and the
dipole field (24) with φ = φ0 satisfying (11) is

φ0 = Msx3, φ+
0 = Msd, φ−

0 = 0. (25)

For the wave-only term M = m in (22), we seek a solution of
(11) in the form

ϕ = g(x3)ei(kx1−ωt ), ϕ± = g±(x3)ei(kx1−ωt ) (26)

for the dipole field (24) with φ = ϕ. Then, Eq. (11a) with
(11c) imply

−k2g(x3) + g′′(x3) = ikm1(x3), (27a)

−k2g±(x3) + (g±)′′(x3) = 0. (27b)
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Equation (27b) with the boundary condition (11f) is solved
with g±(x3) = C±e∓kx3 . Since the second component of Hdip

is zero [no x2 dependence in (24)], we can impose (11e) by
taking g(d ) = C+e−kd , g(0) = C−. The boundary condition
(11d) implies g′(d ) = −kC+e−kd , g′(0) = kC−. Eliminating
C± by combining these boundary conditions, we obtain

−k2g(x3) + g′′(x3) = ikm1(x3),

g′(d ) = −kg(d ), g′(0) = kg(0),
(28)

so that the complete dipole potential is φ = φ0 + ϕ and the
corresponding dipole field inside the magnet is

Hdip = −∇φ =
⎡
⎣ −ikg(x3)ei(kx1−ωt )

0
−g′(x3)ei(kx1−ωt ) − Ms

⎤
⎦, (29)

Note that no averaging assumptions were made for the dipole
field (29), which is an exact solution to the magnetostatic
Maxwell equations (11). Although Eq. (28) can be solved

using Green’s function techniques [80], we will obtain it nu-
merically as part of the SCM.

D. Coupling

From the magnetic wave ansatz (22), we can approximate
ζ3 ≈ 1, ζ2 ≈ ζ1 ≈ 0, ∂ζ3/∂xi ≈ 0. The magnetoelastic forcing
terms from (18) simplify to

f = B2

Ms

⎡
⎣ m′

1
m′

2
ikm1

⎤
⎦ei(kx1−ωt ). (30)

The effective field due to elastic coupling from (23) and (10)
also simplifies to become

Hc = − 1

μ0Ms

⎡
⎢⎣

B2(A′
1 + ikA3)

B2A′
2

2B1A′
3

⎤
⎥⎦ei(kx1−ωt ). (31)

Inserting (30) into (21) and (10) into (23) and neglecting
quadratic terms yields

−ω2A1 = −c2
Lk2A1 + c2

SA′′
1 + (

c2
L − c2

S

)
ikA′

3 + B2m′
1

ρMs
, (32a)

−ω2A2 = c2
S (A′′

2 − k2A2) + B2m′
2

ρMs
, (32b)

−ω2A3 = c2
LA′′

3 − c2
Sk2A3 + (

c2
L − c2

S

)
ikA′

1 + ikB2m1

ρMs
, (32c)

iωm1 = γμ0

[
(H0 − Ms + �2Msk

2)m2 − �2Msm
′′
2 + B2A′

2

μ0

]
, (32d)

iωm2 = γμ0

[
(−H0 + Ms − �2Msk

2)m1 + �2Msm
′′
1 − ikMsg − B2A′

1

μ0
+ ikB2A3

μ0

]
, (32e)

where g satisfies (28). Equations (32) and (28) are a system
of six ordinary differential equations for six variables in a
magnetoelastic layer. Note that the first coupling coefficient
B1 plays no role in the linearized system. For a purely elastic
layer, B2 = 0, M = 0 and the system reduces to the three
elastic equations.

E. Boundary conditions

We must also incorporate boundary conditions to close
the above system. The three second order elastic equations
require six boundary conditions. These come from continuity
of the three stresses σ j3 (19) and three displacements Aj ,
j ∈ {1, 2, 3} at a boundary. If the boundary is with vacuum,
we instead require that σ j3 = 0 at those boundaries. The
magnetoelastic stresses are calculated as σ = δ(Ec + Eel )/δε,
yielding

σ13 = μ(A′
1 + ikA3) + B2

Ms
m1, (33a)

σ23 = μA′
2 + B2

Ms
m2, (33b)

σ33 = λikA1 + (λ + 2μ)A′
3. (33c)

For a magnetic layer, we include the Neumann conditions
for magnetization elements (14) ∂mj/∂x3 = 0, j ∈ 1, 2, along
with the Robin conditions for the dipole field (28).

Since eigenfunctions are multiplied by a complex
exponential, the mode profile is the real part of
[A1 A2 A3 m1 m2]ei(kx1−ωt ). Based on the symmetry
properties of Eqs. (32) and the associated boundary
conditions, eigenfunctions can be normalized so that

Re

[
A1

m1

]
= 0 and Im

⎡
⎣A2

A3

m2

⎤
⎦ = 0. (34)

Consequently, modes oscillate between populating the longi-
tudinal components A1, m1 and then the transverse compo-
nents A2, A3, and m2, which are π/2 out of phase. Due to
the property (34), taking the imaginary part of the boundary
condition (33a) implies that A′

1 can be discontinuous across
the interface between a magnet and nonmagnet.
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IV. ANALYTICAL CALCULATIONS

A. Bulk magnetoelastic waves

The dispersion relations for magnetoelastic waves in a bulk
material with d → ∞ can be calculated directly from (32).
In this case, all derivatives with respect to x3 are assumed to
be negligibly small, and boundary effects are ignored. The
resulting sixth-order homogeneous linear system for Ai, mj ,
and g requires a nonzero determinant in order for there to be a
nonzero solution. This relation then yields a sextic polynomial
equation for ω.

First, we consider uncoupled waves (B2 = 0). For the three
purely elastic waves, the dispersion then is

ωel = ck, (35)

where c is one of the speeds of sound (17). For A1, the wave
is longitudinal and travels with speed cL, while for A2 and
A3 the wave is transverse (shear) and travels with speed cS .
The dispersion for magnetic waves in a bulk material with a
perpendicular applied field is

ωm = ±[(ωH − ωM + βk2)(ωH + βk2)]1/2, (36)

where

ωH = γμ0H0, ωM = γμ0Ms, β = γμ0�
2Ms. (37)

Note that (36) differs slightly from what is typically presented
(cf. Ref. [11]), since the d → ∞ limit of our equations (32)
retains a −Ms term due to the demagnetizing effect of the
material boundaries.

Next, we consider the dispersion of (32) with nonzero
magnetoelastic coupling (B2 �= 0). In the bulk limit, A1 and
A2 separate from the magnetic terms and the corresponding
waves travel with the uncoupled speeds cL and cS , respec-
tively. The remaining elastic component A3 and the magnetic
components m1 and m2 form coupled magnetoelastic waves
subject to the quartic dispersion relation

(
ω2 − ω2

m

)(
ω2 − ω2

el

) − γ B2
2

ρMs
(ωH − ωM + βk2)k2 = 0,

(38)

where ωel = cSk. In Fig. 2, we show the positive, uncoupled
and coupled magnetoelastic dispersion curves for A3 and mag-
netism in a bulk material subject to a perpendicular applied
field.

The coupled and uncoupled bulk dispersion curves present
some general principles regarding magnetoelastic wave inter-
actions. As evident from Fig. 2, magnetoelastic interactions
are most significant near the intersections of the uncoupled
magnetic and elastic dispersion curves where anticrossings
appear. Instead of intersecting, the dispersion curves bend
away from one another, leaving a gap. The gap width between
the curves is determined by the strength of the magnetoe-
lastic coupling B2 [9,11]. Far away from the anticrossing,
the dispersion curves follow the uncoupled magnetic or
elastic curves and are known as quasimagnetic and quasielas-
tic, respectively. Near the anticrossings, the quasielastic and
quasimagnetic dispersion curves bend away from each other
and switch roles. Thus a wave with energy primarily concen-
trated in elastic oscillations transfers that energy into magnetic

FIG. 2. Coupled (solid) and uncoupled (dashed-dotted) disper-
sion curves for bulk nickel with an applied field perpendicular to
the direction of wave propagation. The uncoupled curves have two
interactions, where for coupled curves anticrossings appear. The
lower-frequency anticrossing is shown zoomed-in in the inset. The
applied field has magnitude μ0H0 = 0.65 T. The coupling coefficient
B2 here is chosen to be unphysically large (B2 = 20 MJ/m3) in
order to visually emphasize anticrossing behavior; all other material
constants are as in Table I.

waves when the frequency passes through an anticrossing,
while the corresponding magnetic wave transfers its energy
into elastic vibrations. Two examples of anticrossings are
shown in Fig. 2, one at lower frequency and one at higher
frequency.

More generally, uncoupled magnetic dispersion curves
(36) are approximately parabolic, while uncoupled elastic
curves (35) are approximately linear. These curves have two
intersections, so there are two regimes at which magnetoe-
lastic interactions occur. The first intersection often occurs in
the single or tens of gigahertz regime, where dipole effects
are comparable or stronger than exchange. Due to the longer
wavelengths, these interactions can often be studied in finite-
thickness samples analytically using a thin film assumption
[9]. These lower-frequency interactions have been studied ex-
perimentally; see, for example, Refs. [6,18,21–23,37,81,82].
The second dispersion curve intersection occurs in a much
higher frequency regime, where exchange effects dominate.
In this work, we will focus on the higher-frequency inter-
actions, which are not as well-studied but are important for
understanding the recovery of magnetic order post ultrafast
demagnetization [20].

Even when layering is incorporated, we still expect to
see magnetoelastic interactions in the ω-k region near where
the bulk shear and magnetic dispersion curves intersect, i.e.,
ωm ≈ ωel. For YIG and Ni, the higher-frequency intersections
between the shear elastic and magnetic waves are around 100–
200 GHz, and so are well within the current experimentally
accessible regime. The longitudinal speeds of sound are twice
as large (see Table I). Consequently, longitudinal-magnetic
waves are expected to occur at twice the frequency range.
The separation of A1 and A2 from the other wave compo-
nents in the bulk limit indicates that the most significant
elastic-magnetic interactions will involve the A3 shear elastic
component and m1, m2.

We also note that the higher-frequency magnetic and elastic
intersections in Fig. 2 for Ni occur at wavelengths 2π/k ≈ 15
nm. This is approximately twice the exchange length � for
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nickel (see Table I). Consequently, we expect the exchange
energy to be more significant than the long-range dipole en-
ergy. Nevertheless, dipole effects must still be considered. A
similar argument holds for YIG which has an exchange length
� ≈ 17 nm, and its magnetoelastic intersections occur at a
similar wavelength.

In summary, analysis of the bulk dispersion curves reveals
that magnetoelastic anticrossings between magnetic and shear
waves are possible in the extremely high-frequency regimes
of experimental interest and exchange effects will be more
significant than long-range dipole effects in this regime.

B. Single-layer asymptotic calculation

When finite-thickness and boundary effects are included, a
direct analytical calculation of the dispersion from the eigen-
value problem (28), (32) is challenging. In contrast to the bulk
limit, a finite-thickness film in the continuum approximation
has an infinite number of dispersion curves, corresponding
to higher order quasielastic and quasimagnetic modes. Of
course, the actual number is limited by the crystal lattice
spacing. In this section, we utilize an asymptotic calculation
that is presented in Appendix A to show that, unlike in the
bulk limit, not all magnetic-elastic curve intersections yield
anticrossing behavior.

Motivated by the analysis in the previous section, we con-
sider a simplified scenario where displacements in the A1

and A2 direction are ignored. We also neglect dipole effects,
i.e., we set g ≡ 0. These assumptions greatly simplify the
eigenvalue problem (28) and (32), yet they reveal significant
insight into the problem. The uncoupled case (B2 = 0) gives
rise to the discrete, infinite family of elastic ωel,n and magnetic
ωm, j dispersion branches

ωel,n =
√

(cSk)2 + (cLξn)2, n = 0, 1, . . . , (39a)

ωm, j = ωH − ωM + β
(
k2 + ξ 2

j

)
, j = 0, 1, . . . , (39b)

where ξn = nπ/d is the discrete vertical wave number. The
corresponding vertical mode profiles are cosines

A3,n(x3) = ael,n cos(ξnx3), n = 0, 1, . . . , (40a)

m2, j (x3) = am, j cos(ξ jx3), j = 0, 1, . . . (40b)

Magnetic materials exhibit weak magnetoelastic coupling B2.
We find in Appendix A that this can be quantified by the
smallness of the nondimensional parameter

ε = B2
γ �

cS

√
μ0

ρ
� 1. (41)

For example, ε ≈ 0.02 for both YIG and Ni. An expansion
of the frequencies and mode profiles around (39) and (40) for
small ε determines the following resonance condition

ωel,n(k) ≈ ωm, j (k), n = j, (42)

necessary for magnetoelastic frequency corrections that are
proportional to ε. Otherwise, for nonresonant conditions, the
frequency corrections are significantly smaller (proportional
to ε2). Equation (42) represents two resonance requirements:
(i) the wave number k must be close to k∗, an intersection of
the uncoupled elastic and magnetic dispersion curves, and (ii)
the mode numbers for the elastic and magnetic waves must

be the same n = j. The frequency corrections are provided
in Appendix A [see Eqs. (A18) and (A22)] and describe an
anticrossing.

Additionally, the resonance condition (42) leads to a wave-
number–dependent relative scaling between the elastic and
ael,n and magnetic am,n mode amplitudes [see Eq. (A23)].
Combining this scaling and the frequency corrections en-
ables one to describe how the frequency transitions from a
quasielastic or quasimagnetic branch to the other. The evalu-
ation of the frequency corrections at the point of intersection
(k∗, ω∗)

ω∗ = ωel,n(k∗) = ωm,n(k∗) (43)

of the uncoupled dispersion branches (39) determines the
anticrossing frequency gap width

�gap = ε
c2

Sk∗√
βω∗

. (44)

The gap width is proportional to B2, as in the bulk and
thin film limits [9,11]. In addition, the gap width is propor-
tional to the wave number k∗ and inversely proportional to
the square root of the frequency ω∗ at the intersection (43).
Consequently, larger wave number and smaller frequency res-
onances give rise to larger anticrossing gaps. We compare
asymptotic results with the SCM computation, described in
the next section, of the simplified system considered here
analytically (Eq. (A1) with elastic components A1, A2 and
dipole field g neglected) for a single layer of YIG. The top
panel of Fig. 3 shows that, in the vicinity of n = 0, 1 resonant
interactions, the agreement between the asymptotic predic-
tion (dash-dotted) and the SCM calculated dispersion curves
(solid) is excellent.

On the bottom panel of Fig. 3, we show the relative magni-
tudes of the nondimensionalized elastic and magnetic waves
for the (n, j) = (0, 0) intersection depicted in the top panel.
The numerical calculations (solid) for the norm ratio agrees
very well with the asymptotic predictions (dash-dotted).

V. SPECTRAL COLLOCATION METHOD

The previous section demonstrated a marked increase in
dispersion complexity due to the incorporation of bound-
ary effects for a single, finite-thickness magnetoelastic layer.
In this section, we introduce a spectral collocation method
(SCM) for determining the dispersion relations of multiple
layers. Unlike the above asymptotic calculation, this method
studies the full system (32), including the dipole field (28).

A. Method overview

The SCM approach we develop is adapted from one uti-
lized for purely elastic waves [25,26,53]. Consider N points
x( j) on the domain [−1, 1] given by the formula

x( j) = cos
( j − 1)π

N − 1
, j = 1, . . . , N. (45)

These are known as Chebyshev points (or Gauss-Chebyshev-
Lobatto points) [54]. They arise as the roots of the N th

degree Chebyshev polynomial. Their distribution over [−1, 1]
is nonuniform and concentrated near the endpoints of the
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FIG. 3. (Top) Comparison of the asymptotic prediction (A22)
and (A18) (dashed-dotted) with dispersion curves calculated by SCM
(solid) for the two lowest modes n = 0, 1 and j = 0, 1. The material
thickness is d = 30 nm, and the applied field is μ0H0 = 0.2 T.
Intersection points are labeled. (Bottom) Relative wave magnitudes
for the (n, j) = (0, 0) resonant intersection shown on the left plot as
determined from numerics (solid) and asymptotics in (A23) (dashed-
dotted).

interval. More details about Chebyshev points and Chebyshev
polynomial interpolation can be found in Refs. [54,83].

For each layer, the six functions A1(x3), A2(x3), A3(x3),
m1(x3), m2(x3), and g(x3) are interpolated at Chebyshev points
(45) into vectors of length N ,

A1 = [A1(x(1) ) . . . A1(x(N ) )]T, . . . (46)

The key to the efficiency of the SCM method is that, for
smooth functions, a discretization at Chebyshev nodes (45)
converges faster than any negative power of N , i.e., the con-
vergence is spectral. In fact, one can show that the Chebyshev
points are nearly optimal for minimizing the uniform norm of
the interpolation error [54].

Each derivative with respect to x3 of the discretized func-
tions can be approximated using a Chebyshev differentiation
matrix DN . These matrices can be efficiently and stably
generated using the cheb function in MATLAB [54]. The dif-
ferentiation matrix DN generated using the MATLAB function
cheb must be scaled by 2/(b − a) to account for a general do-
main [a, b]. Concatenating the matrices and vectors A1, . . . ,

yields a quadratic polynomial eigenvalue problem of the form
(A2ω

2 + A1ω + A0)φ = 0, where A j , j = 0, 1, 2 are dense
6N × 6N matrices for a single magnetic layer.

Next, the boundary conditions are incorporated by re-
placing the rows representing the boundaries for each of
the vector equations. The boundary rows occur at rows
1, N, N + 1, 2N, . . . , 6N and are discretized with Chebyshev

differentiation matrices as above. Then these equations are
inserted into the 1, N, N + 1, 2N, . . . , 6N rows of the poly-
nomial eigenvalue problem. Since our boundary conditions
are time-independent and therefore frequency independent,
the boundary effects are all incorporated into A0, and the cor-
responding 1, N, N + 1, . . . rows of A2 and A1 are replaced
with zeros.

Polynomial eigenvalue problems can be solved directly
using the built-in MATLAB polyeig command. The frequency
polynomial is second degree, so in principle we will find 12N
modes for a coupled magnetoelastic layer. An increase in N
leads to an increase in the number of approximated eigenval-
ues, with new, larger eigenvalues appearing while the smaller
eigenvalues exhibit improved accuracy. Due to spectral con-
vergence, N need not be very high before accurate results are
obtained for the smaller eigenvalues.

In the polynomial eigenvalue problem, the linear in ω terms
arise from the Landau-Lifshitz equation (23), which is a first
order in time system of differential equations. The quadratic
ω2 terms arise from the Navier equation (16), which is second
order in time. Previous spectral collocation methods applied to
purely elastic problems (e.g. [25]) only required the solution
of an eigenvalue problem for ω2, not a polynomial eigen-
value problem, since the square root and splitting into two ±
branches can be computed afterward.

The extension of the above method to multiple layers is
straightforward. We outline it for a magnetoelastic material
layered on a purely elastic substrate. The substrate has three
governing equations for the displacements Ā j , j = 1, 2, 3 (we
denote displacements in the substrate by an overbar), for a
total of nine equations. The discretized field matrix for these
equations (3N × 3N) is joined to the discretized field matrix
above to form a matrix with (9N )2 elements. The differen-
tiation matrix in each layer DN must be suitably scaled to
account for the thicknesses of the two layers. Once again,
the appropriate boundary conditions replace rows 1, N, N +
1, . . . , 9N . The larger quadratic eigenvalue problem is solved
to obtain the solution.

The generated matrices in the polynomial eigenvalue prob-
lem can be ill-conditioned, so the problem is numerically
sensitive. In order to ensure sufficient numerical precision, we
utilize a multi-precision MATLAB toolbox to perform calcula-
tions in quadruple precision. Higher precisions than quadruple
did not appear to increase the accuracy, and the toolbox is
calibrated to perform optimally in quadruple precision [84].
Moreover, we found that many of our calculations yield simi-
larly accurate results even for double precision computations.

One advantage of the SCM method is the direct compu-
tation of the dipole field g. Accounting for dipole effects is
one of the most significant challenges when studying mag-
netic waves. By including g as a discretized function in the
polynomial eigenvalue problem, we spectrally converge to the
correct dipole field with little additional computational cost.

Another benefit of the SCM method is that the eigenvec-
tor determined from the polynomial eigenvalue problem is
a composite vector containing the discretized vertical mode
profiles A1, A2, . . . , m1, . . . at the Chebyshev points (45).
We utilize this fact for two purposes. First, we can com-
pare the relative 2-norms of these vectors to classify the
mode type corresponding to a particular dispersion curve. For
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(a)

(b)

FIG. 4. Dispersion curves for one layer of YIG with thickness
30 nm and N = 16 with coupling constant B2 = 0 for (a) and the
physical value of B2 in Table I for (b). Three anticrossings and
multiple ordinary crossings are visible.

example, if ||A1|| � ||A2||, the displacement is predominately
in the x1 direction, and the wave can be considered longi-

tudinal. Using the scaling between magnetism and elasticity
determined from the nondimensionalization (A2), we can
compare ||Ai||/A∗ and ||m j ||/Ms to determine whether
a mode is predominately elastic or magnetic. In the
below figures displaying results of the SCM method,
each dispersion curve is labeled by color to identify
the eigenvector’s component that is largest, with the
appropriate scalings given by (A2). This classification
method is simple, and the below figures will indicate its
effectiveness.

The discretized eigenvector can be used to determine the
vertical mode profile by using the Chebyshev interpolating
polynomial corresponding to the discretization. To ensure the
property (34), we first apply a complex phase shift so that
the vertical shear profile evaluated at the top of the upper
layer is positive A3(d ) > 0. Then, we present the real parts
of A2, A3, and m2 together and, separately, the π/2 out of
phase imaginary parts of A1 and m1. In order to compare
profiles of elastic and magnetic components, they are first
nondimensionalized according to [cf. Eq. (A2b)]

Ai/A∗, i = 1, 2, 3, mj/Ms, j = 1, 2,

and then normalized by the maximum amplitude. Wave pro-
files are presented below in Figs. 5, 9, and 10.

A validation study is performed in Appendix B. We ob-
serve rapid convergence of the frequencies requiring only
a modest number of Chebyshev discretization points N ∈
{10, . . . , 24}. Furthermore, we directly compare the uncou-
pled B2 = 0 elastic dispersion computed using SCM for a

FIG. 5. (Top) Zoomed in anticrossings from Fig. 4(b). (Bottom) Mode profiles corresponding to the dispersion points (a)–(f) with
(A3, A2, m2) (Left) and the π/2 phase advanced profiles (A1, m1) (Right). Points (a)–(c) correspond to an anticrossing in the zeroth-order
mode of A3 and (m1, m2), so the wave profiles do not exhibit zeros. Points (d)–(f) correspond to the first-order mode in A3 and (m1, m2), so
their profiles have a single zero. (c) and (f) are the profiles at nonresonant crossings; the nonresonant correction is higher order and not visible
in this figure.
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double layer with a published elastic dispersion solver, finding
quantitative agreement.

VI. RESULTS

In this section, we review some selected results of SCM
calculations in order to highlight its utility. In all figures in this
section, curves with mode profiles whose 2-norms are domi-
nated by magnetism are green, elastic waves in a magnetic
material are blue, and elastic waves in a nonmagnetic material
are red. In addition, variables corresponding to a nonmagnetic
material are denoted by a bar, e.g., A1.

A. Single layer

1. Dispersion map

We first examine the effect of magnetoelastic coupling on
a single layer. Figure 4 shows SCM calculations with N = 16
for a single layer of YIG with thickness 30 nm and an applied
field of 0.25 T. Panel (a) shows the uncoupled result when
B2 = 0, resulting in purely elastic or magnetic modes. The
dispersion curves cross without any interaction.

In contrast, panel (b) has a nonzero coupling constant B2

set to the physical value for YIG given in Table I. Away from
the intersections, the dispersion curves are nearly identical
between panels (a) and (b). Near some intersections, however,
anticrossings appear, as expected. Multiple simple crossings
are also displayed. One can readily observe that the anti-
crossing gap width decreases with increasing frequency and
lower wave number. These findings are consistent with the
simplified analysis presented in Sec. IV.

2. Resonant and nonresonant interactions

We next examine resonant and nonresonant interactions in
the single layer of YIG. In the top panel of Fig. 5, we show
a zoomed in view of the two lowest-order anticrossings from
Fig. 4(b). The wave profiles at the labeled points are shown
in the bottom panels. For the purposes of resonances and
comparing the number of zeros, we focus on the dominant
modal contributions from vertical shear A3 and magnetism
(m1, m2). Notice the general similarity between the resonant
magnetic and elastic modes in each row of Fig. 5, left. Points
(a)–(c) correspond to an anticrossing in the zeroth-order
mode, so the wave profiles A3, m2 do not exhibit zeros, i.e.,
they are resonant. Points (d)–(f) correspond to a different
anticrossing originating from first-order modes, so their
profiles have a single zero. When the dispersion curves
from these two separate anticrossings intersect each other,
an additional anticrossing does not occur because the mode
numbers differ. Figures 5(c) and 5(f) are the magnetic profiles
at nonresonant crossings; the nonresonant correction is very
small and not visible in this figure.

Although the asymptotic calculation in Sec. IV B made
several simplifying assumptions, its main findings are qualita-
tively verified. For exchange-dominated waves, anticrossings
only appear between resonant magnetic and elastic modes. In
addition, Fig. 5 clearly shows that the higher order anticross-
ings decrease in their gap width. This is consistent with (A22),
which predicts that the gap width will decrease with increas-
ing frequency and decreasing wave number. Finally, close

FIG. 6. Dispersion curves for one layer of YIG with thickness
30 nm and N = 12 layered on a 50 nm film of GGG. Numerous
anticrossings are visible.

observation reveals that the quasimagnetic and quasielastic
dispersion curves in Fig. 5 are slightly shifted from their
uncoupled locations.

B. Two layers

1. Dispersion map

Next, we incorporate a second, nonmagnetic layer and
examine its effect on the magnetoelastic dispersion curves.
Figure 6 shows the dispersion map for 30 nm of YIG layered
on a 50 nm substrate of GGG. The plot axes were chosen
to show a large number of anticrossings. Elastic shear waves
localized in the YIG layer are colored blue, while shear waves
localized in the GGG layer are red. Magnetic waves are green.
Note that there are significantly more dispersion curves here
than in Fig. 4, indicating that adding a second layer signifi-
cantly increases the dispersion complexity.

Interestingly, the magnetic dispersion curves interact with
elastic modes from each layer, even though the bottom layer
is nonmagnetic. In other words, an elastic wave with energy
localized in the nonmagnetic substrate can still interact reso-
nantly with a magnetic-dominated mode. One consequence of
this observation is that a single dispersion curve can transition
between a quasielastic wave in the top layer to a quasielastic
wave in the bottom layer or a quasimagnetic wave, depending
on the wave number and frequency regime.

In Fig. 7, we show a dispersion map for a different sam-
ple consisting of 50 nm of Ni layered on a 100 nm Si2N3

FIG. 7. Dispersion curves for one layer of Ni with thickness
50 nm and N = 12 layered on a 100 nm film of Si2N3 (right).
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FIG. 8. (Top) Dispersion curves for 30 nm film of YIG layered
on 50 nm of GGG with N = 24. (Bottom) Relative magnitudes of the
A3, A3, and m modes for the dispersion curve indicated by a dashed
line in the top figure.

substrate. One essential difference between this calculation
and that of Fig. 6 is that here, the shear speed cS of the bottom
material is larger than that of the top material. This is visible in
the large number of dispersion modes with energy localized in
the bottom material (red curves) located at higher frequencies
than the modes with energy localized in the top material (blue
curves).

Similar effects are seen here as in Fig. 6. Modes with
energy primarily in the nonmagnetic substrate can still interact
with magnetic modes, resulting in a single dispersion branch
that transitions between all three wave types. We examine this
phenomenon in more detail next.

2. Multimode dispersion branch in a double layer

Now, we continuously follow a single dispersion curve in
a YIG-GGG layered material to understand how energy can
transition from magnetic to elastic or vice versa as well as
between layers. The top panel of Fig. 8 shows a zoomed-in
view of a portion of Fig. 6. Dispersion curves with energy pri-
marily located in the A2 and A2 modes have been removed for
ease of visualization since they play no role in the resonance
discussed here.

One dispersion curve in Fig. 8 has been highlighted us-
ing a black dashed line. This curve begins as a quasielastic
wave localized in the top elastic layer. After an anticrossing it
becomes quasimagnetic, and then after a second anticrossing
it becomes quasielastic, localized in the bottom layer. This
transition is shown more clearly in the bottom panel of Fig. 8,
which depicts the relative magnitudes of the three primary
wave elements as the frequency is increased.

We further examine the three points labeled (a), (b), and
(c) in Fig. 9. The top panel in Fig. 9 shows a bar graph with
the relative 2-norms of all seven mode components, suitably
scaled according to (A2), for the three points. From this figure,
it is clear that the energy in point (a) is primarily localized in
the A3 elastic component of the magnetic layer, in point (b), it
is in the magnetic components (m1, m2), and in point (c), it is
in A3, the elastic component of the nonmagnetic substrate.

Finally, the vertical mode profiles at the three labeled
points are shown in the bottom panel of Fig. 9. At points
(a) and (b), the elastic portion of the wave is localized pri-
marily at the top surface of the magnetic layer, adjacent to
vacuum. However, when the mode becomes dominated by
vertical shear elastic oscillations in the nonmagnetic layer,
the mode is excited across much of the nonmagnetic layer.
This is accompanied by a vertical shear component with about
half the energy in the magnetic layer and a small magnetic
excitation.

Interestingly, the mode profiles for anticrossings in a lay-
ered material do not display as simple of a resonance behavior
as for a single layer (see Fig. 5). For example, the magnetic
mode profile in Fig. 9 is order 0, the top material elastic mode
is order 0 or 1, and the bottom material elastic mode is order
1 or 2. This causes an asymmetry with respect to the layer
center in the magnetic waves. In contrast, this asymmetry is
not observed in single layers nor in the low-frequency calcu-
lations of the next section. This indicates that, for a layered
material, resonant and nonresonant interactions have added
complexity which is not captured by our simplified asymptotic
calculation. Nevertheless, the presence of some anticrossings
and some simple crossings is consistent with our analytical
findings.

To summarize, the highlighted dispersion curve in Fig. 8
and corresponding figures in this section reveal that for in-
creasing frequency, magnetism acts as a mediator to transfer
energy between a surface shear wave in the magnetic material
to a shear wave across the nonmagnetic substrate.

C. Low-frequency interactions

For completeness, we also present some dispersion and
wave profile results for waves in a lower-frequency range,
shown in Fig. 10. The main phenomenological difference for
this 1–4 GHz regime is that dipole effects are much stronger
relative to exchange effects. Thus our exchange-dominated
asymptotic calculation is not presumed to be valid here. To
ensure the presence of multiple dispersion modes, we increase
the material thicknesses to 0.2 µm of YIG layered on 0.3 µm
of GGG.

Figure 10 shows two quasielastic modes and three quasi-
magnetic modes in the dispersion map with four resonant
anticrossings and two nonresonant crossings visible. One in-
teresting observation from the wave profiles is that the order
zero [panels (b) and (e)] magnetic mode appears to track the
middle quasimagnetic dispersion curve, with higher frequency
than the first order magnetic mode in panel (d).

The leftmost quasielastic dispersion curve [panel (a)] ap-
pears to be a transverse shear, zeroth-order elastic mode with
energy concentrated in A2, while the rightmost quasielastic
curve [panels (d)–(f)] is also a zeroth-order mode but with
energy concentrated in vertical shear A3. The A2 mode only
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FIG. 9. (Top) Relative 2-norms of the scaled displacements and magnetic modes for the points labeled in Fig. 8. (Bottom) Corresponding
wave profiles of the (A3, A3, A2, A2, m2) components (Left) and the π/2 phase advanced (A1, A1, m1) components (right), calculated with
N = 32. The dominant contributions are (a) a vertically sheared surface acoustic wave A3, (b) a spin wave (m1, m2), and (c) an oscillatory bulk
substrate mode A3.

has an anticrossing with the second magnetic mode, which
from panels (b) and (e) also appears to be a zeroth-order
mode. This is generally consistent with the asymptotic
results obtained earlier regarding resonant and nonresonant
anticrossings.

However, the A3 mode [panels (d)–(f)] displays anticross-
ing behavior with all three magnetic modes. Apparently, the
presence of strong dipole effects alters whether magnetoelas-
tic intersections are resonant or nonresonant. Since the dipole
effects occur in the vertical x3 direction, this may explain why
resonant and nonresonant interactions are still present for the
A2 mode, which does not experience as strongly the presence
of the dipole effective field.

VII. DISCUSSION AND CONCLUSION

The main contribution of this work is an analysis of magne-
toelastic dispersion in finitely thick and layered materials. We
first presented fully coupled magnetoelastic equations, which
were then linearized to obtain a coupled system of ordinary
differential equations in the vertical, layered direction. This
system was analyzed analytically and numerically.

Analytically, we performed an asymptotic calculation to
study multiple dispersion curve crossings and anticrossings
in a single layer. We identified that anticrossings only occur
when the uncoupled magnetic and elastic dispersion curves
are resonant with each other. These anticrossings were well-
modeled using asymptotic predictions. We also correctly
predicted a small but noticeable correction for nonresonant
dispersion curve intersections from the uncoupled case. De-
spite performing our calculations on a simplified scenario,
these same general behaviors were observed numerically for

the full equations in a single layer. The calculation assumed
weak magnetoelastic coupling, which is the case for all known
materials.

Numerically, we introduced a magnetoelastic spectral col-
location method (SCM), a fast, simple, accurate, direct
approach for calculating the dispersion curves of a magne-
toelastic, layered material. Discretizing the coupled system
of differential equations at Chebyshev points yields a poly-
nomial eigenvalue problem whose solutions are the angular
frequencies for a given wave number. Solving this polynomial
eigenvalue problem for a mesh of wave numbers gives both
dispersion curves and corresponding wave profiles.

The speed and reliability of SCM was first validated in
multiple ways. We then applied SCM to a variety of materials
and samples. First, we calculated the dispersion curves for a
30 nm layer of YIG surrounded by a vacuum. This dispersion
map revealed a number of anticrossings and simple crossings.
Examining the corresponding wave structures supported our
analytical result that, for a single layer, anticrossings only
occur for resonant magnetic and elastic waves.

Next, we calculated dispersion curves for two different
double layers. Both calculations showed complex disper-
sion maps with numerous anticrossings. In addition, it was
observed that the same dispersion curve can transition be-
tween quasielastic in the top layer, quasimagnetic, and then
quasielastic in the bottom, nonmagnetic layer. The magnetic
curve is resonant with an elastic curve in both the bottom
and top layers, and so mediates energy transfer between them
with increasing frequency. This curve was subsequently inves-
tigated by examining the wave structures at various points.

We also found that resonant and nonresonant interactions
are signficantly complicated by dipole effects and layering.
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FIG. 10. (Top) Dispersion map for 0.2 µm of YIG layered on 0.3 µm of GGG with N = 16. Multiple anticrossings and nonresonant
crossings are visible. (Bottom) Wave profiles for the labeled points in the top figure. Resonant and nonresonant interactions are more
complicated. For this figure, all wave numbers are in rad/µm.

Both effects can lead to results that are at odds with our sim-
plified analytical predictions for a single layer and negligible
dipole field. This highlights the importance of the numerical
method for determining the solutions to the full linearized
system of differential equations.

We emphasize the fact that SCM is easily generaliz-
able to many magnetoelastic wave applications. The method
works just as effectively for GHz frequency ranges as for
the extremely high-frequency ranges primarily considered
here. Calculations for a material with an in-plane magnetic
field are also readily obtainable. In that case, the lineariza-
tion assumptions would lead to a slightly different set of
differential equations, but these can be similarly discretized
and converted into a polynomial eigenvalue problem. The
implementation is straightforward, and spectral convergence
ensures fast computational times. In addition, SCM is also
applicable to more complex anisotropies and geometries, such
as a spherical material or a material with more layers. For
example, experimental work reported in Ref. [23] studied
magnetoelastic waves in a layer of GGG between two layers
of YIG. Although the computational complexity would be in-
creased by the need to incorporate dipole-dipole interactions,
SCM could be adapted to this scenario to provide valuable
insights.

Another advantage of SCM is the ability to recover wave
profiles with spectral accuracy. These profiles can then be
utilized to classify the dispersion mode type. In addition, we
can identify transitions along a dispersion curve between the
various wave types. This ability to recover wave profiles could
also lead in some interesting directions. Ultrafast magnetism
experiments measuring scattering intensities using an XFEL
yield only a wave number-frequency relation; they contain no
information about the wave type or structure. By fitting ex-
perimentally obtained dispersion curves to SCM results, one
can predict information about the wave structure. Similarly,
wave structure data can also aid in the calculation of surface
waves such as Rayleigh or Love modes, or waves localized to
an interface, another area with many practical applications.
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APPENDIX A: ASYMPTOTIC CALCULATION OF EXCHANGE-DOMINATED MAGNETOELASTIC DISPERSION

Setting A1, A2, and g to zero in the eigenvalue problem (32) leaves three equations for m1, m2, and A3. These can be further
simplified by solving (32d) for m1 in terms of m2, differentiating twice, and inserting into (32e) so that m1 is eliminated. If we
write m ≡ m2 and A ≡ A3 for convenience, then the new, simplified eigenvalue problem is sixth order(

ω2 − c2
Sk2

)
A + c2

LA′′ − kB2

ωρMs
[(ωH − ωM + βk2)m − βm′′] = 0, (A1a)

[ω2 − (ωH − ωM + βk2)2]m + 2β(ωH − ωM + βk2)m′′ − β2m′′′′ − ωkγ B2A = 0, (A1b)

for 0 < x3 < d . Recall the definitions of ωH, ωM, and β in
(37). The corresponding six boundary conditions are

A′ ≡ m′ ≡ m′′′ ≡ 0, x3 = 0, x3 = d. (A1c)

It will be helpful to nondimensionalize (A1). For this, we
introduce the scalings

k̃ = k/K, ω̃ = ω/�, x̃3 = Kx3,

m̃ = m/Ms, Ã = A/A∗,
(A2a)

where all nondimensional quantities are distinguished from
their dimensional counterpart by a tilde .̃ Furthermore, the
wave number, frequency, and elastic displacement scalings are

K = cS/β, � = cSK, A∗ =
√

Msβ

ρc2
Sγ

. (A2b)

The lowest order magnetoelastic intersection occurs for the
spatially uniform elastic mode; hence the frequency scaling
� = cSK . The wave number K is determined by equating
elastic and quadratic exchange dispersion cSK = βK2, deter-
mining a natural length scale for the waves in this problem.
The magnetization Ms and displacement A∗ scalings provide
the means to directly compare magnetic and elastic mode
amplitudes. This scaling is used in all mode comparison plots:
Figs. 5 and 8–10. The scalings in (A2) imply that ω̃ = k̃ =
1 when the lowest order uncoupled dispersion branches in-
tersect ωH = ωM. Under the above scalings, we obtain the
nondimensional applied field parameter H̃ and elasticity con-
stant G̃,

H̃ = (ωH − ωM)β

c2
S

, G̃ = cL

cS
. (A2c)

Finally, we introduce the nondimensional magnetoelastic
coupling parameter ε in Eq. (41). Then, upon using (41) and
(A2), the eigenvalue problem (A1) becomes

(ω̃2 − k̃2)Ã + G̃2Ã′′ − ε
k̃

ω̃
[(H̃ + k̃2)m̃ − m̃′′] = 0,

(A3a)

[ω̃2 − (H̃ + k̃2)2]m̃ + 2(H̃ + k̃2)m̃′′ − m̃′′′′ − εω̃k̃Ã = 0,

(A3b)

for 0 < x̃3 < d̃ = cSd
β

. For nickel, ε ≈ 0.019, while for YIG
ε ≈ 0.023, both small parameters (see Table I). The two phys-
ical parameters H̃ and G̃ are O(1), as are ω̃ and k̃. Under the
above transformation, the boundary conditions become

Ã′ ≡ m̃′ ≡ m̃′′′ ≡ 0, x̃3 = 0, x̃3 = d̃. (A3c)
For a layer of nickel with thickness d = 50 nm, d̃ ≈ 24 �

1. We now perform an asymptotic analysis of (A3) as ε → 0+.

1. Zeroth-order solution

First, we consider the uncoupled equations. Setting ε = 0
in (A3) yields the mode profiles

Ãn(x̃3) = ãel,n cos(ξ̃nx̃3), n = 0, 1, . . . , (A4a)

m̃ j (x̃3) = ãm, j cos(ξ̃ j x̃3), j = 0, 1, . . . , (A4b)

where ξ̃n = nπ/d̃ is the vertical wave number. The uncoupled
dispersion relations for these modes are

ω̃n(k̃) =
√

k̃2 + G̃2ξ 2
n , n = 0, 1, 2, . . . , (A5a)

ω̃ j (k̃) = H̃ + k̃2 + ξ 2
j , j = 0, 1, 2, . . . (A5b)

Note that there are actually two dispersion branches for each
component ±ω̃, but we will focus on the two positive branches
in (A5a) and (A5b). These are the dispersion curves for a
single layer. As d̃ → ∞, the dispersion curves converge to
the bulk dispersion curves in which ξ̃n, ξ̃ j → 0.

2. Quasielastic and quasimagnetic waves

Next, we consider the effect of coupling on quasielastic and
quasimagnetic dispersion. We expand around the uncoupled
modes (A4) and dispersion branches (A5) using the weak
coupling parameter ε. First, we expand around a purely elastic
wave, assuming a weak magnetic component

ω̃ ∼ ω̃(0)
n + εω̃(1)

n + ε2ω̃(2)
n ,

Ãn(x̃3) ∼ Ã(0)
n (x̃3) + εÃ(1)

n (x̃3) + ε2Ã(2)
n (x̃3),

m̃n(x̃3) ∼ εm̃(1)
n (x̃3) + ε2m̃(2)

n (x̃3),

(A6)

for 0 < ε � 1. The zeroth-order mode Ã(0)
n corresponds to

the profile in (A4a), while ω̃(0)
n corresponds to the uncoupled

elastic dispersion frequency branch of order n (A5a). Then, at
O(ε), Eq. (A3) becomes

ω̃(0)
n

[(
ω̃(0)

n

)2 − k̃2
]
Ã(1)

n + ω̃(0)
n G̃2

(
Ã(1)

n

)′′ = F1, (A7a)[(
ω̃(0)

n

)2 − (H̃ + k̃2
∗ )2

]
m̃(1)

n + 2(H̃ + k̃2)
(
m̃(1)

n

)′′ − (
m̃(1)

n

)′′′′ = G1, (A7b)
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with the right-hand sides

F1 = −ω̃(1)
n Ã(0)

n

[
3
(
ω̃(0)

n

)2 − k̃2 − G̃2ξ̃ 2
n

]
,

G1 = k̃ω̃(0)
n Ã(0)

n .
(A8)

The orthogonality (solvability) condition for Ã(1)
n (x̃3) in (A7a)

(see, e.g., Ref. [85]) implies that ω̃(1)
n = 0. Thus (A7a) is a

homogeneous equation, and the particular solution is Ã(1)
n ≡ 0.

We can solve (A7b) for m̃(1)
n (x̃3) as

m̃(1)
n (x̃3) = b̃nãel,n cos(ξ̃nx̃3),

b̃n = ω̃(0)
n k̃(

ω̃
(0)
n

)2 − (H̃ + k̃2)2 − 2ξ̃ 2
n (H̃ + k̃2) − ξ̃ 4

n

.

(A9)

Importantly, the solution (A9) only holds when the asymptotic
expansion (A6) remains well-ordered, i.e., b̃n is at most O(1).
Consequently, when the denominator of b̃n is small(

ω̃(0)
n

)2 − (H̃ + k̃)2 − 2ξ̃ 2
n (H̃ + k̃2) − ξ̃ 4

n � O(ε), (A10)

we obtain the precise statement of the resonance condition
(42). In this case, we require an alternative asymptotic ex-
pansion. Equation (A10) is satisfied when the elastic curve
of order n (A5a) intersects a magnetic dispersion curve of the
same order j = n (A5b). Thus the asymptotic expansion (A6)
is only valid far from these resonant interactions. It is not valid
when magnetic and elastic dispersion curves are in resonance,
a case which we describe below.

In order to determine the higher order frequency correc-
tion ω̃(2)

n , we continue on to O(ε2), which yields the same
equations as in (A7) but with Ã(1)

n → Ã(2)
n , m̃(1)

n → m̃(2)
n and

the alternative right-hand sides

F2 = k̃
[
(H̃ + k̃2)m̃(1)

j − (
m̃(1)

j

)′′] − 2Ã(0)
n

(
ω̃(0)

n

)2
ω̃(2)

n ,

G2 = k̃ω̃(0)
n Ã(1)

n .
(A11)

Since the elastic correction Ã(1)
n (x̃3) ≡ 0, we obtain m̃(2)

j (x̃3) =
0. After inserting the solution for m̃(1)

j (x̃3) in (A9) into (A11)
and requiring solvability for Ã(2)

n , we obtain the second-order
dispersion curve correction

ω̃(2)
n = Bn

2
(
ω̃

(0)
n

)2

(
H̃ + k̃2 + ξ̃ 2

n

)
. (A12)

Thus a quasielastic dispersion curve, away from resonant in-
tersections with a magnetic dispersion curve, has the O(ε)
magnetic component (A9), and the O(ε2) shift in frequency
(A12).

We can similarly expand around a quasimagnetic disper-
sion curve as

ω̃ ∼ ω̃
(0)
j + εω̃

(1)
j + ε2ω̃

(2)
j ,

Ã j (x̃3) ∼ εÃ(1)
j (x̃3) + ε2Ã(2)

j (x̃3),

m̃ j (x̃3) ∼ m̃(0)
j (x̃3) + εm̃(1)

j (x̃3) + ε2m̃(2)
j (x̃3).

(A13)

Here, the zeroth-order solution m̃(0)
j (x̃3) corresponds to (A4b),

while ω̃
(0)
j corresponds to (A5b). A similar calculation to the

GHz
GHz

GHz
GHz

(a) (b)

FIG. 11. (Top) Two figures comparing the dimensional asymp-
totic prediction (dash-dotted) with results from the SCM method
(solid). The uncoupled dispersion (solid) is also plotted to show that
the coupled dispersion curves differ slightly. (Bottom) Comparison
of the asymptotic predictions (dash-dotted) (A9) and (A14) with
normalized, nondimensionalized wave profiles from SCM (solid) for
two dispersion curves. (a) A quasielastic wave with n = 0 and an
O(ε) magnetic component. (b) A quasimagnetic wave with j = 1
and an O(ε) elastic component.

quasielastic case yields ω̃
(1)
j = 0, m̃(1)

j = 0, and

Ã(1)
j (x̃3) = Cjm̃ j cos(ξ̃ j x̃3),

Cj = k̃

ω̃
(0)
j

[(
ω̃

(0)
j

)2 − k̃2 − G̃2ξ̃ 2
j

] ,
(A14)

as long as the resonance condition(
ω̃

(0)
j

)2 − k̃2 − G̃2ξ̃ 2
j � O(ε) (A15)

is not met. Note that (A15) is identical to (A10) when n = j. A
similar solvability condition at O(ε2) yields the higher order
correction in the quasimagnetic frequency,

ω̃
(2)
j = k̃Cj

2
. (A16)

We compare the approximate dispersion curve predictions
(A12) and (A16) with results from the SCM code for the
system (A1) in the top panel of Fig. 11. Due to the higher order
correction calculated above, the actual intersection of the dis-
persion curves is not equal to the intersection of the dispersion
curves in the absence of coupling. The asymptotic prediction
of this new intersection also shows excellent agreement with
the SCM calculations.

We also compare the wave profiles from SCM with the
asymptotic predictions (A9) and (A14) in the bottom panel of
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Fig. 11. The asymptotic predictions show excellent agreement
with numerical calculations.

3. Resonant interactions

Next, we examine the interactions near intersections of
elastic and magnetic dispersion curves, i.e., when the con-
ditions (A10) and (A15) are met. We denote uncoupled
dispersion intersection points as (k̃∗, ω̃∗), which are given
by ω̃∗ = ω̃ j (k̃∗) = ω̃n(k̃∗) for some j, n in (A5), with k̃∗ the
corresponding wave number. From (A5a) and (A5b), we have

k̃2
∗ = −H̃ + 1

2 − ξ̃ 2
j + 1

2

√
1 + 4

(
G̃2ξ̃ 2

n − ξ̃ 2
j − H̃

)
,

(A17a)

ω̃2
∗ = k̃2

∗ + G̃2ξ̃ 2
n = (

H̃ + k̃2
∗ + ξ̃ 2

j

)2
, (A17b)

where we have made a sign choice for k̃2
∗ in order to have

real solutions for k̃∗. We expand around the intersection point

(k̃∗, ω̃∗) for 0 < ε � 1 as

k̃ ∼ k̃∗ + ε�, Ãn(x̃3) ∼ Ã(0)
n (x̃3) + εÃ(1)

n (x̃3),

ω̃ ∼ ω̃∗ + ε f (�), m̃ j (x̃3) ∼ m̃(0)
j (x̃3) + εm̃(1)

j (x̃3).
(A18)

One key difference from the previous expansions (A6) and
(A13) is that an expansion for the wave number k̃ is also
included, i.e., we are only considering the dispersion in a
neighborhood of the intersection point (k̃∗, ω̃∗). The variables
� and f (�) represent small changes in the wave number and
frequency, respectively. The zeroth-order solutions m̃(0)

j and
Ã(0)

n again correspond to the solutions found above in (A4) but
they are now both included in the leading order asymptotic
expansion (A18).

At O(ε), upon simplification using the relationships be-
tween ω̃∗ and k̃∗ given in (A17) as well as (A4), the system
(A3) becomes

(ω̃2
∗ − k̃2

∗ )Ã(1)
n + ω̃∗G̃2

(
Ã(1)

n

)′′ = k̃∗m̃(0)
j + Ã(0)

n [2k̃∗� − 2ω̃∗ f ], (A19a)

(ω̃2
∗ − (H̃ + k̃2

∗ )2)m̃(1)
j + 2(H̃ + k̃2

∗ )
(
m̃(1)

j

)′′ − (
m̃(1)

j

)′′′′ = (4k̃∗ω̃∗� − 2ω̃∗ f )m̃(0)
j + ω̃∗k̃∗Ã(0)

n . (A19b)

In order for the above system (A19) to be solvable, we require that the right hand side be orthogonal to [cos(ξ̃nx̃3), cos(ξ̃ j x̃3)]T ,
i.e., the following inner products hold∫ d̃

0
[k̃∗ãm, j cos(ξ̃ j x̃3) + (2k̃∗� − 2ω̃∗ f )ãel,n cos(ξ̃nx̃3)] cos(ξ̃nx̃3) dx̃3 = 0, (A20a)

∫ d̃

0
[(4k̃∗ω̃∗� − 2ω̃∗ f )ãm, j cos(ξ̃ j x̃3) + ω̃∗k̃∗ãel,n cos(ξ̃nx̃3)] cos(ξ̃ j x̃3) dx̃3 = 0. (A20b)

The intersections of resonant modes occur where n = j in
(A20). Then the above integrals imply[

k̃∗ 2(k̃∗� − ω̃∗ f )
4k̃∗� − 2 f k̃∗

][
ãm,n

ãel,n

]
= 0. (A21)

In order to have a nonzero solution for the coefficients ãm,n

and ãel,n, the matrix in (A21) must be singular. Thus the de-
terminant must equal zero, yielding two relationships between
the change in wave number � and frequency f ,

f±(�) = k̃∗
2ω̃∗

(� + 2�ω̃∗ ±
√

�2(2ω̃∗ − 1)2 + ω̃∗). (A22)

The two branches of f± in (A22) correspond to the two
branches of the anticrossing.

The corresponding null space of the singular matrix yields
the relative sizes of ãm,n and ãel,n

(� − 2�ω̃∗ ∓
√

�2(2ω̃∗ − 1)2 + ω̃∗)ãel,n = ãm,n. (A23)

Analyzing (A23) reveals that for f+, as � → −∞, the
magnitude of the elastic displacement ãel,n grows large in
comparison to magnetism ãm,n. As � → +∞, ãm,n grows
large in comparison to ãel,n. These behaviors are reversed for
f−. This implies that the top anticrossing curve transitions
from quasielastic to quasimagnetic, while the bottom curve
transitions from quasimagnetic to quasielastic. A plot compar-
ing the predicted quasielastic and quasimagnetic dispersion

curves with the SCM applied to Eqs. (A1) is provided in
Fig. 3.

Since f (0) = ± k̃∗
2
√

ω̃∗
, the anticrossing frequency gap has

width εk̃∗/
√

ω̃∗. The dimensional frequency gap is Eq. (44).
This implies that for anticrossings in a layered material, the
gap width depends not only on the coupling strength but also
on which intersection is considered in (A17). For anticross-
ings at lower wave numbers and higher frequencies, the gap
width is predicted to be smaller.

For nonresonant interactions, i.e., when n �= j, then the
integral of cos(ξ̃nx̃3) cos(ξ̃ j x̃3) in (A20) is zero. What remains
is the following system of equations

k̃∗� − ω̃∗ f = 0, 4k̃∗� − 2 f = 0. (A24)

The system of equations (A24) is solved either by � = f = 0
or ω̃∗ = 1/2. The second of these solutions is not generic. The
first solution implies that higher order effects are necessary, as
there is no interaction at O(ε). This is consistent with the ear-
lier finding that, away from anticrossings, i.e., for nonresonant
interactions, magnetoelastic coupling only has a O(ε2) effect
on the dispersion curves.

To summarize, in this Appendix, we showed that finite
thickness effects lead to an infinite number of dispersion
curves in a material. The many intersections between mag-
netic and elastic curves can be classified as resonant or
nonresonant, depending on whether the quasielastic and
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FIG. 12. Convergence of frequency values for k = 0.3 rad/nm
on a logarithmic scale. The material studied is 30 nm of YIG on
50 nm of GGG. Each data point shows the relative error with the fre-
quency value calculated for N = 20. Due to calculations performed
in quadruple precision, convergence is to 10−30, after which rounding
errors dominate.

quasimagnetic waves share the same order. For exchange-
dominated waves, only resonant interactions yield anticross-
ings. Nonresonant interactions only display simple crossings,
which nevertheless experience an O(ε2) shift from their un-
coupled intersections.

APPENDIX B: VALIDATION OF SCM

In order to validate the SCM approach, we examine
the convergence of eigenvalues (i.e., frequencies) as the
discretization N is increased. In Fig. 12, we show the
convergence of three frequency values for k = 0.3 rad/nm
corresponding to three types of waves for the YIG-GGG dou-
ble layer. The three frequency values were calculated for each
value of N for 6 < N < 20, and then the relative error with
the frequency calculated at N = 20 is displayed on a log scale.
Even for higher frequencies, the convergence is rapid and the
errors are small.

As another validation step, we compare SCM results to
GMM results from a published solver, namely the ELAS-
TICMATRIX MATLAB toolbox [27]. ELASTICMATRIX computes
dispersion curves in a layered, purely elastic material utiliz-
ing a GMM approach. Ignoring the magnetic coupling, we
calculate elastic dispersion curves for the Ni-Si3N4 double
layer using our SCM code by zeroing the coupling coefficient
B2 = 0 and compare with the toolbox results.

FIG. 13. Comparison between SCM (dashed) and GMM (solid)
methods in the absence of magnetism for 50 nm of Ni layered on
100 nm of Si3N4 with N = 24. GMM incorrectly identifies the Si3N4

longitudinal speed of sound cL as a dispersion curve, and other GMM
dispersion curves remain trapped in this incorrect minimum.

The results of this comparison for N = 24 are presented in
Fig. 13. For most all of the dispersion curves, excellent agree-
ment between the SCM and GMM approaches are obtained.
It is important to explain the discrepancies. First, the GMM
approach incorrectly identifies the silicon nitride longitudinal
speed of sound as a dispersion curve (dashed green). This
has been previously identified as a shortcoming of GMM
calculations [25]. Second, some curves are only found by
the SCM approach. We hypothesize that this occurs when
the GMM curve-tracing algorithm ends up trapped by the
(incorrect) speed of sound dispersion curves. Missed curves
have also been previously reported as a shortcoming of the
GMM method [25].

We stress that, running on the same machine, the SCM
code to generate Fig. 13 had a run time of less than ten min-
utes. In contrast, the ELASTICMATRIX method required over ten
hours to compute nearly identical dispersion curves.

A third validation for SCM is its close agreement with the
asymptotic analysis shown in Sec. IV B. Since the asymptotic
calculation included an analytical calculation of the uncou-
pled magnetic and elastic dispersion curves in a simplified
layered material, the agreement in the vicinity of the anticross-
ing in Fig. 3 validates that the code accurately recovers these
curves. Combined with the excellent agreement for nonreso-
nant crossings in Fig. 11, we have ample evidence that the
SCM reliably incorporates coupling effects.
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