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Temperature dependence of magnetic anisotropy and magnetoelasticity
from classical spin-lattice calculations
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We present a classical molecular-spin dynamics (MSD) methodology that enables accurate computations
of the temperature dependence of the magnetocrystalline anisotropy as well as magnetoelastic properties of
magnetic materials. The nonmagnetic interactions are accounted for by a spectral neighbor analysis potential
(SNAP) machine-learned interatomic potential, whereas the magnetoelastic contributions are accounted for using
a combination of an extended Heisenberg Hamiltonian and a Néel pair interaction model, representing both the
exchange interaction and spin-orbit-coupling effects, respectively. All magnetoelastic potential components are
parameterized using a combination of first-principles and experimental data. Our framework is applied to the α

phase of iron. Initial testing of our MSD model is done using a 0 K parametrization of the Néel interaction model.
After this, we examine how individual Néel parameters impact the B1 and B2 magnetostrictive coefficients using
a moment-independent δ sensitivity analysis. The results from this study are then used to initialize a genetic
algorithm optimization which explores the Néel parameter phase space and tries to minimize the error in the
B1 and B2 magnetostrictive coefficients in the range of 0–1200 K. Our results show that while both the 0 K
and genetic algorithm optimized parametrization provide good experimental agreement for B1 and B2, only the
genetic algorithm optimized results can capture the second peak in the B1 magnetostrictive coefficient which
occurs near approximately 800 K.
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I. INTRODUCTION

Building accurate magnetoelastic material models requires
a two-way coupling between lattice deformations and the
orientation of the atomic magnetic moment vector [1], for
example, a change of sample shape under a magnetic field
[2,3] or a magnetization reorientation following an applied
strain [4]. Applications leveraging magnetoelastic and mag-
netostrictive effects are very diverse, from microactuators and
sonar transducers to smart components [2,5,6] and spintronics
[7–10]. Recent studies successfully investigated the possi-
bility of coupling piezoelectric thin layers to single domain
magnetoelastic elements to efficiently shift the magnetization
orientation [11]. Such designs could lead to magnetoelectric
memory systems with very low energy consumption [12].
The development of scalable numerical tools that enable the
construction of accurate material models for such applications
at the atomic scale is thus highly desirable.

Coupling lattice deformations and magnetic moment orien-
tations in frameworks such as classical spin-lattice dynamics
[13] is also of theoretical interest. It allows one to represent
effects arising from orbital magnetism and to perform a direct
coupling between lattice and classical spins [14]. In their
recent work, Ebert et al. illustrated how spin-lattice exchange
coupling tensors can be constructed from first-principles cal-
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culations and highlighted their potential use for coupled
molecular-spin dynamics (MSD) simulations [15,16]. Such
approaches are an improvement over the extended Heisenberg
Hamiltonians or classical definitions of magnetic anisotropies.
Alternate improvements over the extended Heisenberg Hamil-
tonian have included the addition of biquadratic exchange
interactions, which have shown to be relevant for three-
dimensional (3D) transition ferromagnets [17,18]. Using an
inelastic neutron scattering technique, Strässle et al. illustrated
that for CsMn0.28Mg0.72Br3, the biquadratic exchange inter-
actions arise from the mechanism of exchange striction [19].
More recently, Zivieri proved that for 1D and 2D ferromag-
netic systems, the biquadratic exchange coupling leads to the
absence of long-range order at finite temperatures [20].

Within the framework of the classical spin-lattice method-
ology, Perera et al. [21] and Strungaru et al. [22] also recently
discussed the importance of angular momentum transfer be-
tween lattice and magnetic energy reservoirs. Following the
work of Beaujouan et al. [14], they displayed that empirical
models, such as the Néel interaction, can represent those
effects. More recently, Nieves et al. showed that the Néel
interaction can be parametrized to represent zero-temperature
magnetocrystalline anisotropy and anisotropic magnetostric-
tion in cubic crystals [23]. Recent first-principles studies
leveraged density functional theory (DFT) accounting for
the spin-orbit coupling to compute such quantities [24,25].
For spin dynamics (frozen lattice), Asselin et al. showed
that the constrained Monte Carlo method can accurately and
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efficiently extract the temperature dependence of magnetic
anisotropy [26]. However, to the knowledge of the authors,
there is no classical atomistic methodology (incorporating
both spin and lattice fluctuations) capable of computing
the temperature dependence of the magnetoelastic and mag-
netostrictive coefficients, as well as the magnetocrystalline
anisotropy coefficients.

When a magnetic cubic crystal is strained, its energy can
be decomposed into two components. The first one is a purely
elastic (magnetization-independent) contribution,

Eel = 1
2 c11

(
ε2

xx + ε2
yy + ε2

zz

) + 1
2 c44

(
ε2

xy + ε2
yz + ε2

zx

)
+ c12(εxxεyy + εyyεzz + εxxεzz ), (1)

with εi j the components of the strain tensor and ci j the
elastic constants, and the second one is a magnetoelastic
contribution,

Eme = B0(εxx + εyy + εzz ) + B1
(
α2

x εxx + α2
y εyy + α2

z εzz
)

+ B2(αxαyεxy + αyαzεyz + αxαzεxz ), (2)

which couples the strain tensor components with the the
magnetization orientations αi, given by αx = sin(θ ) cos(φ),
αy = sin(θ ) sin(φ), αz = cos(θ ), where φ lays in the x − y
plane and is measured with respect to the x axis. B0 is related
to the volume magnetoelasticity [27] and does not depends on
the magnetization direction.

In this study, we focus on the five remaining coeffi-
cients (c11, c12, c44, B1, and B2) and the magnetocrystalline
anisotropy. While c11, c12, c44 are largely determined by the
interatomic spectral neighbor analysis potential (SNAP) po-
tential, B1, B2, and the magnetocrystalline anisotropy are set
by the Néel interaction coefficients. Initially, we parametrize
the Néel interaction coefficients to reproduce the zero-
temperature magnetocrystalline anisotropy, which is done
using the method described in Ref. [23]. The corresponding
magnetocrystalline energy surfaces and associated changes
with strain at 0 K are examined. Using the zero-temperature
Néel parametrization, we then gauge how the magnetoelas-
tic response changes up to 1200 K. After this, we deploy
a global sensitivity analysis in order to gauge how different
Néel interaction parameters impact the expected values of B1

and B2 at different temperatures. The results from this study
are used to initialize a genetic algorithm which attempts to
minimize the errors in B1 and B2 in the range of 0–1200 K
(α phase of iron). Our findings show that within a single
framework that leverages classical spin-lattice dynamics and
an interatomic potential accounting for magnetoelastic effects,
the temperature dependence of B1 and B2 can be reproduced
relatively well. Using both elastic coefficients, we then also
compute the temperature dependence of the two magnetostric-
tion coefficients (λ100 and λ111). In the first section, we present
the methodology used in this work and describe the mag-
netoelastic interatomic potential generated by combining a
machine-learned SNAP potential with a spin Hamiltonian.
Additional details regarding magnetoelastic calculations and
sensitivity analysis are also provided within the Supplemental
Material [28].

II. METHODS

All calculations are performed leveraging the SPIN package
of LAMMPS [29,30] and following the classical spin-lattice
dynamics approach, as described in Ma et al. [13]. The in-
teractions between the atoms and the spins are accounted for
through the following spin-lattice Hamiltonian:

Hsl (r, p, s) =
N∑

i=1

|pi|2
2mi

+
N∑

i, j=1

VSNAP(ri j )

+ Hex(r, s) + HNéel(r, s), (3)

where ri, pi, si, and mi stand for the position, momentum,
normalized magnetic moment, and mass for each atom i in
the system, respectively. The first term in the right-hand side
of Eq. (3) is the kinetic energy of the atoms. The second one
is a machine-learned SNAP interatomic potential representing
the purely mechanical interactions in the system [31], whereas
the magnetoelastic interactions are accounted for through the
combination of the exchange interaction Hex(r, s) and a Néel
pair model HNéel (r, s). The exchange interaction Hex(r, s) is
described by an extended Heisenberg Hamiltonian parame-
terized from first-principles spin-spiral calculations [32–34].
The Néel pair model used in this work follows the approach
described in Nieves et al. [23]. Additional information for
these two pair styles is provided in Appendix A.

The SNAP potential was trained on a database of
first-principles configurations (generated leveraging density
functional theory as implemented in the VASP package [35]).
The first-principles training set is described in the Methods
section of Nikolov et al. [34]. This dataset consists of spin-
polarized noncollinear VASP calculations for bcc, hcp, and
liquid iron. These calculations were performed in the range
of <20 GPa and <2000 K. To parametrize the extended
Heisenberg Hamiltonian (exchange interactions), we rely on
spin-spiral data gathered at different degrees of lattice com-
pression [34]. The exchange interaction fitting is done after
the Néel contributions to the forces/energies/stresses have
been subtracted out from the DFT spin-spiral training data.
After this, the Néel and spin-exchange contributions to the
forces/energies/stresses are subtracted out from the remain-
ing DFT training data, leaving only the nonmagnetic potential
energy surface. This nonmagnetic potential energy surface is
then fitted using a SNAP machine-learned interatomic poten-
tial. The training/fitting was performed leveraging the genetic
algorithm of the DAKOTA optimization package [36], and re-
sults were converged until the mean-absolute error dropped
below 100 meV/atom. To obtain good agreement with the
c11, c12, and c44 elastic constants at temperatures above 0 K,
finite-temperature objective functions were integrated into the
DAKOTA training procedure. Additional details regarding the
SNAP/DAKOTA implementation are provided in Appendix B.

For all MSD calculations, we use 16 000 atom cells (20 ×
20 × 20 bcc cells). Before carrying out any measurements,
we initially equilibrate each cell for 50 ps (0.1 fs time step)
using the pressure-controlled and magnetization-controlled
conditions (PCMCC) scheme, which allows us to relax the
pressure and control the magnetization of the system, as
detailed in Nikolov et al. [34]. To control the magnetization,
we follow the approach developed by Evans et al. [37], where
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we introduce a rescaling between spin and lattice temper-
atures. The functional form of this rescaling is detailed in
Eqs. (4) and (5) below,

Ts(Tl ) = fsw(Tl − 471.6) + 576 fsw(Tl/1045)2.73, (4)

fsw = 1
2 {1 + tanh [10(Tl − 1045)]}. (5)

Here, Ts and Tl are the spin and lattice thermostat temper-
atures and fsw is a switching function which ensures that
the spin temperature changes smoothly at the Curie temper-
ature. Additional details regarding this temperature rescaling
implementation into our molecular-spin dynamics framework
are included in Nikolov et al. [34]. This is a fundamental
step, as former studies showed that an accurate control of
the magnetization disorder is necessary in order to capture
the experimentally observed changes in the magnetization
and thereby recover the correct temperature-dependent elastic
properties in spin-lattice calculations [34,37]. Assuming cubic
symmetry, the relation between the elastic coefficients and
stress/strain is illustrated in Eq. (6) [38],

σi =
∑

j

ci jε j . (6)

By applying the strain profile shown in Eq. (7), where η =
0.02L and L is the simulation box length [L = 20V (T )1/3],
the elastic coefficients c11(T ), c12(T ), and c44(T ) can be de-
termined as shown in Eqs. (8)–(10),

ε(η) =
⎡
⎣ η η/2 0.0

η/2 0.0 0.0
0.0 0.0 0.0

⎤
⎦, (7)

dσxx(T )

dη
= c11(T ), (8)

dσyy(T )

dη
= c12(T ), (9)

dσxy(T )

dη
= c44(T ). (10)

After deforming the simulation cell, the system is relaxed
for 3 ps. Once this is done, the stresses (σxx, σyy, σxy) are
averaged for 2 ps using a sampling frequency of 0.001 ps.
This procedure is repeated using 10 different random seeds in
the lattice/spin thermostats. The reported values in Figs. 3(b)
and 4(b) reflect these sample averages.

To extract the magnetoelastic constants (B1 and B2), each
of the 16 000 atom cells is first equilibrated at the appropri-
ate magnetization. Once this is done, we extract 10 atomic
configurations from each cell. Freezing the atoms in each
of these configurations, we then rotate the spins 90◦ in the
x − z plane, in 5◦ increments, without disturbing the relative
orientation between neighboring spins. This allows us to map
the angular dependence of the magnetocrystalline anisotropy
energy and to compute its maximum. Figure SF.1 in the
Supplemental Material shows how the magnetic energy varies
with the rotation angle of the spins [28]. We note that the
frozen configurations are equilibrated to the correct temper-
ature and magnetization at approximately 0 GPa, thereby
retaining the correct atomic and magnetic disorder.

As illustrated in Table I, the interatomic SNAP potential re-
produces the c11, c12, and c44 elastic coefficients and the DFT

TABLE I. Zero-Kelvin properties obtained with our magnetoe-
lastic machine-learned interatomic potential following the DAKOTA

optimization [34] with ground truth values taken from DFT calcula-
tions or experiments [39,40].

SNAP Expt/DFT Units Error %

V0 22.67 22.67 Å3 0.03%
c11 254.61 239.55 GPa 6.29%
c12 135.65 138.1 GPa 2.68%
c44 106.14 120.75 GPa 13.76%
K1 53.0 55.0 MJ/m3 3.63%
B1 −3.73 −3.74 MJ/m3 0.17%
B2 10.18 11.2 MJ/m3 9.11%

equilibrium volume well. In addition, the zero-temperature
parametrization of the Néel potential successfully recovers the
experimentally observed K1, B1, and B2 values.

III. RESULTS AND DISCUSSION

Figure 1 illustrates the magnetocrystalline anisotropy
energy surfaces which the zero-temperature Néel parametriza-
tion produces. In Fig. 1(a), the changes in the magnetocrys-
talline anisotropy energy surfaces with uniaxial strain are
illustrated, where positive values of strain denote compres-
sion and negative values denote tension. Meanwhile, the
images in Fig. 1(b) illustrate the changes in the magne-
tocrystalline anisotropy energy surface with shear strain. The
x values underneath each graphic denote the maximum mag-
netocrystalline anisotropy energy (in units of µeV) for that
surface. In all cases, it can be seen that deformations increase
the magnetocrystalline anisotropy energy. We note that the
zero-temperature parametrization produces the expected cubic
anisotropy at 0 K. For uniaxial strains, compression causes
the magnetocrystalline anisotropy energy surface to switch to
an easy-axis configuration, whereas tension causes the mag-
netocrystalline anisotropy energy surface to transition to an
easy-plane configuration. In shear, interestingly, the energy
peaks near the obtuse angles of the deformed cell become
attenuated, whereas the energy peaks at the acute angles of
the cell are amplified. For large shear strains, ultimately,
the magnetocrystalline anisotropy energy surfaces switches to
an easy-plane configuration which is aligned along the cell
diagonal. Figure 1 highlights the unique magnetocrystalline
coupling that the Néel interactions enable. As will be illus-
trated in the paragraphs that follow, measurements for B1

and B2 are performed by tracking how the magnetocrystalline
anisotropy energy surface changes with strain locally (at 45◦
for B1 and 0◦ for B2 in the x − z plane).

Figure 2 displays our first set of obtained measurements.
The PCMCC approach described in Nikolov et al. [34]
enables a precise control of the pressure and magnetiza-
tion at a given temperature. This step is crucial, as former
studies showed that thermoelastic properties cannot be accu-
rately computed without a good control of the magnetization,
which needs to closely follow the experimental values [34].
Figure 2(a) shows the obtained magnetization versus temper-
ature trend, where excellent agreement with the experimental
data is observed.
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FIG. 1. (a) Anisotropy energy surfaces obtained by applying volume-conserving tetragonal strains to the crystal cell. Negative strain
denotes tension and positive strain denotes compression along the z direction. Under tension, the magnetic anisotropy transitions to a lower-
order easy-plane uniaxial configuration. Similarly, for compression, the anisotropy changes to a lower-order easy-axis uniaxial equilibrium
state. (b) At 0 K, shearing the sample attenuates the anisotropy peaks near the obtuse angles of the cell. With increasing shear strain, the
peaks near the obtuse angles are eliminated and the magnetocrystalline anisotropy energy surfaces switch to an easy-plane configuration. This
easy-plane configuration is aligned along the cell diagonal that connects the two acute angle corners of the cell.

The MSD simulations account for thermal expansion, thus
allowing the cell volume to expand/contract with temperature,
as displayed by Fig. 2(b). Our model predicts an excellent
thermal expansion coefficient up to approximately 750 K.
When the system’s temperature approaches the Curie tran-
sition (here between 750 and 1045 K), our model shows a
departure from experimental volume-expansion trends. This
seems to indicate that the magnetic component of the pressure,
generated by the magnetic disorder of the system, is amplified
in the current MSD model.

Controlling both the magnetization and pressure of the sys-
tem allows us to compute the temperature dependence for the
first magnetocrystalline anisotropy coefficient [23]. Its value
is obtained by measuring the changes in energy when the spins
are rotated in the x − z plane. Figure 2(c) displays the obtained
averaged values. Excellent agreement is recovered with exper-
imental measurements and with the empirical Callen law [44].

To evaluate the magnetoelastic coefficient B1, as well as
the corresponding magnetostriction coefficient λ100, we apply
a series of volume-conserving tetragonal deformations (εxx =
εyy = −εzz/2), following the approach described in Marchant
et al. [24]. We vary εzz between approximately −1% and
1% of the simulation box. For each deformation, the spins
are rotated 90◦ (in 5◦ increments) in the x − z plane and the
associated energy fluctuations are measured. The magnetic
torque, corresponding to −dEme/dθ , can then be computed

at an angle of 45◦ (here corresponding to a [101] orientation
of the magnetization). This process allows us to measure the
variation of the torque at 45◦ as a function of lattice strain. Ex-
amples of torque versus strain plots are provided in Fig. SF.2
of the Supplemental Material [28]. As shown in Fig. SF.2,
for a given temperature, the corresponding slope (−dEme/dθ

vs strain) is constant, and its value provides us with the first
magnetoelastic coefficient B1.

Figure 3(a) displays the temperature dependence of B1

as obtained by the MSD model using the zero-temperature
Néel parametrization. Finite-temperature measurements of
the elastic constants are carried out following the approach
detailed in Sec. II. Figure 3(b) shows the obtained values
for (c11 − c12)/2. The first magnetostriction coefficient is
defined as

λ100 = −2

3

B1

c11 − c12
(11)

and can thus be evaluated from the former results. Figure 3(c)
displays the obtained λ100 temperature dependence results.

As can be observed in Figs. 3(a) and 3(c), using the
zero-temperature Néel parametrization, we recover good
agreement with experiments up to 500 K. However, the
zero-temperature parametrization is not able to capture the
well-known anomaly of B1 and λ100, i.e., the second max-
imum occurring around 800 K [42]. In their recent work,
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(a)

(b)

(c)

FIG. 2. (a) Average magnetization norm as a function of tem-
perature in the pressure- and magnetization-controlled conditions
(PCMCC) as defined in Nikolov et al. [34]. (b) Per-atom volume as a
function of temperature. (c) Measurement of the magnetic anisotropy
constant. Experimental data are extracted from Refs. [41–43].

Marchant et al. showed that ab initio calculations within the
disordered local moment picture for bcc Fe can correctly
reproduce the second peak at high temperature of B1 (T �
800 K) for some particular values of the lattice parameter [24].
This seems to indicate that part of the physical mechanism
responsible for the second peak is present in the ab initio
formalism, but absent from the 0 K Néel implementation.
Callen and Callen indicated that this second peak might be
related to the existence of an asymmetry in the excitation of
the magnon spectrum, which could be caused by dipolar spin
interactions [42]. Future investigation could consider more
sophisticated anisotropic exchange Hamiltonians [45,46], as
well as overlaying long-range dipole-dipole interactions to our
model.

We also evaluate the ability of our model to compute
the second magnetoelastic coefficient B2, as well as the cor-
responding magnetostriction coefficient λ111. To do so, we
develop a simple procedure analogous to the one presented by
Marchant et al. [24], but applied to shear deformation. For an
applied strain in the x − z plane, the magnetoelastic energy as
a function of magnetization orientation and shear deformation

(a)

(b)

(c)

FIG. 3. (a) Temperature dependence of the first magnetoelas-
tic coefficient B1. (b) The evolution of the first shear constant,
(c11 − c12)/2. (c) Changes in magnetostriction coefficient λ100 with
temperature.

can be written as

Eme = B2

2
εxz sin(2θ ). (12)

We vary εxz between −1 to 1% of the simulation box. The
same spin rotations (as described for the B1 calculation above)
are applied, also within the x − z plane. For a given temper-
ature, the second magnetoelastic coefficient can be computed
by evaluating the magnetic torque at a 0◦ angle as a function
of lattice strain, as described by the following equation:

T (θ = 0) = B2εxz. (13)

Figure 4(a) displays our obtained B2 measurements as
a function of temperature. Despite recovering the correct
sign and initial value, the zero-temperature parametriza-
tion does not capture the curvature of the experimental B2

trend [43], which follows the power law B2(T )/B2(0) =
[M(T )/M(0)]14. Following the approach detailed in Sec. II,
the shear elastic constant c44 is evaluated and displayed
in Fig. 4(b). The second magnetostriction coefficient is
defined as

λ111 = −1

3

B2

c44
. (14)

094426-5



S. NIKOLOV et al. PHYSICAL REVIEW B 107, 094426 (2023)

(a)

(b)

(c)

FIG. 4. (a) Temperature dependence of the second magnetoelas-
tic coefficient B2. (b) The evolution of the second shear constant, c44.
(c) Changes in magnetostriction coefficient λ111 with temperature.

The corresponding results for λ111 are displayed in Fig. 4(c).
The trend of λ111 follows B2: its sign as well as initial and final
values are in agreement with experiments, but the approach
to zero is delayed until approximately 600 K, compared to
approximately 200 K in experiments.

A detailed analysis of the 0 K parametrization of the Néel
potential (and underlying assumptions) is shown in the work
of Nieves et al. [23]. In order to better understand how the dif-
ferent Néel parameters impact the B1 and B2 magnetoelastic
coefficients at finite temperature, we carry out δ moment-
independent sensitivity analysis using the SALib PYTHON

library [47]. The δ moment-independent sensitivity analysis
examines how different Néel parameters impact the proba-
bility density functions for B1 and B2 coefficients [48–50].
A schematic illustrating the sensitivity analysis calculations
is shown in Fig. SF.4 of the Supplemental Material [28] and
additional details regarding the calculations are also provided
in Appendix C. The sensitivity analysis study conducted here
used approximately 32 000 sample points. The δ coefficients
for both the total sensitivities and first-order sensitivities are
shown in Fig. 5. The plot in Fig. 5(a) shows that the impact
of rcut and lδ on the B1 coefficient increases significantly
at higher temperatures. The parameters rcut and lδ are both

TABLE II. Néel parameters space explored by genetic algorithm
and δ moment-independent sensitivity analysis.

Parameter Lower bound Upper bound

Rc 2.0 3.2
l (ri j )α 1 × 10−4 8 × 10−4

l (ri j )γ 0.1 3.5
l (ri j )δ 0.1 7.0
q(ri j )α 5 × 10−6 8 × 10−5

q(ri j )γ 0.05 3.5
q(ri j )δ 0.1 7.0

distances, where in the 0 K parametrization lδ is the nearest-
neighbor distance.

At finite temperatures, a small increase in the impact of qa,
qb, and qc is also observed. The first-order sensitivities make
up a small portion of the total δ sensitivity, indicating that
higher-order interactions between different Néel parameters
dominate. For the first-order sensitivity of B1 [Fig. 5(c)], rcut

is the only dominant parameter near 0 K. At higher tempera-
tures, the B1 probability distribution becomes more sensitive
to the lγ and lδ parameters.

For the B2 coefficient [Fig. 5(b)], the total δ sensitivity of
the different Néel parameters does not change significantly
with temperature. The parameters rcut and lδ are found to
be dominant throughout the entire 0–1000 K range. The
first-order sensitivity of B2 [Fig. 5(d)] is more sensitive to
temperature. At higher temperatures for both rcut and lδ , a
significant increase in the first-order sensitivity is observed.
For B2, the impact of higher-order interactions between pa-
rameters is also lessened at higher temperatures, as first-order
interactions make up a larger portion of the total sensitivity.
The B1 and B2 first-order sensitivities do not appear to be
impacted strongly by the lα , qα , qγ , qδ parameters. In gen-
eral, once the total δ sensitivity at finite temperatures begins
to vary significantly, we begin reaching the limits of the
0 K parametrization. Thus, from Fig. 6, one would expect
B1 to benefit most from a finite-temperature parametrization,
whereas a reparameterization at higher temperatures may not
yield significant improvements for B2 over the 0–1200 K
range.

We utilize the moment-independent sensitivity analysis
data to initialize a genetic algorithm (using DAKOTA software)
that tries to satisfy objective functions for B1(Tl ), B2(Tl ),
and K1 (0 K), which are calculated based on rotations in
the x − z plane. For the genetic algorithm search, we employ
a population size of 300 candidates. The genetic algorithm
search is carried out over the same parameter space spanned
in the sensitivity analysis, which is shown in Table II. Re-
sults for the genetic algorithm optimized potential after 1000
iterations are shown in Fig. 6, which shows results for both
λ100 and λ111. The results for λ100 match experiments very
closely up to approximately 300 K. At higher temperatures,
we no longer observed the monotonic decrease which was
seen in Fig. 3(c). Hence, we are importantly able to capture
the high-temperature peak of λ100 which occurs near 800 K.
The peak value of λ100 is overestimated by approximately
30% however. The genetic algorithm optimized potential also
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FIG. 5. (a),(b) The total δ (moment-independent) sensitivities for B1 and B2. (c),(d) First-order δ sensitivities for B1 and B2. Error bars are
based on 95% confidence intervals.

(a)

(b)

FIG. 6. (a),(b) Changes in magnetostriction coefficients λ100 and
λ111 with temperature for the 0 K and genetic algorithm (GA) model
parameters shown in Table III.

slightly improves the results for λ111. By comparing to the
data in Fig. 4(c), we can see that λ111 now monotonically
increases towards the Curie temperature, and we no longer
observe a slight decrease in λ100 in the range of 0–500 K.
The curvature of the MSD data, however, still deviates from
experiments, where again λ111 does not begin to significantly
change until approximately 600 K. The value of K1 (0 K)
for the genetic algorithm optimized potential is found to be
44 MJ/m3, which represents a deviation of approximately
20% from the experimental value of 55 MJ/m3.

IV. CONCLUSION

We presented a molecular-spin dynamics framework that
features a two-way coupling between the orientation of the
magnetic moment vector and lattice strain. As shown, this
coupling scheme, represented by the Néel interaction model,
enables us to naturally capture changes in the magnetocrys-
talline energy surfaces with strain (Fig. 1). To gauge our
ability to reproduce experimental λ100 and λ111 coefficients,
we utilized a quantum-accurate SNAP interatomic potential
which was trained to reproduce the c11, c12, and c44 elas-
tic constants within the 0–1200 K range using the PCMCC
framework [34]. Initially, we applied a 0 K parametrization
of the Néel interaction parameters following the procedure
outlined in Nieves et al. [23]. Doing this, we observed that
both λ100 and λ111 are captured very well at 0 K. At finite
temperatures, the λ100 coefficient was captured well up to
∼500 K; however, the second peak in λ100, which occurred
near 800 K, could not be reproduced. The λ111 calculations
agreed with experiments up to ∼250 K.
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Applying a δ moment-independent sensitivity analysis
[48], we examined how the different Néel parameters impact
the probability density functions for the B1 and B2 coeffi-
cients, where we found the total δ sensitivity of B1 to be more
significantly impacted at higher temperatures compared to
B2, which showed negligible sensitivity to temperature. Using
the dataset from the sensitivity analysis, we then initiated a
genetic algorithm search over the Néel interaction parameters
in order to minimize the error in the B1 and B2 coefficients at
higher temperatures. This finite-temperature parametrization
allowed us to reproduce the second peak in the λ100 coeffi-
cient, highlighting that the Néel model can indeed reproduce
some of the high-temperature nonmonotonic magnetoelas-
tic behavior of iron. The genetic algorithm parametrization,
however, only mildly improved the agreement in the λ111

coefficient. The fact that the total δ sensitivity for B2 did not
significantly change at higher temperatures (like B1) perhaps
explains why the results for the genetic algorithm and 0 K
parametrization did not vary as drastically.

While the temperature dependence of magnetostriction for
localized magnetism has been well characterized theoretically
[51], extending those efforts to itinerant magnetic materials
such as bcc Fe is quite challenging. We point out that the
used spin-lattice model in this work is based on the two-ion
Hamiltonian and may be more realistic for localized mag-
netism rather than for itinerant magnetism, where a band
model could be more appropriate. For example, Ohta and
Shimizu [53] found that B2 seems to be more sensitive to
details of band structure than B1 for bcc Fe, which is con-
sistent with the stronger temperature dependence of B2 as
compared with that of B1. This fact might also explain why
the genetic algorithm parametrization reproduced the tem-
perature dependence of B1 better than B2. We do also note
that in the current effort, we assumed that all spins have
a fixed magnetic moment (2.2 Bohr magnetons). In reality,
the magnetic moment of each atom will fluctuate with pres-
sure and temperature. Hence, at each temperature, there will
be an associated distribution of magnetic moments. As the
temperature increases, the magnetic moment distribution will
widen and the behavior of the system will deviate more and
more from the fixed-magnetic moment assumption. Gauging
the impact of longitudinal spin fluctuations and exploring
more sophisticated anisotropy models is something we hope
to examine in our future work. Lastly, we do note that the
theoretical approach described in Nieves et al. [23] is orders
of magnitude faster than the genetic algorithm optimization,
which requires significantly higher computational resources.
Hence, the genetic algorithm optimization is more suited for
high-temperature regimes where the ground-state (0 K) ap-
proach in Ref. [23] may struggle. While the present study
focuses on bcc iron, the methods described here are com-
pletely general (only based on ab initio results), and could be
directly transposed to any material of interest.
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APPENDIX A: MAGNETOELASTIC HAMILTONIAN

The magnetic component of the spin-lattice Hamiltonian
[Eq. (3)] contains two magnetoelastic contributions, the ex-
change interaction and a Néel model.

Former studies discussed the improved accuracy in rep-
resenting magnetic excitation in 3D transition ferromagnets
by adding a biquadratic term to the standard Heisenberg
Hamiltonian [32,54]. Our exchange interaction model follows
those approaches:

Hex = −
N∑

i �= j

J
(
ri j

)
[si · s j − 1]

−
N∑

i �= j

K
(
ri j

)
[(si · s j )

2 − 1], (A1)

where si and s j are classical atomic spins of unit length located
on atoms i and j, J (ri j ) and K (ri j ) (in eV) are magnetic
exchange functions, and ri j is the interatomic distance be-
tween magnetic atoms i and j. The two terms in Eq. (A1)
are offset by subtracting the spin ground state (corresponding
to a purely ferromagnetic situation), as detailed in Ma et al.
[55]. Although this offset of the exchange energy does not
affect the precession dynamics of the spins, it allows one
to offset the corresponding mechanical forces. Without this
additional term, the magnetic contribution to the forces and
the pressure are not zero at the energy ground state. Details
about this exchange model and its parametrization on first-
principles results can be found in the Methods section of
Nikolov et al. [34].

The second magnetoelastic contribution to our model aims
to represent effects arising from the spin-orbit coupling. We
use a biquadratic Néel pair interaction defined as follows:

HNéel = −1

2

N∑
i, j=1,i �= j

l1(ri j )

[
(ei j · si )(ei j · s j ) − si · s j

3

]

+ q1(ri j )

[
(ei j · si )

2 − si · s j

3

][
(ei j · s j )

2 − si · s j

3

]

+ q2(ri j )[(ei j · si )(ei j · s j )
3 + (ei j · s j )(ei j · si )

3],

(A2)

where ei j = ri j/ri j , and l1(ri j ), q1(ri j ), and q2(ri j ) are three
functions defining the magnitude and fluctuations of the
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TABLE III. Exchange and Néel parameters of interaction model.
For the Néel dipole and quadrupole terms we consider two different
sets of parameters, one is derived theoretically at zero-kelvin (0 K)
using a short-range interactive model [23], and the other one is
obtained numerically using a genetic algorithm (GA).

Method Type α (eV) γ δ (Å) Rc (Å)

Exchange [34] J(ri j) 0.2827 −4.747 0.781 5.0
Exchange [34] K(ri j) −0.03619 −2.973 0.5273 5.0
0 K [23] l(ri j) 3.773×10−4 0.7898 2.4511 2.6
0 K [23] q(ri j) 2.997×10−5 1.0496 2.4511 2.6
GA [48] l(ri j) 6.007×10−4 1.0436 1.1967 3.09
GA [48] q(ri j) 4.163×10−5 2.1784 5.8348 3.09

interaction. The dot products between spins and lattice vectors
ei j provide the model with a direct coupling between the
magnetic energy and direction of magnetization. A collinear
spin approximation allows one to express the three functions
in terms of two functions only,

l1(ri j ) = l (ri j ) + 12
35 q(ri j ),

q1(ri j ) = 9
5 q(ri j ),

q2(ri j ) = − 2
5 q(ri j ).

(A3)

This leaves us with four functions of the interatomic dis-
tance ri j : J (ri j ), K (ri j ), l (ri j ), and q(ri j ). A Bethe-Slater form
is chosen for their lattice dependence [56,57],

f (r) = 4α

(
r

δ

)2[
1 − γ

(
r

δ

)2]
e−

(
r
δ

)2

�(Rc − r), (A4)

where α denotes the interaction energy, δ the interaction decay
length, γ a dimensionless curvature parameter, r = ri j the
radial distance between atoms i and j, and �(Rc − r) a Heav-
iside step function for the radial cutoff Rc. This assumes that
the interaction decays rapidly with the interatomic distance,
consistent with former calculations [32,58].

The two functions corresponding to the exchange inter-
action are parametrized to recover first-principles spin-spiral
results. The spin-spiral results were obtained leveraging the
VASP package [35]. The approach and the associated results
are detailed in the Methods section of Nikolov et al. [34]. The
parameters of the two Néel interaction functions, l (ri j ), and
q(ri j ), are obtained using the method described in Ref. [23].
They are parameterized to recover the experimental values
of the magnetocrystalline anisotropy and the magnetoelastic
coefficients. Table III summarizes the obtained parameters
and radius cutoffs of the four functions.

APPENDIX B: SNAP POTENTIAL

This work utilized a quadratic model form of the SNAP
interatomic potential that was specifically parameterized for
the molecular-spin dynamics framework described here. The
SNAP potential utilizes the bispectrum descriptors, developed
by Bartok et al. [59,60], to describe the local environment of
each atom. As previously shown, the quadratic SNAP imple-
mentation can be derived by including an embedding energy
term into the linear SNAP energy expression [61]. Express-
ing this embedding energy as a Taylor expansion allows us

to extend the linear SNAP energy expression to include all
distinct pairwise products of the bispectrum components Bi.
The SNAP energy of a given atom can then be represented
as a function of the K bispectrum components, as shown in
Eq. (B1),

Ei
SNAP(rN) = β · Bi + 1

2 (Bi )
T · α · Bi. (B1)

Here, α is a symmetric K × K matrix consisting of con-
stant coefficients corresponding to products of descriptors.
Meanwhile, β is a vector of constant coefficients for the
linear combination of descriptors. Both α and β are deter-
mined during training, via linear regression without sparsity
or higher moment penalties in the loss function. The bispec-
trum components can be expressed as the Clebsch-Gordan
product of 4D-hyperspherical harmonics, Uj , as shown in
Eq. (B2),

Bj1 j2 j = Uj1 ⊗ j
j1 j2

Uj2 : Uj
∗. (B2)

The forces on each atom can then be expressed as a
weighted sum of the bispectrum derivatives with respect to
r j , as shown in Eq. (B3),

F j
SNAP = −∇ j

N∑
i=1

Ei
SNAP = −β ·

N∑
i=1

∂Bi

∂r j
. (B3)

Using linear regression to pin down both α and β, one can
then determine the corresponding energies/forces/stresses for
each DFT configuration taken as training. Within the ge-
netic algorithm implementation of DAKOTA, we also vary the
energy/force/stress weights for different training groups to
provide extra flexibility to training these models. The en-
ergy and force errors serve as objective functions for each
genetic algorithm evaluation. In addition, we also introduce
extra objective functions during optimization which gauge
the finite-temperature elastic properties as well as bcc/hcp
lattice constants and cohesive energies of different crystal
phases at 0 K. Detailed information regarding how the train-
ing groups and objective functions are set up is included in
Nikolov et al. [34]. The finalized potential is available in
the Fe_Quad directory of Ref. [62], and includes the α, β

coefficients.

APPENDIX C: δ MOMENT-INDEPENDENT
SENSITIVITY ANALYSIS

The δ sensitivity analysis applied here is a global approach
which examines how individual parameters alter the probabil-
ity distribution of a quantity of interest, in this case B1/B2.
This approach is different from variance-based approaches,
such as the Sobol sensitivity analysis, where the sensitivity
of a particular moment (the variance) is examined. In general,
previous works have shown that inputs which variance-based
approaches regard as important do not necessarily make a
large impact on the output uncertainty distribution [49]. Thus
to better understand how individual Néel parameters impact
the entire output distributions of B1/B2, we focus on the δ

moment-independent sensitivity analysis. By understanding
how temperature impacts the sensitivity of B1/B2 to individual
Néel parameters, we can gauge when a reparameterization of
the Néel model is appropriate. In the δ sensitivity analysis,
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the importance of a given input Xl (Néel parameter) can be
described by Eq. (C1) shown below,

δl = 1
2 EXl [s(Xl )]. (C1)

Here, s(Xl ) is given by Eq. (C2), where fY (y) is the density
of the output and fY |Xl is the conditional density of the output
assuming that Xl is fixed constant at Xl = x. The function
s(Xl ) then specifies the area between fY (y) and fY |Xl ,

s(Xl ) =
∫

| fY (y) − fY |Xl (y)|dy. (C2)

If s(Xl ) is known, then EXl [s(Xl )] can be defined as
shown in Eq. (C3) below, where fXl (xl ) is the density of the
input Xl ,

EXl [s(Xl )] =
∫

fXl (xl )

[ ∫
| fY (y) . . . − fY |Xl (y)|dy

]
dxl .

(C3)

Additional details on the δ sensitivity analysis approach are
included in the works of Borgonovo et al. [48–50].
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