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Theory of optical generation and detection of propagating magnons in an antiferromagnet
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We report a theory of optical generation and detection of the propagating spin waves in antiferromagnetic
materials relevant for ultrafast pump-probe experiments. We derive and solve the equations of motion for
antiferromagnetic spins in response to the light-induced effective magnetic field in the linear regime. Different
forms of the excitation and the properties of the generated spin waves are analyzed. We theoretically show the
selective detection of the spin waves by the magneto-optical Kerr effect. The developed formalism is readily
applicable to inform future experiments on antiferromagnetic optomagnonics.
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I. INTRODUCTION

The quest for minimally dissipative processing of informa-
tion has led to the search for an information carrier alternative
to traditional electric currents, suffering from ever growing
energy losses [1–3]. In this way, the waves of the propagating
spin precession, i.e., spin waves, in magnetically ordered ma-
terials have been identified as a new means to carry informa-
tion [4,5]. The spin waves, the quanta of which are also known
as magnons, are magnetic excitations, which do not involve
transport of charge and hence are free from Ohmic losses.
Thus, in recent years huge progress has been made in the area
of magnonics, i.e., the study of spin waves and their practical
applications [6,7]. However, most of the demonstrations and
discoveries in this field are restricted to ferromagnetic materi-
als with relatively low clock rates (∼GHz).

The use of antiferromagnetic materials with antiparallel
spin alignment instead of conventional ferromagnets can po-
tentially push operation frequencies into the THz regime and
attain higher spin wave velocities [8,9]. However, until re-
cently the lack of straightforward mechanisms to generate
the spin excitations with such high frequencies was a main
impediment for magnonics in antiferromagnets. The solu-
tion came with the advent of ultrafast laser technologies.
For instance, femtosecond laser pulses were shown to drive
antiferromagnetic resonances both thermally [10] and non-
thermally [11]. In the former case the laser pulse affects the
temperature-dependent magnetic anisotropy and equilibrium
orientation of spins, thereby exerting a displacive torque on
the spins [12,13]. In the latter case the action of the laser
pulse can be described as producing an impulsive effective
magnetic field (and hence torque), acting on spins [11,14].
The microscopic mechanism for this effective magnetic field
is impulsive stimulated Raman scattering [15,16]. Another
way to directly drive antiferromagnetic spins is to use tran-
sient THz pulses. The THz magnetic field directly couples
to magnetic excitations in the linear regime [17,18], while
the electric field can modify the magnetic anisotropy in a
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nonlinear manner [19]. Moreover, the femtosecond optical
pulses allow for time-resolved magneto-optical detection of
subpicosecond spin dynamics using magneto-optical effects
[20–22]. In addition, coherent antiferromagnetic oscillations
emit THz signals, which can also be detected using THz
time-domain spectroscopy methods [23–29].

Yet, despite all these achievements, the optical genera-
tion of the coherent propagating spin waves has remained
a major challenge. The main problem is the huge mis-
match between the wavelength and minimal spot size of
the electromagnetic radiation at optical (∼100 nm) or THz
(∼100 µm) frequencies and the wavelength of spin waves
in antiferromagnets (∼10 nm). Therefore, in typical experi-
ments only quasiuniform precession modes are excited, while
practical applications call for propagating spin waves. In
principle, propagation can be achieved in the strong cou-
pling regime between the electromagnetic THz pulses and
the antiferromagnetic modes [30]. In such a case the hybrid
magnon-polariton modes are formed, propagating with the
speed of light [31]. However, the wavelength of the magnon
polaritons lies in the ∼10 µm scale that inhibits miniatur-
ization down to nanoscale. At the same time, excitation of
the standing spin waves [32–34] or so-called two-magnon
modes [35] can achieve nanoscale at the expense of zero group
velocities and lack of the desired propagation. As a result,
recent experimental realizations of spin wave transport in
antiferromagnets were limited to either diffusive propagation
of incoherent magnons [36–38] or evanescent modes [39].

In ferromagnets, in which magnetostatic spin waves have
microscale wavelengths, the propagating magnons can be
excited by strongly focused laser pulses [40–42]. If the ex-
citation torque is confined to a region with a size smaller than
the magnon wavelength, this magnon will propagate away
from the excitation spot. In an antiferromagnet with nanoscale
spin waves, the simple focusing of a laser pulse cannot work.
Only recently the excitation confinement was achieved across
the sample thickness in antiferromagnetic ferrite DyFeO3 by
pumping it with a laser pulse with a photon energy in the
regime of strong absorption [43]. The laser pulse penetration
depth was about 50 nm, which allowed the generation of
spin waves propagating away from the sample face with the
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FIG. 1. (a) Schematic of the modeling of spin dynamics in a (canted) antiferromagnet. The spin dynamics is excited by the effective
magnetic field induced by a laser pulse h(z, t), which is assumed to have an exponential decay into the medium as it is absorbed. The spin
excitations near the boundary propagate into the medium as waves with velocity vsw. (b) The spin waves are magneto-optically detected by
a second laser pulse arriving after a time delay �t . The dynamic magnetization gives rise to the Faraday rotation �θF in the transmission
configuration, or the Kerr rotation �θK in the reflective configuration.

wavelengths of this order. The excited spin waves also acted
as an effective diffraction grating for the reflected probe pulse,
enabling their selective detection. Taking inspiration from
this pioneering experimental study, in this work we present
a thorough theoretical analysis of the optical generation and
detection of the antiferromagnetic magnons in pump-probe
experiments.

The paper is organized as follows. In Sec. II we introduce
the basic mathematical formalism, describing the excitation of
magnons by laser pulses in an antiferromagnet. In Sec. III we
apply this general formalism to various experimental configu-
rations, calculating the laser-driven spin dynamics in the cases
of impulsive and displacive excitations and different boundary
conditions. We compare the results of most simplistic approx-
imations such as reducing the effective magnetic field pulse to
a delta function and the more complete models of propagating
Gaussian pulses. We also study the role of material parameters
such as laser penetration depth, spin pinning, spin wave veloc-
ity, and damping. Section IV exposes the theory describing the
detection of the spin waves by means of the magneto-optical
Kerr effect, while Sec. V demonstrates the selective detection
observed in the experiment. We draw conclusions in Sec. VI.

II. MODEL AND MATHEMATICAL FORMALISM

A schematic illustration of the modeled system is depicted
in Fig. 1. We consider a canted antiferromagnet (for general-
ity, our theory is also applicable for zero canting), consisting

of two sublattices containing magnetizations M1 and M2. In
our model, we assume that the antiferromagnetic vector L =
M1–M2 is oriented along the x axis, and the ferromagnetic
vector M = M1 + M2 is oriented along the z axis. When an
antiferromagnet is excited by a laser pulse, the excitation leads
to a change in magnetic parameters [29]. We take this into our
model by considering that the laser pulse acts as an effective
magnetic field on the spin system [11]. The effective field
may arise from light-induced magnetic anisotropy [44,45],
exchange interaction [46,47], or other internal magnetic in-
teractions. Thus, the spin waves are launched by the effective
magnetic field component of a laser pulse h(z, t), traveling in
the z direction, which we define as the direction normal to the
sample surface. As the characteristic wavelength of the spin
waves (∼100 nm) is much shorter than the typical diameter
of a laser spot (∼1 µm and larger), the lateral Gaussian dis-
tribution of a laser pulse is neglected, and the excitation of
the surface may be assumed to be uniform. We account for
absorption of the laser pulse as it propagates from the sample
boundary, resulting in an exponential spatial decay of the am-
plitude of the effective field h(z, t ) ∼ exp(− z

d ) [see Fig. 1(a)].
Only the spin wave propagation from the first boundary is con-
sidered, as the penetration depth of the excitation is assumed
to be much smaller than the sample thickness. Addition-
ally, we assume the lifetime of the spin wave to be short
enough for the spin wave to fully decay before reaching the
boundary at the back of the sample. After describing the gen-
eration of propagating magnons, we also model their detection
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in a typical pump-probe experiment, where the polarization
rotation of a probe pulse induced by the dynamic magnetiza-
tion is tracked as a function of time delay after excitation by
the pump pulse [Fig. 1(b)].

In antiferromagnets spin dynamics is described by the
Lagrangian formalism [48]. The formalism yields two eigen-
modes of antiferromagnetic resonance. As the modes are
orthogonal to each other and hence noninteracting in the lin-
ear regime, we can focus on dynamics of one of the modes
(the other one is described in a similar way). In the linear
regime, assuming the amplitude of the dynamic magnetiza-
tion is small, the dynamics of the antiferromagnetic mode is
described by the Klein-Gordon equation [49]:

∂2ϕ(z, t )

∂t2
+ 2α

∂ϕ(z, t )

dt
+ (

ω2
0 − c2∇2

)
ϕ(z, t )

= −ωh
∂h(z, t )

∂t
, (1)

where ϕ(z, t ) denotes the angle of deflection of the antifer-
romagnetic vector Lz = Lcosϕ, Ly = L sin ϕ. The damping
of the precession of magnetization is given by α. The spin
wave velocity limit is given by c, and ω0 = √

ωEωA is the
resonance frequency, which is determined by the exchange
constant J (ωE = γ L0J) and anisotropy constants Kx and Ky

[ωA = γ L0(Ky − Kx )], and ωh = γ h0 is a parameter contain-
ing the amplitude of the effective magnetic field h0. In these
parameters, γ is the electron gyromagnetic ratio.

The spin wave dispersion relation is found by considering
the plane wave solution to Eq. (1) in the absence of an excita-
tion, h(z, t ) = 0,

ω2 = ω2
0 + 2iαω + c2k2

sw. (2)

Here ω is the angular frequency of the spin precession, ksw

is the wave vector of the spin wave, and c is the maximal
propagation velocity of the spin wave.

We can find the solution to Eq. (1) analytically by perform-
ing a Fourier transformation of the equation to the frequency
domain:

−ω2ϕ̃(z, ω) + 2iαωϕ̃(z, ω) + (
ω2

0 − c2∇2
)
ϕ̃(z, ω)

= −iωωhh̃(z, ω), (3)

where ϕ̃(z, ω) is the Fourier transform of the spin deflection
angle and h̃(z, ω) is the Fourier transform of the effective
magnetic field. Only those pulse profiles are considered here
that can be written as a product of time- and space-dependent
functions that, as we show below, describe the most typical
excitation mechanisms. The spatial dependence is defined by
the absorption of the pulse, resulting in an exponential decay,
such that the magnetic field excitation in the frequency do-
main can be written as

h̃(z, ω) = H̃ (ω) exp

(
− z

d

)
. (4)

Here d is the penetration depth of the laser excitation. We
assume here that the spin waves propagate unidirectionally
(since the lateral size of the laser spot is much larger than
all other characteristic dimensions), along the direction of the
propagation of the laser pulse. The full solution for the spin

deflection is then given by

ϕ̃(z, ω) = f (ω) exp [−iksw(ω)z] + p(ω)exp

(
− z

d

)
. (5)

The first term corresponds to the solution for freely prop-
agating magnons, where f (ω) is the spectral amplitude of
the freely propagating waves and ksw(ω) is the wave vector
determined by the dispersion relation (2). Its value is complex,
with the imaginary part being responsible for the spatial decay
of the spin wave. The value of ksw is therefore defined as
ksw = κ−iη, where κ and η are real. The second term in
Eq. (5) corresponds to the forced solution of the spin preces-
sion driven by the effective magnetic field of the laser pulse.
The spectral amplitude p(ω) of this driven spin precession is
directly obtained from Eq. (3):

p(ω) = −iωωhH̃ (ω)

−ω2 + ω2
0 + 2iαω − c2

d2

. (6)

To determine the amplitude of the freely propagating spin
wave, it is required to specify the boundary conditions. The
exchange boundary condition is applied here, which in its
general form reads [50]

∂ϕ

∂z
(z = 0) + ξϕ(z = 0) = 0, (7)

where ξ is a pinning parameter determining how strongly
the spins are pinned to the surface. In the case of ξ = 0,
spin deflections can occur freely at the boundary whereas
for ξ → ∞, spin deflections at the boundary are forbidden.
Applying these boundary conditions to expression (5) allows
us to determine the relation between the amplitude of the free
and forced solutions:

f (ω) = p(ω)
1
d − ξ

ξ − iksw(ω)
. (8)

Finally, one can apply the inverse Fourier transformed nu-
merically to Eq. (5) in order to obtain the evolution of the
spin wave in the time domain. We perform this calculation for
several indicative effective magnetic field profiles, which will
be discussed separately in the following sections.

III. SPIN WAVE GENERATION RESULTS

A. Impulsive excitation

The simplest case to be considered is the impulsive excita-
tion, where the laser pulse is modeled to be infinitesimally
short in time, h(t ) = τh0δ(t ), where the typical laser pulse
duration τ = 0.1 ps is used to normalize the Dirac delta func-
tion. This approximation describes well typical experiments
with femtosecond pump pulses acting as optomagnetic fields,
which are much shorter than the period of antiferromagnetic
modes. Performing the Fourier transform of the effective field
h(t ) we obtain for the driven solution

p(ω) = −iωτ
√

πωh

−ω2 + ω2
0 + 2iαω − c2

d2

. (9)

In the simulation, we choose the following set of pa-
rameters: ω0/2π = 0.15 THz, α = 10−2ω0, d = 50 nm, c =
20 nm/ps [49]. The results of the simulations for perfectly
pinned spins are shown in Fig. 2(a) (see also Supplemental
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FIG. 2. Snapshots of spin waves for an impulsive excitation profile. (a) The spin waves at various time points for the pinned boundary
condition. (b) The spin waves at various time points for the free boundary condition. In both panels, the insets show the corresponding spectra
at a distance z = 0.2 µm from the boundary. All signals are normalized to the maximum absolute value of spin deflection at t = 1 ps.

Movie 1 in the Supplemental Material [51]). In Fig. 2(b)
(Supplemental Movie 2 [51]), the results for the completely
free boundary condition are shown. The main panels show
snapshots of the evolution of the spin waves at various time
points, as obtained by the numerical inverse Fourier trans-
form of Eq. (5). The plots are normalized to the maximum
(absolute) value of the magnetization of the snapshot at
t = 1 ps. In the insets, the spectra are shown at a point of
z = 0.2 µm from the boundary. We notice that the spectrum in
the pinned boundary condition is much wider than in the free
boundary condition, giving rise to higher frequency compo-
nents. This gives rise to more pronounced spin waves in the
pinned boundary condition as compared to the free boundary
condition.

B. Displacive excitation

The next pulse profile we consider corresponds to the dis-
placive excitation, where the spin deflection is continuously
excited, but the excitation amplitude decays over time, h(t ) =
ϑ (t )exp(−βt ), where ϑ (t ) is the Heaviside step function
and β is the decay parameter. This models the abrupt pho-
toinduced change in magnetic anisotropy, which may slowly
decay in time [52]. The modeling parameter values are equal
to the case of impulsive excitation. We find a similar form of
the forced solution as the impulsive excitation, however, with
a modified frequency distribution:

p(ω) = −iωωh

(β + iω)
(−ω2 + 2iαω + ω2

0 − c2

d2

) . (10)

For a value of β � ω0 the decay of the excitation occurs
over a much shorter timescale than a single oscillation, such
that the excitation can again be approximated by a delta func-
tion. We indeed confirmed that for such values of the lifetime
of the effective field, the exact same spin wave profile is ob-
tained as for an impulsive excitation. If β � ω0, the excitation
decays slowly and is present over many spin oscillations. The

resulting spin waves for β = 0.001ω0 are shown in Fig. 3(a)
(Supplemental Movie 3 [51]) and Fig. 3(b) (Supplemental
Movie 4 [51]) for the pinned and free boundary conditions,
respectively.

C. Propagating Gaussian excitation

Finally, we consider the most general Gaussian laser pulse
profile, propagating through the medium with the velocity of
light v = copt/n. Again, we account for the absorption of this
pulse near the boundary. The refractive index of the medium
is approximated here to be n ≈ 2.3, typical for many an-
tiferromagnetic oxides such as DyFeO3. For the case of a
propagating Gaussian pulse, some of the previously discussed
equations must be modified. The propagating Gaussian profile
is modeled as

h(z, t ) = h0 exp

(
−

(
t − z

v

)2

τ 2

)
exp

(
− z

d

)
. (11)

The resulting solution in the Fourier domain is then
given by

ϕ̃(ω, z) = f (ω) exp (−ikswz)

+ p(ω) exp

(
− z

d

)
exp

(
− iωz

v

)
. (12)

The relation between f (ω) and p(ω) through the boundary
conditions is now slightly modified:

f (ω) = p(ω)
1
d − ξ + iω

v

ξ − iksw(ω)
, (13)

and p(ω) is now determined by the Fourier transform of the
Gaussian envelope of the laser pulse:

p(ω) = −iωωhτ
√

π exp(−ω2τ 2/4)

ω2
0 − ω2 − c2

d2 + 2iαω
. (14)
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FIG. 3. Snapshots of spin waves excited by a displacive excitation for (a) the pinned boundary condition and (b) the free boundary
condition. The excitation damping parameter is 0.001ω0. The insets show the corresponding spectra at a distance z = 0.2 µm from the boundary.
The spin waves are normalized to the maximum absolute value of the spin wave at t = 1 ps.

To illustrate the effect of propagation, we consider a trans-
parent configuration in a thick sample by increasing the value
of d to d = 0.5 cm. We take an experimentally realistic
duration of the Gaussian pulse of τ = 100 fs. The results of
the simulation are shown in Fig. 4.

As the propagation of the laser pulse is much faster
than the propagation of the magnon, oscillations due to the
free propagation of the magnon and the driven spin preces-
sion by the effective magnetic field appear on very different
length scales. Hence, in Fig. 4 the solution is shown sep-
arately close to the boundary (Fig. 4(a) and Supplemental
Movie 5 [51]) and in the bulk (Fig. 4(b) and Supplemen-
tal Movie 6 [51]). From these results, it is confirmed that
the freely propagating spin waves only exist close to the

boundary (these waves can be seen as the magnonic analog
to electro-magnetic transition radiation, arising from discon-
tinuity in the media) [53]. On the other hand, the forced
oscillations only appear on long length scales and are neg-
ligible close to the boundary. However, in the transmission
pump-probe experiments the forced oscillations in the bulk
dominate the measured response. Hence, in most experiments
to date spin oscillations with a zero wave number were
reported.

We note that in the absorptive configuration (d = 50 nm),
we retrieve the spin wave profiles shown in Fig. 2 for the im-
pulsive excitation. Hence, we conclude that an experimentally
realistic Gaussian laser pulse can be well approximated to act
as an instantaneous impulsive excitation.

FIG. 4. Snapshots of spin waves for a Gaussian propagating excitation with pinned boundary conditions on different length scales. (a) The
propagation of the spin wave in a micrometer range to the boundary. The inset shows the spectrum at z = 0.2 µm. (b) The effect of propagation
of the pump pulse, driving homogeneous spin precession in the bulk on a centimeter length scale. The inset shows the spectrum at z = 0.4 cm.
The spin waves are normalized to the maximum absolute value of the spin wave at t = 1 ps.
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FIG. 5. Spin waves under variation of several parameters: (a) Variation of the optical excitation depth d . The inset shows a zoom-in of the
spin wave for d = 0.1 nm. (b) Variation of the spin wave velocity limit c. (c) Variation of the pinning parameter ξ . (d) Variation of the optical
excitation decay parameter β, for the case of the displacive excitation. Spin waves are shown at time delay t = 30 ps.

D. Effect of various parameters

In this section, the effect of various parameters is investi-
gated. The impulsive excitation is considered here, for various
values of d , c, and ξ . In addition, spin waves are shown
for various values of the excitation lifetime parameter β for
the case of displacive excitation. The spin waves for various
values of these parameters are compared in Fig. 5.

These figures confirm expectations about the behavior of
magnons. Firstly, we see in Fig. 5(a) that confinement of
the excitation to the boundary affects the profile in the spin
wave; as for reducing values of d , the exponential decay
arising from the driven precession disappears, and a stronger
contribution of the freely propagating spin waves from the
boundary emerges. In the limit of d � λsw, we see that the
contribution of the driven spin precession disappears, and
only the freely propagating wave remains. As the reduction
in excitation depth also results in a diminished amplitude,
the inset shows the normalized result for the magnon for the
excitation depth of d = 0.1 nm. Secondly, from Fig. 5(b) we
see expected behavior when changing the velocity of the spin
wave: a higher velocity results in further propagation of the
spin wave from the boundary. Thirdly, in Fig. 5(c) the effect
of the pinning parameter is shown. From this one can see that
the spin wave profile depends on the pinning parameter. For

free boundary conditions (ξ = 0) spins can precess freely at
z = 0, whereas in the limit of the perfectly pinned boundary
condition (ξ → ∞, approximated in our numerical code as
ξ = 1040) precession there is restricted. We see that the ratio
of the amplitudes of the propagating wave packet and the
driven spin precession depends on the pinning parameter.
When the pinning parameter equals the inverse of the pene-
tration depth, ξ = 1/d (in the simulation, ξ = 2×105 cm−1

and d = 50 nm), no propagating wave packet is observed.
This is directly explained by Eq. (8), where the amplitude
of the freely propagating solution is completely suppressed.
Finally, in Fig. 5(d) we see that wavelength and amplitude of
the magnon depend on the lifetime parameter of the displacive
excitation β. For larger values of β, i.e., shorter excitation
lifetimes, the spin wave amplitude is strongly diminished, and
the central wavelength increases slightly.

E. Excitation at infinitesimal region near the boundary

As our interest is primarily on the spin waves propagating
from the boundary of the material, and we have seen that the
width of an experimentally realistic Gaussian laser pulse can
be neglected, we now model the excitation to be a Dirac delta
function at the boundary at z = 0, h(z, t ) = δ(z)δ(t ). This
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FIG. 6. Snapshots of the propagating spin wave in (a) the pinned boundary condition and (b) the free boundary condition. The excitation
exists solely at the boundary z = 0 [h(z, t ) ∼ δ(z)δ(t )]. Insets show the corresponding spectra at z = 0.2 µm.

ensures that the driven solution of the spin wave is nonex-
istent except at z = 0 and allows us to focus solely on the
freely propagating wave. To couple the driven solution at the
boundary and the freely propagating spin wave, we consider a
slightly altered boundary condition. We assume that the spin
wave is reflected at a distance δz from the boundary, such that
we can write{

ϕ̃(z, ω) = A exp (−ikswz) + B exp (ikswz), z < δz
ϕ̃(z, ω) = C exp (−ikswz), z > δz

. (15)

To find the amplitudes, we start by integrating Eq. (3)
over an infinitesimal region around the material boundary.
From this we find that ϕ(z, ω) is continuous and its derivative
∂ϕ(z, ω)/∂z is discontinuous at the boundary, with the dis-
continuity determined by the amplitude of the excitation. We
also apply the pinning boundary condition as given by Eq. (7).
Finally, we take the limit δz → 0. As a result, we find that the
spin wave propagating into the material is given by

ϕ̃(z, ω) = iωωhh̃(ω)

c2(ξ − iksw )
exp (−ikswz). (16)

Figure 6 shows the result of this simulation. We see a large
difference in the spectra for the pinned and the free boundary
condition. For the pinned boundary condition, the spectral
weight increases above the resonance frequency, whereas in
the free boundary condition the spectral weight diminishes
above the resonance frequency. As expected, we found that the
results of the spin waves’ profiles match excellently with the
case of the exponential decay considered above, for very small
absorption depths of the excitation such that d � λc [see inset
of Fig. 5(a)]. Thus, the waveforms shown in Fig. 6 correspond
to the largest k vectors range, which can be excited by the laser
pulse in the case of its strongest localization.

The situation modeled here can be realized in an antifer-
romagnet capped by a thin (a few nm) ferromagnetic metal
layer coupled to the antiferromagnetic order via, e.g., ex-
change bias [54]. The pump laser pulse can instantaneously
heat the metal and destroy its magnetization, hence exerting a
torque to the antiferromagnet at the interface. We actually
believe that the modes with “unusual” frequencies observed
in the pump-probe studies of metal-antiferromagnetic bilayers

and tentatively attributed to magnetic impurities in Ref. [55]
could in fact be the propagating spin waves excited at the
metal-antiferromagnet interface.

IV. MODEL FOR MAGNETO-OPTICAL DETECTION

Spin dynamics can be detected by laser pulses with
magneto-optical effects. We have shown above that the spin
waves are localized in a region close to the excited boundary.
Therefore, we consider a detection scheme in reflective geom-
etry as used in the experiment in Ref. [43]. We calculate here
the rotation of the plane of polarization as a result from the
magneto-optical Kerr effect (MOKE). This phenomenon orig-
inates from a helicity-dependent refractive index in materials
with broken time-reversal symmetry. For simplicity, the probe
pulse is assumed to be perfectly linearly polarized along the
x axis. The normalized incident electric field vector ei in the
(xy) plane can then be decomposed in circularly polarized
components,

ei = 1
2 e+ + 1

2 e−, (17)

where e± = ( 1
∓i). Then the reflected field is

er = 1
2 r+e+ + 1

2 r−e−. (18)

The helicity-dependent reflectivity results in a small rota-
tion of the polarization:

θ ≈ i(r− − r+)

r− + r+ . (19)

The change in reflection coefficients originates from the
presence of magnetization, affecting the refractive indices for
right-handed and left-handed helicity. In a medium that has
magnetization along the z axis, two electromagnetic eigen-
modes exist, with left-handed and right-handed polarization,
experiencing different refractive indices. From these effective
refractive indices, the effective permittivity modulation �ε

can be obtained [56],

n2
± = ε ± g = ε + �ε, (20)
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where g is the gyration term. Typically, this gyration term
is proportional to the magnetization: g = aM. From this it is
found that

�ε(z, t ) = ±aM(z, t ). (21)

To find the change in reflectivity as a function of the mod-
ulation in the permittivity, we take an approach that was used
for the ultrafast detection of acoustic phonons, in which the
phonon-induced strain affects the reflectivity. We employ the
following expression that was derived in Ref. [57]:

r = r0 + ik2
0

2k
t0t̃0

∫ ∞

0
dz′e2ikz′

�ε(z, t ). (22)

Here, r0 is the static reflection coefficient in the absence of
a perturbation in the permittivity, t0 is the transmission coef-
ficient of the light into the medium and t̃0 is the transmission
coefficient into free space, k0 is the wave vector of the light in
free space, and k is its wave vector in the medium. For sim-
plicity, we consider the case of a pure antiferromagnet, such
that the difference in reflection and transmission coefficients
and wave vectors for both helicities in statics is negligible,
simplifying Eq. (22) to

r± = r0 ± �r, (23)

where

�r = i
ak2

0

2k
t0t̃0

∫ ∞

0
dz′e2ikz′

M(z′, t ). (24)

For the magnetization M(z, t ) we use the full solution that
was obtained as the inverse Fourier transform of Eq. (12).
We note that the Kerr rotation is caused by the out of plane
component of the ferromagnetic component Mz, whereas our
modeled spin deflections were modeled for the antiferro-
magnetic Ly components. Therefore, we need to convert the
previously obtained amplitudes of spin deflections of the
dynamic ly [L = L0 + l(t )] component to the normal fer-
romagnetic spin deflection. By writing the Landau-Lifshitz
equations for a two-sublattice antiferromagnet, we can relate
the dynamics of the ferromagnetic mz component to the dy-
namics of the antiferromagnetic ly component [29]:

∂mz(t )

∂t
=

(
ωA − c2

ωE
∇2

)
ly(t ). (25)

We can rewrite this expression in the Fourier domain to
relate the spectral amplitudes of the normal ferromagnetic
component to the spectral amplitudes of the antiferromagnetic
component:

m̃z(ω) = 1

iω

(
ωA − c2

ωE
∇2

)
l̃y(ω). (26)

We employ this expression subsequently for the freely
propagating part of the solution and the driven part of the
solution. The obtained expressions for the dynamic magneti-
zation are inserted into (24) and subsequently combined with
Eqs. (23) and (19). We recall that the wave vector of the spin
wave is complex and is written as ksw = κ−iη. In the case of
η �= 0, the spin waves decay when they are propagating away

from the boundary, and the integral (24) over z converges.
As a result, the following expression for the rotation angle is
obtained:

θ (t ) = ak2
0

2kr0
t0t̃0

∫ ∞

−∞
dωeiωt

×
[

f ′(ω)
1

2k − ksw(ω)
+ p′(ω)

1

2k + i/d

]
, (27)

with the integral over the frequency representing the inverse
Fourier transform. Now f ′(ω) represents the amplitude of the
mz component of the freely propagating spin wave and p′(ω)
represents the amplitude of the mz component of the particular
solution for the magnon that is driven by the effective field.
The freely propagating solution term in Eq. (27) has a pole
for 2k = ksw(ω), implying a selective detection of free spin
waves with wave vectors satisfying 2k − ksw(ω) ≈ 0. If one
rewrites this condition for detection in terms of wavelengths
2λsw = λopt, the well-known Bragg/Brillouin condition is ob-
tained. We can interpret the emergence of this Bragg condition
by considering the propagating spin wave to effectively act
as a diffraction grating due to the spatial modulation of the
permittivity, enhancing reflectivity of certain wavelengths of
the probe pulse [58].

V. RESULTS OF MAGNETO-OPTICAL
SPIN WAVE DETECTION

To illustrate how this affects the detection, we obtain the
predicted spectrum of the Kerr rotation angle by evaluating
the integrand in Eq. (27) for various wavelengths of the probe
pulse. The time-domain signal may then be obtained by an
inverse Fourier transformation. As discussed before, the width
of the Gaussian and the propagation of the pulse are negli-
gible, so we can model the excitation to be impulsive. We
model the detection of spin waves for both the pinned and free
boundary condition, for an excitation depth of d = 50 nm.
The results are shown in Fig. 7(a) for the pinned boundary
condition and Fig. 7(b) for the free boundary condition. The
results are shown for a variety of probe wavelengths.

Comparison of the results in Fig. 7 shows a difference in
detected signal for the pinned and the free boundary condi-
tions. The spectral amplitude at the fundamental resonance
frequency of 0.15 THz disappears completely in the case of
the pinned boundary condition, whereas in the free boundary
condition a feature at the fundamental resonance frequency
is still visible. In addition to the peak at the fundamental
resonance frequency, we find a second feature in the spectra at
a frequency depending on the wavelength of the probe pulse.
We see that with increasing photon energy, the detected spin
wave is blueshifted, as a result of the Bragg condition that
was imposed in Eq. (27). The inset in Fig. 7(a) shows the
dispersion relation. The colored points indicate the spin wave
wave vectors that are probed by the optical probe pulse (ksw =
2kopt ) and the matching frequencies. We see that the fre-
quencies observed in the spectrum match the Bragg-selected
frequencies in the dispersion relation. The results of our model
are in excellent agreement with the experimental data reported
in Ref. [43].
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FIG. 7. Spectra for an impulsive spin wave excitation as would be detected in a MOKE experiment. The spectra are calculated for multiple
probe wavelengths λ. (a) Calculated spectrum in the pinned boundary condition. The inset shows the dispersion relation, with the colored
points indicating the selected frequency by the various probe wavelengths. (b) Spectrum in the free boundary condition.

We also investigate the effect of the excitation localization
to the boundary, by performing the simulation for various ex-
citation depths. The results are shown in Fig. 8 using both the
pinned [Fig. 8(a)] and free [Fig. 8(b)] boundary conditions,
for a probe wavelength of λ = 800 nm.

We see again the diminished spectral amplitude at the
fundamental resonance frequency of 0.15 THz in the pinned
boundary condition. The amplitude of the peak arising from
the Bragg condition does not seem to be strongly affected by
the value of the excitation depth. On the other hand, we see
that the ratio of the amplitudes of the two peaks is strongly
dependent on the excitation depth for the free boundary con-
dition. While the value of d increases, the contribution of the
fundamental frequency is enhanced and the contribution from
the Bragg reflection is reduced. As a result, for extremely
short excitation depths, the detected signal will be dominated
by the Bragg-selected frequencies. For long excitation depths,
the detected dynamics is expected to be at the fundamental
resonance frequency. For intermediate excitation depths and
the free boundary condition, beating in the time domain of

the signal is expected, which depends on the exact value of
d . This implies that if a proper excitation depth d is chosen,
the character of the boundary condition can be experimentally
determined.

Finally, we investigate the effect of the pinning parameter
on the detection scheme. As was already discussed before,
in the case of the completely pinned boundary condition, no
peak at the fundamental frequency is observed. In the case
of completely free spins, a dominant feature is seen at the
finite ksw peak, but in addition a smaller feature remains at
the fundamental frequency of the ksw = 0 mode. As we saw
before in Sec. III D in the special case of 1

d = ξ , the freely
propagating solution is fully suppressed and, as a result, only a
peak at the ksw = 0 frequency is observed in the MOKE spec-
trum. For intermediate pinning parameters, when the pinning
parameter is in a similar order of magnitude as the inverse
penetration depth, we observe a redshift in the ksw = 0 peak.
We understand this as the emergence of an extra pole in the
detection [Eq. (27)]. This additional pole appears in f (ω).
As seen from Eq. (8) if ξ ≈ iksw(ω) there will be another

FIG. 8. Spectra of the spin waves for various values of excitation depth d . (a) Spectra in the pinned boundary condition. (b) Spectra in the
pinned boundary condition. The probe wavelength in these figures is 800 nm.
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maximum in the detected MOKE spectrum. We confirm that
the frequency at which this peak appears matches exactly with
the frequency at which the imaginary part of the wave vector is
equal to the pinning parameter. In our calculation, this indeed
matches the frequencies ω < ω0. Note that the imaginary part
of the spin wave wave vector arises from the fact that we
calculate the magnon wave vector from the frequency through
the dispersion relation [Eq. (2)], which has an imaginary part
for ω < ω0.

VI. CONCLUSIONS

To summarize, we have derived a model for the optical
generation and detection of spin waves in an antiferromagnet.
By considering different excitation profiles, among which the
propagating Gaussian pulse, we found that for experimentally
realistic parameters, the laser excitation can be appropriately
modeled to be an infinitesimally short excitation. Also, we
have revealed that the spin wave remains localized to the
boundary, and that spin waves travel much slower than
the laser excitation, so that we can neglect the propagation of
the pump pulse for the generation of the spin waves. Further-
more, we have derived a formalism for the magneto-optical
detection of these spin waves. In reflective pump-probe ge-
ometry we have calculated the magneto-optical Kerr effect
and have shown that the spin waves are selectively detected
through the arising of the Bragg condition. As a result, we
have demonstrated that the detected frequency of the spin
waves blueshifts for increasing probe frequency. These ob-
servations in the models can be confirmed experimentally
by scanning over the probe frequency and variation of the
penetration depth of the pulse, for example, by varying the

angle of incidence. We find that our results are in excellent
agreement with a recently performed experiment of opti-
cal generation and detection of propagating magnons in an
antiferromagnet [43].

Furthermore, we have identified differences in the detec-
tion of spin waves in the pinned and free boundary conditions,
implying that it should be possible to experimentally identify
these boundary conditions. Further insight into the boundary
conditions may provide additional information on the prop-
erties of materials, as the pinning of spins to the boundary
depends on the surface anisotropy of the material and the
nonuniformity of the exchange field [50].

In conclusion, we note that the developed formalism can
be easily extended to describing experiments with THz and
infrared pump pulses simply by appropriate choice of the
effective magnetic field profile (e.g., by digitizing the actual
waveform of the THz magnetic field). We believe it will
serve as a basic theoretical framework in the emerging field
of antiferromagnetic magnonics, helping to guide future ex-
perimental work. We also note that in the present model we
considered only small spin deflection in the linear regime of
excitation. This is thus only the first step in theoretical model-
ing of laser-driven magnon dynamics in antiferromagnets. The
further development of the formalism will allow the inclusion
of the nonlinear effect by replacing linearized Eq. (1) with the
fully nonlinear Lagrangian equation of motion.
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