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Ground states and magnonics in orthogonally coupled symmetric all-antiferromagnetic junctions
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In this paper, the rich ground-state structure of orthogonally coupled symmetric all-antiferromagnetic junc-
tions with easy-plane anisotropy is reported. A spin reorientation process rather than the traditional spin flop
(SF) occurs, resulting in a phase in which Néel vectors preserve the mirror-reflection symmetry (termed MRS
phase). The phase transitions in the ground state between SF and MRS phases can be either first or second order.
After disturbed by external stimuli, magnons with different parities emerge. For in-plane dc fields, no couplings
between magnons occur. When dc fields become oblique, coherent couplings between magnons with opposite
parity emerge, leading to anticrossings in resonance frequencies. However, self-hybridization among magnons
with the same parity never happens. More interestingly, spin waves based on MRS phases are linearly polarized
and their polarization directions can be fine controlled.
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I. INTRODUCTION

All-antiferromagnetic junctions, such as Fe2O3/Cr2

O3/Fe2O3, have been recently proposed to be candidates
for practical antiferromagnetic spintronics and magnonics
with ultrahigh-density integration [1]. Different from the
well-know synthetic antiferromagnets [2–27] in which the
collinear interlayer coupling between ferromagnetic sublayers
is the Ruderman-Kittel-Kasuya-Yosida interaction mediated
by electrons [28–30], the coupling between two antiferromag-
netic Fe2O3 sublayers in all-antiferromagnetic junctions is
claimed to be bridged by the nonuniform domain-wall state in
Cr2O3 spacers. In recent experiments, the double-peak struc-
ture in spin Hall magnetoresistance (SMR) [31–35] signals of
asymmetric Fe2O3/Cr2O3/Fe2O3 junctions are explained by
the orthogonal coupling between the Néel vectors in the two
outermost Fe2O3 layers with different thickness. However,
the detailed magnetic ground states of these junctions have
not yet been provided. In addition, magnon-magnon coupling
and its resulting modification to the eigenfrequencies and
eigenvectors need to be revealed. In this paper, we focus on the
simplified version, that is, symmetric all-antiferromagnetic
junctions where the two outermost sublayers are made from
the same materials with the same thickness. The magnetic
ground states and coherent magnonics in these systems
constitute the main contents of this paper.

II. MODEL AND METHODS

In most existing literature, Lagrangians of two-sublattice
antiferromagnets are written in terms of Néel vectors, in
which the lowest nonvanishing kinetic terms are obtained by
expanding the vector potentials (from Berry phase) to the
first order of the total magnetization m of the unit cell in
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antiferromagnets (slave variable of Néel vector) [36–38]. This
is based on the assumption of |m| � 1 and is generally true
for magnetic states not far from the antiferromagnetic ground
state (m = 0) and the corresponding magnonics based on
them. However, in this paper we focus on the entire evolution
process of a magnetic ground state under uniform and static
external fields during which the ground state of magnetic
materials varies from antiferromagnetic to ferromagnetic. The
assumption of |m| � 1 gradually fails, hence existing forms
of the antiferromagnet Lagrangian may be insufficient. To
correctly obtain the magnetic ground state and understand the
corresponding magnonics, we have to revert to the original
description of antiferromagnets with the respective unit mag-
netization of each sublattice and the corresponding coupled
Landau-Lifshitz-Gilbert (LLG) equations [39]. When identi-
fying magnetic phases and phase transitions (PTs), as well as
the corresponding physical quantities (for example, the SMR
signal), we shift to the Néel-vector language to provide up-to-
date descriptions and explanations on the unique behaviors of
these all-antiferromagnetic junctions.

Generally, the antiferromagnetic Cr2O3 spacer possesses
a spin-flop (SF) field [40] higher than 6 T [41,42], which is
much larger than that of Fe2O3 (a few thousand Oe) [43,44].
Therefore, in our analytics the two identical antiferromagnetic
outermost Fe2O3 sublayers (denoted as A and B) are assumed
to have the simplest easy-plane anisotropy with the hard axis
along the surface normal (z axis), as shown in Fig. 1(a). In
each layer, the magnetic energy density is

Es[mi,1(2)]

μ0
= MsHE mi,1 · mi,2 + MsHK

2

(
m2

i,1z + m2
i,2z

)
− Ms(mi,1 + mi,2) · Hext, i = A, B, (1)

where mi,1 and mi,2 are the unit vectors of the two sublattices
in the ith antiferromagnetic sublayer with the same satura-
tion magnetization Ms and mutual exchange field HE (> 0),
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FIG. 1. (a) Sketch of an orthogonally coupled symmetric all-
antiferromagnetic junction with the same thickness in two outermost
Fe2O3 sublayers (denoted as A and B). ez is along surface normal,
ey ‖ ez × Hext , and ex = ey × ez, in which the external oblique dc
field reads Hext = H0(cos ψex + sin ψez ). (b) The four equilibrium
unit magnetization vectors in two Fe2O3 sublayers are denoted as
meq

A(B),1(2) and all fall onto the same latitude circle θ = θ1. Meanwhile,
meq

A,1 and meq
B,1 (meq

A,2 and meq
B,2) are symmetric about the xz plane.

(c) Vertical view of (b). The azimuthal angle of meq
A,1 (meq

B,1) is φ1

(−φ1), while that for meq
A,2 (meq

B,2) is −φ2 (φ2).

HK (> 0) is the anisotropy field along hard axis, Hext denotes
the external dc field, and μ0 is the vacuum permeability.

We then neglect the details of spacers and phenomeno-
logically introduce the orthogonal coupling between two
outermost sublayers. Originally, the interlayer orthogonal
coupling is expressed as Ec = J ′(nA · nB)2/2 = J ′ cos2 θAB/2,
in which J ′ > 0 and ni ≡ (mi,1 − mi,2)/|mi,1 − mi,2| are the
Néel vectors of each antiferromagnetic sublayer with θAB

being the angle spanned by them. However, this format of
Ec is inconvenient in deducing the equilibrium ground state
and dynamic response of magnetization vectors. Considering
the fact that in antiferromagnets, ni ⊥ mi(≡ mi,1 + mi,2), an
equivalent format is provided as

Ec = J

2
(mA · mB)2, (2)

with J (> 0) denoting the coupling strength. Combing all these
components, the total magnetic energy of this junction reads

Etot =
∑

i=A,B

Es[mi,1, mi,2] · (S0d0) + Ec · S0, (3)

with S0 and d0 being the projection area and thickness of each
outermost sublayer, respectively. In macrospin assumption,
the effective field of a single-domain volume with unit mag-
netization m, projection area S, and thickness d is defined as
Heff = −μ−1

0 δEtot/δ(MsSdm).
The dynamics of mA(B),1(2) are described by the coupled

LLG equations

dmA(B),1(2)

dt
= −γ mA(B),1(2) × HA(B),1(2)

eff + TA(B),1(2), (4)

where TA(B),1(2) includes torques from both damping and
external dc fields, γ = μ0γe, with γe being electron gyromag-
netic ratio. The effective field HA,1

eff reads

HA,1
eff = Hext − HE mA,2 − HK mA,1zez − Hp(mA · mB)mB,

(5)

with Hp ≡ J/(μ0Msd ), the other three effective fields can be
obtained by performing A ↔ B and 1 ↔ 2. These are all we
need to proceed with our investigation.

III. GROUND STATES AND PHASE TRANSITIONS

We consider a general Hext with a strength H0 and polar an-
gle π

2 − ψ with respect to ez [see Fig. 1(a)]. After defining ey ‖
ez × Hext and ex = ey × ez, Hext = H0(cos ψex + sin ψez ).
The equilibrium magnetization vectors (emphasized by a su-
perscript eq) in sublayers A and B should be symmetric about
the xz plane. In view of this, we define the following polar
and azimuthal angles: meq

A(B),1[meq
A(B),2] has the polar angle

θ1(θ2) and azimuthal angle ±φ1(∓φ2). The static condition
requires dmA(B),1(2)/dt = 0 and TA(B),1(2) = 0. This results
in (i) θ1 = θ2, that is, mA(B),1(2) all lie in the same latitude
circle [see Fig. 1(b)], hence neq

A and neq
B always reside in the

xy plane; and (ii) the central equality of this paper,

h(cos ψex + sin ψez )

= meq
A + p

(
meq

A · meq
B

)
meq

B + k cos θ1ez, (6)

where h ≡ H0/HE , p ≡ Hp/HE , and k ≡ HK/HE are all pos-
itive. This equality is very important and will be used to (i)
calculate meq

A(B),1(2) (i.e., θ1 and φ1(2)) and (ii) simplify the
dynamic equations for spin waves.

Two extreme circumstances are first examined: zero-field
and high-enough-field cases. In the absence of external
fields (h = 0), due to the lack of in-plane anisotropy the
ground state of this symmetric all-antiferromagnetic junc-
tion is a cruciferae state, namely, mA,1, mB,1, mA,2, and
mB,2 are successively arranged clockwise in the xy plane
at π/2 intervals (thus θ

eq
AB = π/2), taking the most advan-

tage of energy gain from the orthogonal coupling. On the
other hand, there always exists an upper limit of external
field strength hFM ≡ [cos2 ψ/(8p + 2)2 + sin2 ψ/(8p + k +
2)2]−1/2. Above it, the system falls into the ferromagnetic
saturated state (FM phase), which means mA(B),1(2) ≡ mFM =
sin θFM

1 ex + cos θFM
1 ez, with θFM

1 satisfying

h cos
(
θFM

1 + ψ
)+ (k/2) sin 2θFM

1 = 0. (7)

The presence of k leads to π/2 − ψ < θFM
1 < π/2, meaning

that mFM lies between Hext and ex. Now neq
A = neq

B = 0, hence
θAB has no definition in FM phase.

For 0 < h < hFM, the system exhibits the complex ground
state and PTs in it, as illustrated in Figs. 2(a) and 2(b). The
orthogonal coupling strength p strongly affects the equilib-
rium magnetization layout. For weak orthogonal couplings
(0 < p < 1/4), before saturation the system always falls into
the SF ground state with the polar and azimuthal angles
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FIG. 2. (a) Ground-state evolution of orthogonally coupled symmetric all-antiferromagnetic junctions as the external dc field increases. In
various phases, red (orange) and blue (cyan) arrows, respectively, denote mA,1(2) and mB,1(2), while magenta (gold) arrow indicates the Néel
vector neq

A (neq
B ). At h = 0, mA(B),1(2) evenly spread in xy plane at π/2 interval (cruciferae phase). Hence neq

A ⊥ neq
B . For h � hFM, mA(B),1(2) ≡

mFM, thus the system falls into the FM phase. When 0 < h < hFM, SF phase with meq
A,1 = meq

B,2 and meq
A,2 = meq

B,1 always bears the lowest
magnetic energy for 0 < p < 1/4. While for p > 1/4, MRS phase emerges and acquires the lowest energy for h ∈ [hmin, hmax] ⊂ (0, hFM).
(b) Variation of θ

eq
AB (the angle between neq

A and neq
B ) with the external fields. Orange line (purple curve) is for the case with 0 < p < 1/4

(p > 1/4). The PT (SF process) at h = 0 is always first order as θ
eq
AB changes abruptly from π/2 to π . For p > 1/4, the light-purple area

denotes the novel MRS phase. The PT between SF and MRS phases at h = hmin (hmax) is second (first) order. (c) Normalized SMR signals as
functions of the external field h. Orange line (purple curve) is for the case with 0 < p < 1/4 (p > 1/4).

satisfying

8pk2 cos5 θ1 − 16phk sin ψ cos4 θ1 + (8ph2 + k3 + 2k2) cos3 θ1 − (3k + 4)hk sin ψ cos2 θ1

+ (3k + 2)h2 sin2 ψ cos θ1 − h3 sin3 ψ = 0,

cos φ1 = cos φ2 = h cos ψ cos θ1

(h sin ψ − k cos θ1) sin θ1
. (8)

In fact, this SF phase is the counterpart of the spin-flopped
state in a single antiferromagnetic layer (with zero in-plane
anisotropy) since the orthogonal coupling now is too weak to
affect the magnetization layout. Now neq

A = ey and neq
B = −ey,

leading to θ
eq
AB = π . Correspondingly, the PT at h = 0 is first

order. At h = hFM, Eq. (8) continuously converges to Eq. (7),
leading to a second-order PT therein.

More interestingly, for large enough orthogonal cou-
pling (p > 1/4), a new phase acquires lower energy
than the SF phase for h ∈ [hmin, hmax] ⊂ (0, hFM), with
hmin ≡ (p−1/2/2)/

√
cos2 ψ/16 + sin2 ψ/(k + 4)2 and hmax ≡√

1/2 + 1/(8p)/
√

cos2 ψ/16 + sin2 ψ/(k + 4)2. The polar
and azimuthal angles are

cos θ1 = h

k + 4
sin ψ, φ1 = α − β, φ2 = α + β,

with α ≡ arccos
1

2

√√√√√ cos2 ψ

2 + 4 sin2 ψ

(k+4)2 − 1
h2 p

1
h2 − sin2 ψ

(k+4)2

,

β ≡ arccos

√√√√ cos2 ψ

4
cos2 ψ

2 + 4 sin2 ψ

(k+4)2 − 1
h2 p

,

(9)

where we have assumed |φ1| < φ2 < π − |φ1| without
losing generality. Then neq

A = sin βex + cos βey and
neq

B = sin βex − cos βey. Correspondingly, θ
eq
AB = π − 2β =

π − (φ2 − φ1). This phase comes from the competition
between interlayer orthogonal and intralayer antiferromag-
netic couplings, however, it preserves the mirror-reflection
symmetry (MRS) about the xz plane. We hereby denote
it as the MRS phase. It coincides with the SF phase
at h = hmin since β(hmin) = 0 (hence φ1 = φ2), which
implies a second-order PT herein (θ eq

AB = π on both sides
of hmin). However, when h increases and approaches hmax,
α → 0 leading to −φ1 ≈ φ2 → β(hmax) with β(hmax) ≡
arccos

√
(4p+ 1)/[8p+ 16(4p− 1) tan2 ψ/(k + 4)2] < π/2.

Hence, θ
eq
AB = π − 2β(hmax) > 0 [see Fig. 2(b)]. When h

slightly exceeds hmax, the ground state abruptly moves back
to the SF phase with θ

eq
AB = π , leading to a first-order PT at

hmax.
To obtain an intuitive impression on the SF and MRS

phases, as well as PTs in the system’s ground state, we
perform energetic calculations with typical parameters (ψ =
π/10, k = 1) and the results are illustrated in Fig. 3. We take
p = 0.15 and p = 0.45 as two typical examples. For each p,
the equilibrium polar and azimuthal angles are solved from
Eq. (8) for SF phase and Eq. (9) for MRS phase (when exists).
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FIG. 3. Magnetic phases of orthogonally coupled symmetric all-antiferromagnetic junctions with k = 1 and two typical p under static
magnetic fields with fixed ψ = π/10. (a)–(c) Polar angle θ1, azimuthal angles φ1,2, and normalized energy Enorm for p = 0.15. Only SF phase
is present. (d)–(f) Counterparts for p = 0.45. SF phase persists, while MRS phase emerges for h ∈ [hmin, hmax] and is emphasized by light-gray
areas. Data for SF (MRS) phase are plotted by black (gray) curves. The inset of (f) provides EMRS

norm − ESF
norm.

Then the corresponding normalized energy density, Enorm ≡
Etot/(μ0MsHE S0d0), is calculated for 0 < h < hFM. For p =
0.15(< 1/4), hFM = 3.2661. The polar angle θ1, azimuthal
angles φ1,2 and normalized magnetic energy Enorm of SF phase
are, respectively, plotted by solid curves in Figs. 3(a)–3(c).
The MRS phase never appears, thus the ground state of the
system always falls into the SF phase for all values of h. For
p = 0.45(> 1/4), hFM = 5.6764. Besides the ever-present SF
phase, now the MRS phase emerges when hmin � h � hmax

with hmin = 3.0340 and hmax = 3.5900, and is emphasized by
light-gray areas in Figs. 3(d)–3(f). Correspondingly, the polar
and azimuthal angles as well as normalized magnetic energy
of the SF (MRS) phase are depicted by black (gray) curves.
For clearance, the inset of Fig. 3(f) shows the difference of
normalized energy (EMRS

norm − ESF
norm), which is two orders of

magnitude smaller than ESF
norm. Clearly, the ground state of the

system changes from the SF to MRS phase for hmin � h �
hmax. In addition, the PT at hmin = 3.0340 (hmax = 3.5900) is
second order (first order).

This MRS phase is essential for the nonzero SMR signals
under finite dc fields even in the absence of in-plane magnetic
anisotropy for symmetric all-antiferromagnetic junctions with
strong enough orthogonal couplings. Suppose a heavy-metal
cap layer (for example, Pt), through which a charge cur-
rent passes in +ex direction, is attached onto a symmetric
all-antiferromagnetic junction under Hext = hHE (cos ψex +
sin ψez ). The spin polarization generated by the spin Hall
effect of the heavy-metal caplayer is then along the y axis.
Generally, when Néel vectors of the outermost antiferromag-
netic sublayers (neq

A and neq
B ) are parallel (perpendicular) to the

spin polarization, the system has a comparatively low (high)
resistance. In general, we use

δSMR = 1 −
(
neq

A · ey
)2 + (

neq
B · ey

)2

2
(10)

to describe the normalized SMR signal of this junction, as
illustrated in Fig. 2(c).

For small orthogonal coupling (0 < p < 1/4), neq
A(B) in the

SF phase always lie in the y axis for nonzero h, leading to
a plateau with δSF

SMR = 0 [see orange line in Fig. 2(c)]. The
only peak with the height of 1/2 occurs at h = 0 where the
cruciferae phase emerges. While for large enough orthogonal
coupling (p > 1/4), in the MRS phase one has δMRS

SMR = sin2 β

which is strengthened from 0 to

δMRS
SMR (βmax) =

1 + 16 tan2 ψ

(k+4)2

8p
4p−1 + 16 tan2 ψ

(k+4)2

(11)

as h increases from hmin to hmax. The normalized SMR signal
rapidly decreases to zero as h exceeds hmax. In real junctions,
these abrupt peaks will be broadened due to the finite distri-
bution of the anisotropy in sublayers, as well as the possible
magnetic impurities therein.

This MRS-phase-induced resistance peak is unique for
symmetric all-antiferromagnetic junctions since neq

A(B) lie sym-
metrically about xz−plane. It differs from the resistance peaks
(i) and (iii) in Figs. 2(d) and 2(e) from Ref. [1], at which
neq

A and neq
B are, respectively, along ex and ey. In addition,

it discriminates from the negative SMR signal of a sin-
gle antiferromagnetic Fe2O3 layer (see Figs. 2(a) and 2(b)
from Ref. [1]), where the (only) resistance peak appears at
H < 0 (H > 0) when in-plane external field with strength H
sweeping from positive to negative (negative to positive). The
reasons are twofold. On one hand, the MRS-phase-induced
resistance peak survives even in the absence of in-plane
anisotropy while that of the single Fe2O3 layer relies on
it. On the other hand, the SMR peak occurs in the MRS
phase which emerges for h ∈ [hmin, hmax] ⊂ (0, hFM), thus is
a post-SF effect taking place under a relatively large external
field strength (around hmax). The latter reason also helps us
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to exclude the interlayer coupling between Fe2O3 sublayers
in Fe2O3/Al2O3/Fe2O3 junctions as shown in Fig. S19 from
the Supplementary Note of Ref. [1]. At last, the experimental
SMR data of the symmetric Fe2O3/NiO/Fe2O3 junction in
Fig. S18 from the same work did not show strong signs of a
MRS peak. This possibly comes from the fact that NiO has a
not-high-enough SF field [45,46] thus making the data contain
too many physical processes.

At the end of this section, we define several symmetry
operators for further usage. The first one is the mirror re-
flection operator Mxz which converts a vector U = Uxex +
Uyey + Uzez to MxzU = Uxex − Uyey + Uzez. Mxz is used to
simplify the dynamical equations of spin waves in the MRS
phase under oblique dc fields (to be delivered in Sec. IV.C.1),
but the polarization of spin waves will be reversed. Next,
we define two rotational operations which preserve the po-
larization of spin waves. Since Mxzm

eq
A,1(2) = meq

B,1(2), the
planes expanded by (meq

A,1, meq
B,1) and (meq

A,2, meq
B,2) both in-

tersect with the xy plane on the y axis. We choose ex′ ‖
meq

A,1 + meq
B,1 and ex′′ ‖ meq

A,2 + meq
B,2. Correspondingly, the an-

gle between ex′ (ex′′) and ex is defined as χ (ξ ). Meantime,
the angle between ex′ and meq

A,1 (ex′′ and meq
A,2) is ε (η).

Then we have tan χ = cot θ1/ cos φ1, tan ξ = cot θ1/ cos φ2,
sin ε = sin θ1 sin φ1, and sin η = sin θ1 sin φ2. Consequently,
C2x′ (C2x′′ ) is defined as the rotation operator which rotates
vectors around +ex′ (+ex′′ ) by 180◦ while preserving the
polarization of spin waves. With these ground states and oper-
ators, in the next sections we proceed to dynamical response
of magnetization vectors to external stimuli.

IV. MAGNONICS

A. General framework

Suppose a RF magnetic field with a frequency f = ω/2π

is induced by some antenna and then excites spin waves to
propagate in the whole junction. The magnetization vectors
mA(B),1(2) slightly deviate from their equilibrium orientations
meq

A(B),1(2) and begin to vibrate with the same frequency f .
Consequently, they are expanded as mA(B),1(2) = meq

A(B),1(2) +
δmA(B),1(2)eiωt . After defining � ≡ ω/(γ HE ) and neglecting
TA(B),1(2), we obtain the following central vectorial equa-
tions for δmA(B),1(2) with the help of Eq. (6):

i�δmA(B),1(2) = meq
A(B),1(2) × {

(δmA(B),1 + δmA(B),2) + k(δmA(B),1(2) · ez )ez + p
(
meq

A · meq
B

)
(δmB(A),1 + δmB(A),2)

+ p
[
(δmA,1 + δmA,2) · meq

B + (δmB,1 + δmB,2) · meq
A

]
meq

B(A)

}
, (12)

which are the central equations for coherent magnon-
ics in orthogonally coupled symmetric all-antiferromagnetic
junctions.

B. In-plane-dc-field case

1. Reformation of dynamical equations

For in-plane dc fields (ψ = 0), θ1 = π/2, thus meq
A(B),1(2) all

reside in the xy plane. Consequently, ex′ = ex′′ = ex, leading
to C2x′ = C2x′′ = C2x. We then introduce δm±

1(2) ≡ δmA,1(2) ±
C2xδmB,1(2) as the spin wave components with even (+) and
odd (–) parities under C2x. Hence Eq. (12) becomes

i�δm+
1(2) = meq

A,1(2) × {
(δm+

1 + δm+
2 ) + k(δm+

1(2) · ez )ez

+ p
(
meq

A · meq
B

)
C2x(δm+

1 + δm+
2 )

+ 2p
[
meq

B · (δm+
1 + δm+

2 )
]
meq

B

}
,

i�δm−
1(2) = meq

A,1(2) × {
(δm−

1 + δm−
2 ) + k(δm−

1(2) · ez )ez

− p
(
meq

A · meq
B

)
C2x(δm−

1 + δm−
2 )
}
. (13)

In the local coordinate system (e1(2)
m ≡ meq

A,1(2), e1(2)
φ ≡ ez

× e1(2)
m , ez ), we decompose δm±

1(2) as δm±
1(2) = δm±

1(2),φe1(2)
φ +

δm±
1(2),zez. Then Eq. (13) is decoupled into two 4 × 4 matrix

equations. After diagonalizing them, the eigenfrequencies and
eigenvectors of spin waves with different parities are obtained.

2. Subspace with even parity under C2x

The coupled vectorial equations with even parity are trans-
formed into their matrix-form counterpart:

�

⎛
⎜⎜⎜⎜⎜⎝

δm+
1,φ

δm+
2,φ

iδm+
1,z

iδm+
2,z

⎞
⎟⎟⎟⎟⎟⎠ = P

⎛
⎜⎜⎜⎜⎜⎝

δm+
1,φ

δm+
2,φ

iδm+
1,z

iδm+
2,z

⎞
⎟⎟⎟⎟⎟⎠. (14)

The 4 × 4 matrix P is partitioned and antidiagonal. By defin-
ing w ≡ p[cos 2φ1 + cos 2φ2 + 2 cos(φ1 − φ2)], the nonzero
components of P are P1,4 = P2,3 = 1 − w, P1,3 = P2,4 =
1 − w + k, P3,1 = 1 − w cos 2φ1 + 2p [sin (φ2 − φ1) −
sin 2 φ1]2 ≡ r, P4,2 = 1 − w cos 2φ2 + 2p [sin(φ2 − φ1) +
sin 2φ2]2 ≡ t , and P3,2 = P4,1 = cos(φ1 + φ2) − w cos(φ1 −
φ2) + 2p[sin(φ2 − φ1) + sin 2φ2][sin(φ2 − φ1) − sin 2φ1] ≡
s. Suppose P is diagonalized with the form P · S = S ·
diag{�1,�2,�3,�4}, where �k and S∗,k are the eigenvalue
(normalized resonance frequency) and the corresponding
eigenvector, respectively. Therefore, the spin wave vector for
�k is δm+

1 + δm+
2 ∝ (S1,ke1

φ − iS3,kez ) + (S2,ke2
φ − iS4,kez ).

If S3,k/S1,k is real, δm+
1 is elliptically polarized. We then

define S3,k/S1,k as the corresponding ellipticity with positive
(negative) value indicating right-handed (left-handed)
polarity. The same convention applies to δm+

2 .
For the SF phase (φ1 = φ2), Eq. (8) gives cos φ1 = −( 3

√
Y+

+ 3
√

Y−)/(24p) with Y± = 96p[−9ph ±
√

3(27p2h2 + 4p)].
Then the secular equation, det |P − I4×4�| = 0, pro-
vides �1 = −�2 = √

k sin φ1 tan φ1(3h − 4 cos φ1) and

094407-5



LI, XI, HE, LIU, AND LU PHYSICAL REVIEW B 107, 094407 (2023)

�3 = −�4 = √
(4 cos φ1 − h)[(k + 4) cos φ1 − h]. When

p < 1/4, �1∼4 always exist for h ∈ (0, hFM) and the matrix S
reads

S =

⎡
⎢⎢⎣

1 1 1 1
−1 −1 1 1
u −u v −v

−u u v −v

⎤
⎥⎥⎦, (15)

with u ≡ �1/k > 0 and v ≡ �3/|4 + k − h/ cos φ1| > 0. For
the �1 branch, δm+

1 ∝ e1
φ − iuez and δm+

2 ∝ −e2
φ + iuez are

both right-handed polarized, bearing the same ellipticity u
when, respectively, facing +e1

m and +e2
m. Meantime, they

bear a fixed π difference in their phases. For the �2 branch,
δm+

1,2 become left-handed polarized while the absolute value
of the ellipticity and phase difference are unchanged. For
the �3 (�4) branch, both δm+

1 and δm+
2 are right-handed

(left-handed) with the same ellipticity v (−v) and zero phase
difference. For all branches, |δm+

1 |2 = |δm+
2 |2 always holds,

implying that the spin waves in the SF phase have the same
weight on the two sublattices in each layer. When p > 1/4,
�1,2 still persist for h ∈ (0, hFM) but �3,4 disappear when h

falls into (hmin, hc) with hc ≡ k+4
2

√
k+2
2p > hmax. Correspond-

ingly, the matrix S becomes

S =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎣

1 1 1 1
−1 −1 1 1
u −u v −v

−u u v −v

⎤
⎥⎥⎦, h ∈ (0, hmin ]

⎡
⎢⎢⎣

1 1 1 1
−1 −1 1 1
u −u −v v

−u u −v v

⎤
⎥⎥⎦, h ∈ [hc, hFM

)
.

(16)

For h ∈ [hc, hFM), the �3,4 branches (if exist) exchange the
eigenvectors while leaving the rest unchanged.

Then we turn to the MRS phase (|φ1| < φ2 < π − |φ1|)
which only exists in [hmin, hmax] when p > 1/4. Now
w ≡ 1, thus P1,4 = P2,3 = 0, P1,3 = P2,4 = k, t > r > 0,
and rt > s2. The eigenfrequencies become �′

1 = −�′
2 =√

(k/2)[(t + r) +
√

(t − r)2 + 4s2] and �′
3 = −�′

4 =√
(k/2)[(t + r) −

√
(t − r)2 + 4s2], which always exist for

h ∈ [hmin, hmax]. The corresponding eigenvector matrix reads

S′ =

⎡
⎢⎢⎢⎣

1 1 1 1
1
ρ

1
ρ

−ρ −ρ

u′ −u′ v′ −v′
u′
ρ

− u′
ρ

−ρv′ ρv′

⎤
⎥⎥⎥⎦, (17)

with u′ ≡ �′
1/k, v′ ≡ �′

3/k, and ρ ≡ [
√

(t − r)2 + 4s2 −
(t − r)]/(2s). For positive (negative) eigenfrequencies �′

1,3
(�′

2,4), the corresponding spin waves are right-handed (left-
handed). For �′

1,2 (�′
3,4) branches, the ellipticity of spin

waves is ±u′ (±v′), while |δm+
1 |2/|δm+

2 |2 is ρ2 (1/ρ2). In
particular, when h → hs = √

4
3p − 2

3 ( 3
√

Y+ + 3
√

Y−) with Y± =
p−3 − 72p−2 ± 3p−2

√
6(94 − 4p − 3p−1), s → 0. Then ρ ≈

s/(t − r) → 0, leading to the dominant δm+
2 (δm+

1 ) spin-
wave components for �′

1,2 (�′
3,4) branches. At last, the phase

difference between δm+
1,2 depends on h. For hmin < h < hs,

ρ < 0, hence the phase difference is π for �′
1,2 and 0 for �′

3,4,
respectively. While for hs < h < hmax, ρ becomes positive
and the phase difference changes to 0 (π ) for �′

1,2 (�′
3,4).

3. Subspace with odd parity under C2x

The matrix-form spin-wave equation for odd parity reads

�

⎛
⎜⎜⎜⎜⎜⎝

δm−
1,φ

δm−
2,φ

iδm−
1,z

iδm−
2,z

⎞
⎟⎟⎟⎟⎟⎠ = Q

⎛
⎜⎜⎜⎜⎜⎝

δm−
1,φ

δm−
2,φ

iδm−
1,z

iδm−
2,z

⎞
⎟⎟⎟⎟⎟⎠. (18)

The 4 × 4 matrix Q is also completely antidiagonal,
with the nonzero components Q1,3 = Q2,4 = 1 + k + w,
Q1,4 = Q2,3 = 1 + w, Q3,1 = 1 + w cos 2φ1 ≡ r̃, Q4,2 =
1 + w cos 2φ2 ≡ t̃ , and Q3,2 = Q4,1 = cos(φ1 + φ2) +
w cos(φ1 − φ2) ≡ s̃. It can be further diagonalized as
Q · S̃ = S̃ · diag{�̃1, �̃2, �̃3, �̃4}.

For the SF phase, �̃1 = −�̃2 =√
k sin φ1 tan φ1(4 cos φ1 − h), �̃3 = −�̃4 =√
h(k cos φ1 + h). When p < 1/4, they always exist when

h ∈ (0, hFM). Then S̃ reads

S̃ =

⎡
⎢⎢⎣

1 1 1 1
−1 −1 1 1
ũ −ũ ṽ −ṽ

−ũ ũ ṽ −ṽ

⎤
⎥⎥⎦, (19)

with ũ ≡ �̃1/k > 0 and ṽ ≡ �̃3/(k + h/ cos φ1) > 0. Again
for all positive (negative) eigenfrequencies �̃1,3 (�̃2,4), the
corresponding spin waves are right-handed (left-handed)
while the phase difference between δm−

1,2 for �̃1,2 (�̃3,4) is
π (0). When p is larger than 1/4, �̃1,2 (and the corresponding
eigenvectors) only exist for h ∈ (0, hmin], while �̃3,4 persist.

For the MRS phase, w ≡ 1 thus Q1,4 = Q2,3 = 2 and
Q1,3 = Q2,4 = 2 + k. Now r̃ > t̃ > 0 and r̃t̃ = s̃2. In par-
ticular, s̃ > 0 for p < 2, which is reasonable for real all-
antiferromagnetic junctions. The eigenfrequencies then be-
come �̃′

1 = �̃′
2 = 0 and �̃′

3 = −�̃′
4 =

√
(k + 2)(r̃ + t̃ ) + 4s̃,

which always exist for h ∈ [hmin, hmax]. Correspondingly, the
eigenvector matrix is

S̃′ =

⎡
⎢⎢⎣

1 1 1 1
−ρ̃ −ρ̃ λ̃ λ̃

0 0 ũ′ −ũ′

0 0 λ̃ṽ′ −λ̃ṽ′

⎤
⎥⎥⎦, (20)

with ρ̃ ≡ [(2 + k)r̃ + 2s̃]/[(2 + k)s̃ + 2t̃], λ̃ ≡ [(2 + k)t̃ +
2s̃]/[(2 + k)s̃ + 2t̃], ũ′ = �̃′

3s̃/[(2 + k)s̃ + 2t̃], and ṽ′ =
�̃′

3t̃/[(2 + k)t̃ + 2s̃]. For �̃′
1,2 = 0, δm−

1 (δm−
2 ) only has a

time-independent component along e1
φ (e2

φ) in the xy plane.
On the other hand, for �̃′

3, the spin-wave components δm−
1

and δm−
2 are both right-handed polarized with synchronous

phases and different ellipticity (ũ′ and ṽ′, respectively).
A similar situation holds for �̃′

4; the only difference is
that the polarization reverses. At last, for �̃′

3,4 branches,
|δm+

1 |2/|δm+
2 |2 = ũ′/(λ̃2ṽ′), implying that the spin waves in

094407-6



GROUND STATES AND MAGNONICS IN ORTHOGONALLY … PHYSICAL REVIEW B 107, 094407 (2023)

FIG. 4. Eigenfrequencies, ellipticities, and phase differences of
spin-wave components δm±

1,2 in symmetrical all-antiferromagnetic
junctions with k = 1 and p = 0.15 under in-plane dc fields h ∈
(0, hFM). The equilibrium magnetization layout falls into the SF
phase. (a) Four positive eigenfrequencies: �1 (red), �3 (magenta),
�̃1 (blue) and �̃3 (cyan). (b) Ellipticities of δm+

1 for �1,3 and δm−
1

for �̃1,3, which are identical to those of δm±
2 . The corresponding

phase differences between δm±
1,2 for all four branches are indicated.

the MRS phase with odd parity have different weights on the
two sublattices in each layer.

4. Numerical examples and asymptotics

To be more intuitive, the eigenfrequencies and correspond-
ing spin-wave features with k = 1 and two typical values of
p are calculated. In Fig. 4, p = 0.15, hence the SF phase is
the only choice for the ground state. The four positive eigen-
frequency branches, �1,3 with even parity and �̃1,3 with odd
parity, are plotted in Fig. 4(a). First, �1 (red) and �̃1 (blue)
both start from

√
2k at h = 0 but have different concavity:

For h = ι � 1,

�1 ≈
√

2k

[
1 + 1

2

(
p − 1

4

)
ι2
]
,

�̃1 ≈
√

2k

[
1 − 1

2

(
p + 1

4

)
ι2
]
. (21)

Then they converge to 0 at h = hFM as

�1 ≈2
√

k(1 + 12p) f (p)
√

ι,

�̃1 ≈2
√

k(1 − 4p) f (p)
√

ι, (22)

with ι ≡ hFM − h and f (p) ≡ [
3
√√

(hFM)2 + 4
27p − hFM +

3
√

2p]/[3 3
√

2p
√

(hFM)2 + 4
27p ]. As for �3 (magenta) and �̃3

(cyan), around h = 0 they both linearly increase with the
same slope

√
(k + 2)/2 and have no other zero points. In

particular, �̃3 is approximately linear with h in the full range

of h ∈ (0, hFM). As a consequence, we have a total of four
accidental crossings (two interparity and two intraparity) in
the resonance spectrum. In Fig. 4(b), the corresponding ellip-
ticities of δm±

1 for the four branches (+ for �1,3, – for �̃1,3)
from Fig. 4(a) are plotted. Note that for p < 1/4, ellipticities
of δm±

2 coincide with those of δm±
1 for each branch so we

have not provided them. For �1 and �̃1, ellipticities of δm±
1

decreases from
√

2/k (at h = 0) to 0 (at hFM), implying a
transition from circular to linear (in the xy plane) polarization
of δm±

1 as h increases. Accordingly, the phase difference
between δm±

1 and δm±
2 is always π , as indicated in Fig. 4(b).

Alternatively, for �3 and �̃3, ellipticities of δm±
1 increases

from 0 (at h = 0) to, respectively,
√

(1 − 4p)/(1 − 4p + k/2)
and

√
(1 + 4p)/(1 + 4p + k/2) (at hFM), indicating a linear to

circular polarization transition of spin waves while the phase
difference between δm±

1 and δm±
2 changes to 0. At last, the

spin-wave intensity ratio, |δm±
1 |2/|δm±

2 |2, always equals 1 for
all frequency branches, implying an equal weighting of spin
waves in the SF phase.

In Fig. 5, p increases to 0.45, hence either the SF or
MRS phase can be the ground state, which has been indi-
cated, respectively, by white or shaded areas. Based on them,
�1 ∪ �′

1, �3 ∪ �′
3, �̃1 ∪ �̃′

1, and �̃3 ∪ �̃′
3 are provided in

Fig. 5(a). Here branches without (with) a prime are in the SF
(MRS) phase. Still, two interparity (red-cyan, blue-magenta)
and two intraparity (red-magenta, blue-cyan) crossings ex-
ist (blue-magenta crossing occurs around h = 2.075 and is
not very clear in this dimension). The asymptotic behav-
iors of these four branches around h = 0 are the same as
Eq. (21), however, due to the emergence of the MRS phase
in [hmin, hmax] with hmin = 2.9814 and hmax = 3.5277, several
interesting changes occur. Recalling that at h = hmin (hmax)
the equilibrium system undergoes a second-order (first-order)
PT, hence both �1 ∪ �′

1 and �̃3 ∪ �̃′
3 are continuous (dis-

continuous) at h = hmin (hmax). Except for this, �1 and �̃3

do not change much compared with the counterparts under
p = 0.15. The other two, however, have changed dramati-
cally. For �3 ∪ �′

3 (magenta), three extra zero points (hmin,
hmax and hc = 4.5644) emerge, with the following asymptotic
behaviors:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩
ι =

⎧⎨
⎩hmin − h : �3 =

√
1
4 khmin

√
ι

h − hmin : �′
3 =

√
22p−1
16p−4 khmin

√
ι

ι = hmax − h : �′
3 =

√
4p

8p+3 khmax
√

ι

ι = h − hc : �3 = 2
√

hc[1 + (k + 4)g(p)]
√

ι,

(23)

where 0 < ι � 1 and g(p) ≡ [ 3

√√
(hc)2 + 4

27p − hc +
1
2

√
k+2
2p

3
√

2p]/[3 3
√

2p
√

(hc)2 + 4
27p ], while for �̃1 ∪ �̃′

1

(blue), the part in the SF phase shrinks to (0, hmin) with the
following asymptotic behavior on the left of hmin:

�̃1 ≈
√

k
16 − h2

min

4hmin

√
ι, ι = hmin − h. (24)

In addition, the zero flat �̃′
1 spectrum in the MRS phase

indicates a time-independent magnetization deviation in the
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FIG. 5. Eigenfrequencies, ellipticities, phase differences and
weight ratios of spin-wave components in symmetrical all-
antiferromagnetic junctions with k = 1 and p = 0.45 under in-plane
dc fields with h ∈ (0, hFM). The equilibrium magnetization layout
can be either SF (white) or MRS (shaded) phase. (a) Four positive
eigenfrequencies �1 (red), �3 (magenta), �̃1 (blue), and �̃3 (cyan).
(b) Solid (dashed) curves are the ellipticities of δm±

1 (δm±
2 ) for all

four branches. (c) Phase differences between δm+
1,2 for �1,3 branches.

Those for �̃1,3 are provided in the inset. (d) Intensity ratio of the
spin-wave component on group 1 over that on group 2. In SF phase
(white area) the data from all four branches (if exist) coincide, while
in MRS phase (shaded area) they split.

xy plane from the equilibrium layout. In 2021, Yuan and Duine
revealed that the resonance frequency ω follows a universal
power law ω ∝ |H − Hc|q, where Hc is the critical field at
which the resonance frequency is zero [47]. When the magnet
preserves rotational symmetry around the external field H,
q = 1, otherwise, q = 1/2. All of our asymptotic results on
eigenfrequencies [Eqs. (22) to (24)] confirm their claims. In
addition, they asserted that the zero frequency is often accom-

panied by a reorientation transition in the magnetization. For
the case in which q = 1/2, this transition is described by a
Landau theory for second-order PTs. In our symmetric all-
antiferromagnetic junctions, the PT at h = hmin (SF ↔MRS)
is applicable to this conclusion, however, the one at h = hmax

(MRS ↔ SF) breaks this rule. At last, interparity and intra-
parity crossings still coexist.

In Fig. 5(b), ellipticities of δm±
1,2 are provided. For the

entire region of h ∈ (0, hFM), ellipticities of δm2 coincide
with those of δm1 for �1 ∪ �′

1, �3 ∪ �′
3, and �̃1 ∪ �̃′

1, so
we only provide the latter. As for �̃3 ∪ �̃′

3, inconsistency
occurs in the MRS phase, which has been indicated by the
departure of solid and dotted cyan curves. On one hand,
the two branches with odd parity (�̃1 ∪ �̃′

1 and �̃3 ∪ �̃′
3)

are relatively simple. Ellipticity of δm−
1,2 from the �̃1 ∪ �̃′

1

(�̃3 ∪ �̃′
3) branch decreases (increases) from

√
2/k (0) at

h = 0 to 0 (
√

(1 + 4p)/(1 + 4p + k/2)) at h = hmin (hmax),
indicating a gradual evolution from circular (linear) to lin-
ear (circular) polarization of δm−

1,2 as h increases, while the
phase difference between δm−

1,2 is fixed as π (0) whenever
the eigenfrequency exists, as shown in the inset of Fig. 5(c).
The intensity ratio, |δm−

1 |2/|δm−
2 |2, keeps 1 in the SF phase

for both �̃1 ∪ �̃′
1 and �̃3 ∪ �̃′

3 branches, and separates in
MRS phase [see Fig. 5(d)]. Clearly, in the �̃′

1 (�̃′
3) branch,

δm−
2 (δm−

1 ) dominates. On the other hand, the two branches
with even parity (�1 ∪ �′

1 and �3 ∪ �′
3) are more complex.

The emergence of the MRS phase separates the ellipticity
of the �3 ∪ �′

3 branch into four parts and the corresponding
three dividing points are hmin, hmax, and hc, as shown in
Fig. 5(b). At the former two (the last one), δm+

1,2 become
linearly polarized in the xy plane (z axis). As for the �1 ∪ �′

1
branch, the ellipticity becomes concave in the MRS phase
rather than convex in the SF phase, leading to a discontinuity
at hmax. Greater interest resides in the intensity ratio in the
MRS phase. For the �1 ∪ �′

1 (�3 ∪ �′
3) branch, spin waves

are concentrated on δm+
2 (δm+

1 ), as depicted in Fig. 5(d).
In particular, at hs = 3.1955 only δm+

2 (δm+
1 ) exists. When

h exceeds hs, δm+
1 (δm+

2 ) components reappear, however,
the phase difference between δm+

1,2 exchanges (0 ↔ π ) com-
pared with the case where h < hs [see Fig. 5(c)]. This reminds
us of the level-reversal behavior in topological insulators after
the bulk gap closes and then reopens.

C. Oblique-dc-field case

Under in-plane dc fields, the absence of entanglement be-
tween subspaces with opposite parity under C2x leads to the
complete decoupling in the dynamic equations of δm+

1,2 and
δm−

1,2 [see Eq. (13)]. This further results in the accidental
crossings between frequency branches with opposite parity
in resonance spectrums, implying the absence of magnon-
magnon couplings in this system. To induce it, a reasonable
attempt is exerting an oblique dc field with 0 < ψ < π/2.
Systematical investigations on the impact of oblique dc fields
on coherent magnonics constitute the main content of this
subsection.

1. Emergence of couplings

For the SF phase, ex′ ≡ ex′′ �= ex, ey′ ≡ ey′′ = ey, and ez′ ≡
ez′′ �= ez, thus C2x′ = C2x′′ ≡ C �= C2x. In the skewed local
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coordinate systems (e1(2)
m ≡ meq

A,1(2), e1(2)
φ ≡ ez′ × e1(2)

m , ez′ ),

similarly we decompose δm±
1(2) as δm±

1(2) = δm±
1(2),φe1(2)

φ +
δm±

1(2),z′ez′ , which are the spin-wave components with even
(+) and odd (–) parities under C. Hence, Eq. (12) becomes

i�δm+
1(2) = meq

A,1(2) ×
{

(δm+
1 + δm+

2 )

+ 2p
[
meq

B · (δm+
1 + δm+

2 )
]
meq

B

+ p
(
meq

A · meq
B

)
C(δm+

1 + δm+
2 )

+ k

2
[ez(ez·) + Cez(Cez·)]δm+

1(2)

+ k

2
[ez(ez·) − Cez(Cez·)]δm−

1(2)

}
,

i�δm−
1(2) = meq

A,1(2) ×
{

(δm−
1 + δm−

2 )

− p
(
meq

A · meq
B

)
C(δm−

1 + δm−
2 )

+ k

2
[ez(ez·) + Cez(Cez·)]δm−

1(2)

+ k

2
[ez(ez·) − Cez(Cez·)]δm+

1(2)

}
. (25)

Clearly, Cez �= −ez (since ex′ �= ex), leading to the couplings
between subspaces with opposite parity under C and further
the possible anticrossings in resonance spectrum.

To see more clearly, by defining � ≡ (δm+
1,φ, δm+

2,φ,

iδm+
1,z′ , iδm+

2,z′ , δm−
1,φ, δm−

2,φ, iδm−
1,z′ , iδm−

2,z′ )T, the above vec-
torial equation set becomes

PSF� = ��, PSF =
[
Θ �

� Φ

]
, (26)

with

Θ =

⎡
⎢⎢⎣

0 0 a1 + k cos2 χ a1

0 0 a1 a1 + k cos2 χ

b1 b2 0 0
b2 b1 0 0

⎤
⎥⎥⎦,

Φ =

⎡
⎢⎢⎣

0 0 a2 + k cos2 χ a2

0 0 a2 a2 + k cos2 χ

c1 c2 0 0
c2 c1 0 0

⎤
⎥⎥⎦,

� = i × diag{−d, d, d,−d}, (27)

where the definitions of a1,2, b1,2, c1,2, and d are provided
in Eq. (A2). The nonzero ψ results in finite d , hence the
nonvanishing coupling matrix �. In principle, by numerically
diagonalizing PSF, the eigenfrequencies, the hybridization of
even and odd subspaces, the ellipticities, and phase difference
between spin-wave components can be obtained. Specifically,
the secular equation for resonance frequency can be reduced
to a standard quartic algebraic equation of �2: (�2)4 +
J3(�2)3 + J2(�2)2 + J1(�2) + J0 = 0. The explicit expres-
sions of Ji (functions of χ and ε) have been provided in
Appendix A due to their lengthy forms. By solving it, the
eigenfrequencies in the SF phase can be obtained and cross-
verified with data from direct diagonalization. In addition, the

pure-imaginary coupling matrix � (as long as ψ > 0) has two
important consequences on the eigenvectors: (i) Nonvanishing
hybridization between subspaces with even and odd parities
under C persists. (ii) There is always a phase difference of ±π

2
between components in subspaces with even and odd parities.

For the MRS phase, ex′ �= ex′′ then C2x′meq
A,2 �= meq

B,2 and
C2x′′meq

A,1 �= meq
B,1. The only possible parity operator is the

mirror reflection Mxz. We then construct l±1(2) ≡ δmA,1(2) ±
MxzδmB,1(2) as the spin-wave components with even (+) and
odd (–) parities under Mxz. Note that Mxz(U · V) = MxzU ·
MxzV and Mxz(U × V) = −MxzU × MxzV, where U and V
are arbitrary vectors, therefore Mxz does not preserve the
polarization of spin waves, which is quite different from the
rotation operators C2x(x′,x′′ ). Now Eq. (12) becomes

i�l+1(2) = meq
A,1(2) × {

(l−1 + l−2 ) + k(l−1(2) · ez )ez

− p
(
meq

A · meq
B

)
Mxz(l−1 + l−2 )

}
,

i�l−1(2) = meq
A,1(2) × {

(l+1 + l+2 ) + k(l+1(2) · ez )ez

+ p
(
meq

A · meq
B

)
Mxz(l+1 + l+2 )

+ 2p
[
meq

B · (l+1 + l+2 )
]
meq

B

}
. (28)

Recall that the angle between ex′ (ex′′) and ex is χ (ξ )
while the angle between ex′ and meq

A,1 (ex′′ and meq
A,2) is

ε (η). For MRS phase under oblique dc fields, generally
0 < χ < ξ < π

2 − ψ . We then denote the plane expanded by
meq

A,1 and meq
B,1 (meq

A,2 and meq
B,2) as the χ−plane (ξ−plane). On

each oblique plane, we define the following local coordinate
system: (i) χ -plane-based: (e1

m ≡ meq
A,1, e1

φ ≡ ez′ × e1
m, ez′ =

− sin χex + cos χez ) and (ii) ξ -plane-based: (e2
m ≡ meq

A,2,

e2
φ ≡ ez′′ × e1

m, ez′′ = − sin ξex + cos ξez ). Then we decom-
pose l±1(2) as l±1 = l±

1,φe1
φ + l±

1,z′ez′ and l±2 = l±
2,φe2

φ + l±
2,z′′ez′′ .

After defining Λ̃ ≡ (l+
1,φ, l+

2,φ, il+
1,z′ , il+

2,z′′ , l−
1,φ, l−

2,φ, il−
1,z′ ,

il−
2,z′′ )T, Eq. (28) is rewritten as

PMRSΛ̃ = �Λ̃, PMRS =
[

04×4 Θ̃

Φ̃ 04×4

]
, (29)

in which Θ̃ and Φ̃ are both 4 × 4 matrices, with detailed
expressions of each element provided in Appendix B. Clearly,
entanglements between subspaces with opposite parity under
Mxz emerge, thus the crossings (if they exist) in the res-
onance spectrum become anticrossings. Again, by directly
diagonalizing PMRS, the eigenfrequencies, eigenvectors, and
corresponding features can be obtained. In particular, the
secular equation, |PMRS − �I8×8| = 0, is reduced to |Θ̃Φ̃ −
�2I4×4| = 0, which is also a quartic algebraic equation of
�2. However, the detailed expression is too complicated to
be explicitly written out. One can numerically solve it to cross
verify the data from direct diagonalization.

2. Numerical examples

To have a direct impression on the oblique-field-induced
magnon-magnon coupling, we take ψ = π/10 as an exam-
ple while leaving other parameters (p and k) the same as in
Figs. 4 and 5 (in-plane-dc-field case). Considering the pos-
sible anticrossings in the resonance spectrum (thus hybridize
the original branches with even and odd parities under rotation
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FIG. 6. Eigenfrequencies, hybridizations, ellipticities, and phase
differences of spin-wave components δm±

1,2 in symmetrical all-
antiferromagnetic junctions with k = 1 and p = 0.15 under oblique
dc fields with ψ = π/10 and h ∈ (0, hFM). The equilibrium mag-
netization layout falls into the SF phase. (a) Four positive eigen-
frequencies �I (red), �II (blue), �III (cyan), and �IV (magenta).
The dashed curves are �1 (red), �3 (magenta), �̃1 (blue), and �̃3

(cyan) for in-plane-dc-field cases [see Fig. 4(a)]. Black arrows in-
dicate the interparity crossing points �1 ∩ �̃3 and �̃1 ∩ �3 while
orange arrows indicate the intraparity ones: �1 ∩ �3 and �̃1 ∩ �̃3.
(b) Evolution of hybridization between subspaces with even and
odd parities for all four eigenfrequencies. Solid (dashed) lines in-
dicate |δm+

1 |2 + |δm+
2 |2 (|δm−

1 |2 + |δm−
2 |2). (c) Ellipticities of δm+

1

for all four eigenfrequencies, which are identical to those of δm+
2 .

The corresponding phase differences between δm+
1,2 are indicated.

(d) Counterparts of (c) for δm−
1,2.

or mirror reflection operators), in this section we name the
four positive eigenfrequency branches as �I, �II, �III, and
�IV in the order from highest to lowest around h = 0.

For p = 0.15, only frequency branches in the SF phase
exist. In Fig. 6(a), the four positive eigenfrequencies (�I∼IV)
are plotted by solid curves while we repaint the four frequency

branches in Fig. 4(a) by dashed curves. The interparity cross-
ing points under in-plane dc fields, �1 ∩ �̃3 and �̃1 ∩ �3, are
lifted by oblique dc fields and become anticrossings [see black
arrows in Fig. 6(a)] while the intraparity ones (�1 ∩ �3 and
�̃1 ∩ �̃3) persist [orange arrows in Fig. 6(a)]. For each eigen-
frequency, its corresponding eigenvector is the superposition
of δm±

1,2. The weights in subspaces with even and odd pari-
ties are described by |δm+

1 |2 + |δm+
2 |2 and |δm−

1 |2 + |δm−
2 |2,

respectively. The variation of these weights as h increases
depicts the evolution of subspace hybridization, as shown in
Fig. 6(b). Originally, the hybridization is relatively weak when
h ∼ 0 and each eigenvector preserves its main weight similar
to those from the in-plane-dc-field case. When h increases,
around each anticrossing the eigenvector experiences a strong
hybridization and is then almost evenly distributed in the
two subspaces. As h is further strengthened, the eigenvector
transfers its most weight to the subspace with opposite parity.
In addition, the pure-imaginary coupling matrix � always
results in a π/2 phase difference between δm+

1 + δm+
2 and

δm−
1 + δm−

2 .
In Figs. 6(c) and 6(d), the ellipticities of δm+

1 and δm−
1

from each eigenfrequency branch are plotted, respectively. In
each curve, positive (negative) ellipticity means right-handed
(left-handed) elliptical polarization, and falls into the white
(shaded) area. For magnonics in the SF phase, ellipticity of
δm±

2 equals that of δm±
1 , thus we have not provided them.

We first focus on the hybridized pair: �I and �III. δm+
1 of

�I [red solid curve in Fig. 6(c)] changes from right-handed
around h = 0 to linear polarized in x′y plane at hR ≈ 2.170
and then to left-handed until h → hFM, while δm−

1 of �I

[red dashed curve in Fig. 6(d)] always keeps right-handed
polarization for h ∈ (0, hFM). Alternatively, δm+

1 of �III [cyan
solid curve in Fig. 6(c)] is always right-handed polarized for
0 < h < hFM. In particular, it tends to be linearly polarized in
ez′ axis (x′y-plane) when h → 0 (h → hFM). As for δm−

1 of
�III [cyan dashed curve in Fig. 6(d)], it expands from linear
polarization in the x′y plane around h = 0 to right-handed
and back to linear in the x′y plane at h = hR, then becomes
left-handed for hR < h < hFM, and finally becomes linearly
polarized in the ez′ axis when h → hFM. Across the whole
region of h ∈ (0, hFM), the phase differences between δm+

1,2

for �I and �III remain π , while those between δm−
1,2 are 0.

Next we turn to the other hybridized pair: �II and �IV. If we
take the following correspondence: δm±

1 (�I ) ↔ δm∓
1 (�II )

and δm±
1 (�III ) ↔ δm∓

1 (�IV), the same behaviors described
above hold. The only difference is that the left-/right-hand
transition point changes to hL ≈ 1.882. At last, the spin-wave
intensity ratio, |δm±

1 |2/|δm±
2 |2, always equals 1 for all fre-

quency branches.
When p increases to 0.45, the magnoncis becomes more

complicated and the main features are plotted in Fig. 7.
Now the equilibrium magnetization layout falls in the MRS
phase when h ∈ [hmin, hmax] (shaded areas in all subfigures)
with hmin = 3.034 and hmax = 3.590, leading to quite a few
unique behaviors of spin waves. First, the four eigenfrequen-
cies (�I∼IV) are provided in Fig. 7(a) by red, blue, cyan,
and magenta solid curves in the order we have appointed
while the �1 ∪ �′

1 and �̃3 ∪ �̃′
3 branches at ψ = 0 have

been appended by orange and olive curves, respectively. We
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FIG. 7. Magnonics of symmetrical all-antiferromagnetic junctions with k = 1 and p = 0.45 under oblique dc fields with ψ = π/10. The
equilibrium magnetization layout falls into the SF phase when h ∈ (0, hmin ) ∪ (hmax, hFM) and MRS phase when h ∈ [hmin, hmax] (shaded area
in all subfigures). (a) Four positive eigenfrequencies �I (red), �II (blue), �III (cyan), and �IV (magenta). The orange and olive curves are,
respectively, �1 ∪ �′

1 and �̃3 ∪ �̃′
3 for ψ = 0 [see Fig. 5(a)]. (b), (c) Evolution of spin-wave intensities in subspaces with even and odd parities

for all four eigenfrequencies. The parity operator for magnonics based on SF (MRS) phase is C (Mxz). (d), (e) Ellipticities of δm+
1 and δm−

1

for all four SF-phase-based eigenfrequencies, which are identical to those of δm±
2 . The corresponding phase differences between δm±

1,2 are
indicated. (f), (g) Evolution of the linear polarization orientation of l+1 and l−1 for h ∈ [hmin, hmax] based on MRS phase. (h), (i) Counterparts of
(f) and (g) for l+2 and l−2 . (j), (k) Intensity ratio of the spin-wave component of group 1 over that of group 2 in subspaces with even and odd
parities under C (Mxz) based on SF (MRS) phase.

have not provided the �̃1 ∪ �̃′
1 and �3 ∪ �′

3 branches in this
subfigure since they are too close to �II,IV. Similar to the
p < 1/4 case, the original two interparity crossings in SF
phase are lifted by oblique dc fields and become anticrossings.
To confirm this, the weights in subspaces with even and odd
parities (under C) for each branch have been depicted in white
areas of Figs. 7(b) and 7(c), respectively. Clearly, for �I,IV

(�II,III), |δm+
1 |2 + |δm+

2 |2 (|δm−
1 |2 + |δm−

2 |2) decreases from
almost 1 to 0, indicating the hybridization of subspaces with
opposite parities under C. Spin waves in the SF phase are
all elliptically polarized and the ellipticities of δm±

1 (equal to
those of δm±

2 ) are, respectively, provided in Figs. 7(d) and
7(e), with positive (negative) values indicating right-handed
(left-handed) polarization. Except for the MRS-phase-based
shaded area, the details are quite similar to those in Figs. 6(c)
and 6(d) of the ψ = 0 case, so we will not go into it again.
The only difference is that hL,R change to hL = 2.736 and
hR = 3.712. In addition, the spin-wave intensity ratio always
equals 1 for all branches in the SF phase, as shown in
Figs. 7(j) and 7(k).

For spin waves in the MRS phase, the symmetry operator
changes to Mxz. Similar to in-plane-dc-field case, the π/2

phase difference between l+1 + l+2 and l−1 + l−2 still exists.
Except for this, the behaviors of spin waves become more
fantastic. First, the weight distributions in the even and odd
subspaces under Mxz are, respectively, plotted in the shaded
areas in Figs. 7(b) and 7(c). For �I,II,III, the spin wave spans
the two subspaces. While for �IV = 0, only the subspace with
odd parity accommodates the spin wave. The polarization of
all spin-wave components (l±1,2) become linear. Figures 7(f)
and 7(g) show the polarization directions for l±1 in the local
coordinate system (e1

φ, ez′ ), which differ from those of l±2
within (e2

φ, ez′′ ) presented in Figs. 7(h) and 7(i). Especially, as
h increases from hmin to hmax, l+1 belonging to �I, �II or �III,
respectively, swings around ez′ , e1

φ , or rotates clockwise from
+e1

φ to −e1
φ , as illustrated in Fig. 7(f). In contrast, Fig. 7(h)

shows that l+2 from �I, �III or �II, respectively, swings around
ez′′ , e2

φ , or rotates clockwise from +e2
φ to −e2

φ . Their intensity
ratios, |l+1 |2/|l+2 |2, are plotted in the shaded area in Fig. 7(j).
Clearly, they all deviate from 1. In particular, l+2 (l+1 ) from
�II (�III) disappears at hs = 3.252. Then we move to the
subspace with odd parity (under Mxz). Now l−1 belonging to
�I, �IV, �II, or �III, respectively, swings around e1

φ , e1
φ , ez′ ,
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or rotates clockwise from +ez′ to −ez′ , as shown in Fig. 7(g)
while Fig. 7(i) provides that l−2 belonging to �I, �IV, �III,
or �II, respectively, swings around e2

φ , e2
φ , ez′′ , or rotates an-

ticlockwise from −ez′′ to +ez′′ . At last, |l−1 |2/|l−2 |2 for all four
branches are provided in Fig. 7(k). Again, l−2 (l−1 ) from �II

(�III) vanishes at hs = 3.252.

V. DISCUSSIONS AND CONCLUSION

First, in this paper the in-plane anisotropy has been ne-
glected. This is applicable for two reasons. On one hand,
in real symmetric all-antiferromagnetic junctions such as
Fe2O3/Cr2O3/Fe2O3, the SF field of the spacers is much
higher than that of the outermost Fe2O3 sublayers. Therefore,
the neglect of in-plane anisotropy in Fe2O3 sublayers is ac-
ceptable. On the other hand, the easy-plane anistropy of Fe2O3

sublayers reduces the concomitant SF field HSF ≈ √
2HE HA

(HA being the in-plane anisotropy field) to zero, which greatly
simplifies our analytics and does not lose the most significant
features of these junctions. Specifically, if we consider the in-
plane anisotropy, the strict cruciferae state at h = 0 fails and
the ground state should exhibit some kind of hysteresis be-
havior. SF and MRS phases will both survive, but the critical p
should be larger than 1/4 from the easy-plane case. The reason
why we did not explore further is that the central vectorial
equality like Eq. (6), which is the basis of our analytics, is hard
to obtain. Hence the magnetization statics and corresponding
magnonics can hardly be analyzed theoretically. However,
the main features we have proposed in the main text should
persist.

Second, the magnonics in the SF phase is relatively simple
since the underlying symmetry operator is the polarization-
preserved rotation (C2x or C). Spin waves therein are all
elliptically polarized while bearing fixed phase differences be-
tween components both from subspaces with opposite parities
and from the same subspace but different group (1 or 2). On
the other hand, magnonics in the MRS phase is more inter-
esting since now the underlying symmetry operator becomes
the polarization-broken mirror reflection Mxz. The most ex-
citing feature is that oblique dc fields turn spin waves from
elliptical to linear polarization. This can be understood by
analogy to the superposition of two circularly polarized light
with the same frequency but opposite rotation direction into
linearly polarized light. In addition, the polarization direc-
tion of different components (l±1,2) from various frequency
branches (�I∼IV) experience a distinct swinging or rotating
process in the transverse plane (of meq

A,1(2)) as the oblique dc
field increases within the MRS phase. This provide a unique
route of generating and manipulating linearly polarized spin
waves in symmetric all-antiferromagnetic junctions.

Third, the emergence of the MRS phase relies on a
relatively large intersublayer orthogonal coupling (in the easy-
plane case, p = Hp/HE > 1/4). In real all-antiferromagnetic
junctions, this can be achieved by appropriately decreasing
the spacer thickness or fine-tuning the nonuniform domain
wall states in the spacers. In addition, the two outermost
antiferromagnetic sublayers should be symmetric. If they are
made of the same material but with different thickness, or
just made of different materials, the MRS phase should fade
out since generally meq

A(B),1(2) cannot hold in the same latitude

circle. Mxz is no longer the strict symmetry operator then the
combined spin waves change from linear to elliptical polariza-
tion (although can be very narrow). Therefore, to efficiently
generate and manipulate linearly polarized spin waves, the
all-antiferromagnetic junctions should be precisely prepared
as a symmetric configuration. Further investigations about the
effects of asymmetry on magnetization statics and magnoncis
should be also interesting but are beyond the scope of this
paper.

In summary, by appropriately reformulating the orthogonal
coupling in Eq. (2), in this paper the equilibrium magne-
tization layout and the corresponding coherent magnonics
in symmetric all-antiferromagnetic junctions are systemati-
cally revealed. Our contribution is mainly focused on three
aspects: (i) Under strong enough orthogonal coupling, the
equilibrium magnetization layout can fall into the MRS phase,
which is quite different from the usual SF phase that antifer-
romagnets often experience. (ii) For in-plane dc fields, two
interparity and two intraparity accidental crossings exist in
the eigenfrequency spectrum of spin waves in the SF phase.
At h = hmin (hmax), where a second-order (first-order) PT
occurs between SF and MRS phases, eigenfrequencies are
continuous (discontinuous). Except for some isolated special
points (hmin, hmax and hc), spin waves are always elliptically
polarized for h ∈ (0, hFM). (iii) Oblique dc fields turn the
interparity crossings in the SF phase into anticrossings while
inducing considerable hybridization between elliptically po-
larized spin-wave components belonging to subspaces with
even and odd parities. The most exciting progress resides in
magnonics based on the MRS phase, which is defined upon
Mxz. The spin-wave components become linearly polarized
and the polarization direction can be fine controlled by field
strength within MRS phase. Our results lay the foundation for
magnetic phases and the corresponding coherent magnonics
in symmetric all-antiferromagnetic junctions while opening
an avenue for magnetic nanodevices with ultrahigh density
and ultrafine control of magnonics.

ACKNOWLEDGMENTS

M.L. acknowledges supports from the National Natural
Science Foundation of China (Grant No. 12204403). B.X. is
funded by the National Natural Science Foundation of China
(Grant No. 11774300). W.H. is supported by the National
Natural Science Foundation of China (Grant No. 12174427).

APPENDIX A: EXPLICIT FORM OF THE QUARTIC
EQUATION IN SEC. IV C

The parameters J0,1,2,3 in the quartic algebraic equation of
�2: (�2)4 + J3(�2)3 + J2(�2)2 + J1(�2) + J0 = 0 has the
following explicit form:

J0 = [(e1)2 − (e2)2][( f1)2 − ( f2)2],

J1 = 2(e2 f2 − e1 f1)[(a1 + a2)(b2 + c2) + (a1 − a2)

(b1 − c1)] + 2(e2 f1 − e1 f2)[(a1 + a2)(b1 − c1)

+ (a1−a2)(b2+c2)] + 2e1[( f1)2 − ( f2)2]

+ 2 f1[(e1)2 − (e2)2],
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J2 = [(e1 + f1) − (a1 + a2)(b2 + c2) − (a1 − a2)(b1 − c1)]2

− [(e2 − f2) − (a1 + a2)(b1 − c1) − (a1 − a2)

(b2 + c2)]2 + 2(e1 f1 − e2 f2),

J3 = 2[(e1 + f1) − (a1 + a2)(b2 + c2) − (a1 − a2)(b1 − c1)],

(A1)

with

a1 = 1 − 4p cos2 ε,

a2 = 1 + 4p cos2 ε,

b1 = 1 + 2p sin2 2ε − 4p cos2 ε cos 2ε + k sin2 ε sin2 χ,

b2 = cos 2ε − 2p sin2 2ε − 4p cos2 ε,

c1 = 1 + 4p cos2 ε cos 2ε + k sin2 ε sin2 χ,

c2 = cos 2ε + 4p cos2 ε,

d = k

2
sin ε sin 2χ,

e1 = a2(b2 − b1) − kb1 cos2 χ + d2,

e2 = a2(b1 − b2) − kb2 cos2 χ

f1 = a1(c2 − c1) − kc1 cos2 χ + d2,

f2 = a1(c1 − c2) − kc2 cos2 χ.

(A2)

APPENDIX B: DETAILED PMRS UNDER OBLIQUE DC
FIELDS

After defining p̃ ≡ p[(meq
A,1 + meq

A,2)(meq
B,1 + meq

B,2)] =
p{sin2 θ1[(cos φ1+ cos φ2)2−(sin φ1 − sin φ2)2] + 4 cos2 θ1},
μ ≡ sin η cos ε − sin θ1 cos φ2 cos χ (1 + tan χ tan ξ ) sin ε −
sin 2ε, ν ≡ sin 2η + sin θ1 cos φ1 cos ξ (1 + tan χ tan ξ ) sin η

− sin ε cos η, and κ ≡ sin θ1(cos φ2 − cos φ1), the elements
of Θ̃ and Φ̃ from PMRS in Eq. (29) are as follows:

Θ̃11 = −ik sin ε sin χ cos χ,

Θ̃12 = −i( p̃ − 1) sin η sin(ξ − χ ),

Θ̃13 = 1 − p̃ + k cos2 χ,

Θ̃14 = (1 − p̃) cos(ξ − χ ),

Θ̃21 = −i( p̃ − 1) sin ε sin(ξ − χ ),

Θ̃22 = ik sin η sin ξ cos ξ,

Θ̃23 = Θ̃14,

Θ̃24 = 1 − p̃ + k cos2 ξ,

Θ̃31 = p̃ cos 2ε + 1 + k sin2 ε sin2 χ,

Θ̃32 = ( p̃ + 1) cos ε cos η

+ ( p̃ − 1) sin ε sin η cos(ξ − χ ),

Θ̃33 = −Θ̃11,

Θ̃34 = −Θ̃21,

Θ̃41 = Θ̃32,

Θ̃42 = p̃ cos 2η + 1 + k sin2 η sin2 ξ,

Θ̃43 = −Θ̃12,

Θ̃44 = −Θ̃22 (B1)

and

Φ̃11 = −ik sin ε sin χ cos χ − 2ipμκ sin χ,

Φ̃12 = i( p̃ + 1) sin η sin(ξ − χ ) − 2ipνκ sin χ,

Φ̃13 = ( p̃ + 1 + k cos2 χ ) + 2pκ2 sin2 χ,

Φ̃14 = ( p̃ + 1) cos(ξ − χ ) − 2pκ2 sin χ sin ξ,

Φ̃21 = i( p̃ + 1) sin ε sin(ξ − χ ) + 2ipμκ sin ξ,

Φ̃22 = ik sin η sin ξ cos ξ + 2ipκν sin ξ,

Φ̃23 = Φ̃14,

Φ̃24 = ( p̃ + 1 + k cos2 ξ ) + 2pκ2 sin2 ξ,

Φ̃31 = (1 + k sin2 ε sin2 χ − p̃ cos 2ε) + 2pμ2,

Φ̃32 = 2pμν + (1 − p̃) cos ε cos η

− (1 + p̃) sin ε sin η cos(ξ − χ ),

Φ̃33 = −Φ̃11,

Φ̃34 = −Φ̃21,

Φ̃41 = Φ̃32,

Φ̃42 = (1 + k sin2 η sin2 ξ − p̃ cos 2η) + 2pν2,

Φ̃43 = −Φ̃12,

Φ̃44 = −Φ̃22. (B2)
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