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Electrically detected single-spin resonance with quantum spin Hall edge states
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Detection is most often the main impediment to reduce the number of spins in paramagnetic resonance
experiments. Here, we propose another route to carry out electrically detected spin resonance of an individual
spin, placed at the edge of a quantum spin Hall insulator (QSHI). The edges of a QSHI host a one-dimensional
electron gas with perfect spin-momentum locking. Therefore, the spin relaxation induced by emission of an
electron-hole pair at the edge state of the QSHI can generate current. Here, we demonstrate that driving the
system with an ac signal, a nonequilibrium occupation can be induced in the absence of applied bias voltage,
resulting in a dc measurable current. We compute the dc current as a function of the Rabi frequency �, the
spin relaxation, and decoherence times T1, and we discuss the feasibility of this experiment with state-of-the-art
instrumentation.
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I. INTRODUCTION

The sensitivity limit of commonly available electron para-
magnetic resonance (EPR) spectrometers is in the range of
1013 spins [1]. This number can be dramatically reduced in
tailored setups [2]. In some special systems, such as nitrogen-
vacancy (NV) centers, one is permitted to carry out single-spin
resonance using optical readout, made possible both by the
fact that NV centers are very good single-photon emitters and
their photon yield is spin dependent [3]. Using spin-to-charge
conversion, electrically detected single-spin resonance has
been demonstrated for defects in field-effect transistors [4],
quantum dots [5,6], and single dopants in silicon [7]. Elec-
trically detected single-spin resonance with subatomic spatial
resolution has been also demonstrated [8] using electron spin
resonance scanning tunneling microscopy (ESR-STM).

Here, we explore the spin-locked edge states of a two-
dimensional quantum spin Hall insulator [9,10] (QSHI) to
accomplish the electrical readout of the spin resonance of
an individual spin sitting on the edge. The edge states of
QSHI are predicted to have a one-to-one relation between the
propagation direction and the spin orientation along a system-
dependent spin quantization axis (see Fig. 1). As a result,
pumping spin along this axis entails electrical current flow.
As we discuss below, if an externally pumped localized spin
is exchange coupled to the spin-locked edges, it will generate
a dc current.

Experimental evidence of the spin-locked edge states in
QSHI is indirect. In the absence of magnetic impurities, edge
states should have no backscattering and therefore a quantized
conductance is expected [11–13]. Values of conductance close
to 2e2/h were reported in HgTe/CdTe quantum wells [14]
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and 1T ′ WTe2 [15,16]. In addition, coherent propagation
along the edge with scattering properties consistent with the
strong suppression of backscattering have been observed in
bismuth bilayers [17,18], and in bismuth nanocontacts [19].
Very relevant for the ensuing discussion, experiments where
magnetic atoms have interacted with the edge states in
the bismuth bilayer and produced backscattering have been
demonstrated [20].

The interplay between local spins and the spin-locked
edge states of a QSHI has been widely studied theoreti-
cally [21–37]. Several physical realizations of the local spin
have been considered, including a confined electron in a quan-
tum dot [29,35], nanomagnets [28], magnetic atoms [26,27],
spin chains [36], nuclear spins [25,33,37], and magnetic
molecules [32]. Early works focused on the Kondo ef-
fect [21,24], and the influence of magnetic impurities on
conductance [22]. More recent works have addressed the spin
pumping of local moments at the edges by the helical-electron
spin current [26–29,31,32,34]. The reverse problem, pumping
dc current by an external ac excitation of nuclear spins, has
been addressed recently [37]. On a similar standpoint, here
we assess whether the paramagnetic spin resonance of an
individual spin, in the form of an individual magnetic atom,
spin chain, or magnetic molecule, could be carried out.

The rest of this paper is organized as follows. In Sec. II
we introduce the basic principles of the electrically detected
single-spin resonance in a QSHI. An estimation of the maxi-
mum dc current is provided in Sec. III, while the main limiting
factors are discussed in Sec. IV. Finally, a brief summary and
conclusions are given in Sec. V.

II. ELECTRICALLY DETECTED SINGLE-SPIN
RESONANCE IN QSHI EDGE STATES

This work builds on the following idea: At the edge states
of QSHI, an electron with spin −σ and momentum −kF can
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FIG. 1. Scheme of the device proposed for the electrically detected single-spin detection. A local spin S is exchange coupled to one edge
state of a QSHI, where momentum direction and spin orientation are locked (see the left inset). When the system is under the action of an
external ac magnetic field with frequency ω and intensity determined by the Rabi rate �, a frequency-dependent nonequilibrium steady state
occupation is established (see the right inset), where one of the spin transitions �Sz is favored. This in turns leads to a net dc electrical current
along the QSHI edge.

be scattered to a state with momentum +kF and spin σ by
an exchange interaction with a local spin. Here, σ is defined
along a material-dependent axis that, without loss of general-
ity, we label as z. Since the total spin has to be conserved in the
process, the spin change of the electron has to be compensated
by the spin change of the local magnetic moment. Unless
otherwise stated, we only consider a local spin whose spin
quantization axis is aligned along z, the same quantization axis
of the quasiparticle states. Therefore, for a given local-spin
transition with a change of spin �Sz = ±1, the quasiparticles
undergo a ±2kF backward-scattering process with �σ = ∓1,
on account of their helical nature.

Crucially, the electron-hole pairs carry a net current whose
sign depends on the sign of �σ . The extra electron in one
branch and the missing electron in the opposite branch con-
tribute to current flow with the same polarity. As the edge
states are expected to have no backscattering, the electron and
the hole will reach the electrodes and contribute to the current.
Hence, if we create a stationary nonequilibrium imbalance
in the �Sz transitions by driving the spin transitions with an
external ac driving field, a net dc current will be generated.

We now substantiate the argument mathematically. Let
us take for simplicity a local S = 1/2 spin moment under
the influence of a static magnetic field, Beff = h̄ω0/(gμB),
where Beff = Bz + Bother

z is the sum of the external field Bz

and other contributions that could arise from the interaction
of the local spin and its environment. Thus, the station-
ary spin Hamiltonian can be written as H0 = h̄ω0

2 τ̂z, with
τ̂z the z-Pauli matrix, and h̄ω0 = ε1 − ε0 � 0. We label P0

and P1 as the probabilities of occupying the ground (0) and
excited (1) states, respectively. The relevant spin-exchange
process that gives place to spin flips is governed by the

Hamiltonian [36]

HQSHI
sf =

∑

k,k′

J

2L
(Ŝ+L†

k Rk′ + H.c.), (1)

where J is the exchange coupling constant, L is the length
of the edge, and L†

k ≡ c†
−(kF +k),↓ and R†

k ≡ c†
+(kF +k),↑ are the

left (right) moving fermion operators, with c†
kσ

the creation
operator of a fermion in the edge channel with spin σ and
momentum k. Here, Ŝ± = 1/2(Ŝx ± iŜy) are the spin-ladder
operators.

If we define the rate �1→0 and �0→1 of the �Sz = ∓1
process, respectively, we can write the electric current flowing
to the right as

I = 2e(P1�1→0 − P0�0→1), (2)

where e is the elementary charge and Pi are the nonequilib-
rium occupations of the i ≡ 0, 1 states. In equilibrium, the
current (2) vanishes because the scattering rates satisfy the
detailed balance principle

�1→0

�0→1
= Peq

0

Peq
1

= eβ h̄ω0 , (3)

where 1/β = kBT and Peq
i are the equilibrium occupations.

We shall now demonstrate that if the local spin is driven
away from equilibrium by some external force that does not
significantly modify the rates, then a net current can occur. If
we write Pi = Peq

i ± δP/2, where the + (−) sign corresponds
to i = 1 (i = 0), and taking into account that in thermal equi-
librium (without any applied bias voltage) the net current is
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null, then we have

Idc = eδP�1→0(1 + e−β h̄ω0 ). (4)

This equation is the starting point of our analysis. It relates the
out-of-equilibrium occupations of the two-level system and a
net current flow. The direction of the current is established by
the chirality of the spin edge and by the sign of the magnetic
field. For a fixed edge, the reversal of the magnetic field would
lead to current flow in the opposite direction.

Let us consider now the case where the local spin is also
under the action of an ac transverse magnetic field Bx(t ) ≡
2h̄�/(gμB) cos(ωt ), where � is known as the Rabi frequency
or flop rate. When the local spin is driven by Bx(t ) with the
frequency ω close enough to the natural frequency ω0, the
nonequilibrium occupations Pi can deviate significantly from
their equilibrium counterpart Peq

i . In particular, for a two-level
system the occupation imbalance �P = P0 − P1 is given by
the steady state solution of the Bloch equations [38,39]. Thus,
using the definition of δP, we can write

δP = �Peq �2T1T2

1 + δ2T 2
2 + �2T1T2

, (5)

where �Peq ≡ tanh(β h̄ω0/2) is the equilibrium population
imbalance and δ = ω − ω0 is the frequency detuning. In
addition to the equilibrium imbalance, the nonequilibrium
occupation difference, and therefore the induced electrical
current, depends on the Rabi flop rate and the two char-
acteristic timescales, the longitudinal relaxation time T1 =
1/(�0→1 + �1→0) and the decoherence time T2, also known as
the transversal relaxation time in the language of macroscopic
Bloch equations [38]. If we make the substitution of Eq. (5)
into the current expression (4), we get

I = I0�Peq �2T1T2

1 + δ2T 2
2 + �2T1T2

, (6)

where

I0 = e

2T1
. (7)

Equation (6) is the main result of this paper. It predicts a dc
current flowing at the edge of a quantum spin Hall when a
single localized spin is driven with an ac field.

III. ESTIMATE OF MAXIMAL dc CURRENT

The maximal induced dc current is obtained at resonance
(δ = 0), when the driving frequency matches the Zeeman
frequency, and it is given by

Imax = I0�Peq, (8)

obtained when �2T1T2 � 1 and assuming T1 is entirely due
to the Kondo exchange mechanism envisioned in Fig. 1. The
maximal equilibrium spin polarization �Peq = 1 is achieved
only when the low-energy spin state is fully occupied, i.e.,
β h̄ω0 � 1, where Imax = I0. In other words, the magnitude of
the maximal current is determined by T1 provided �2T1T2 �
1. In this limit, the spin relaxation rate due to the Kondo
exchange for a single S = 1/2 spin interacting with the spin-

locked edge of a QSHI is given by [36]

1

T1
≈ (ρJ )2π

16
ω0, (9)

where ρ is the density of states at the Fermi energy of the
edge electrons. Equation (9) is derived taking ρJ as a small
parameter. Therefore, an upper bound for the dc current is
given by

I theo
max <

eπ

32
ω0. (10)

For a dc field of 1 T (ω0 ≈ 1.8 × 1011 s−1), the standard for
ESR experiments, Imax is in the nA regime for T 
 1.3 K,
well within the instrumental state of the art. We note that
nuclear Zeeman splitting is three orders of magnitude smaller
than its electronic counterpart, and the hyperfine interaction
is at least three orders of magnitude smaller than the Kondo
exchange. Therefore, nuclear spin relaxation rates, that scale
with the square of the hyperfine interaction, will be many
orders of magnitude smaller than their electronic counterparts.

Although Eq. (7) naively implies that a T1 as short as
possible is desired, the inequality �2T1T2 � 1 must also hold.
Given that T2 < 2T1, a short T1 requires a large Rabi cou-
pling �. Thus, T1 must remain above 1/� so the maximal
current criteria is satisfied. In practice, this leads to the stricter
condition

Imax < e�. (11)

In conventional ESR experiments, the spin is driven by the
ac magnetic field of a microwave. Typically, cavities are used
to increase the magnitude of the ac field. State-of-the-art val-
ues for the ac magnetic field in ESR experiments can be larger
than 250 mG [1]. For a spin S = 1/2 with g = 2 this gives
� � 0.7 MHz and, from Eq. (11), I < 120 fA, well above
state-of-the-art current detectors than can detect changes as
small as 10 fA [8,40].

Larger values of � have been achieved using ESR-
STM, where several different driving mechanisms other than
the Zeeman interaction with the ac field have been pro-
posed [41–44]. For Ti-H on MgO, and an S = 1/2 spin
system, ac magnetic fields up to 1 mT have been reported [40],
with an induced Rabi frequency �/2π ∼ 10 MHz in contin-
uous mode, while Rabi frequencies up to 30 MHz have been
demonstrated in pulsed ESR-STM [45] or using double reso-
nance under large ac voltages [46]. Moreover, these conditions
can be achieved while keeping the �2T1T2 factor larger than
one [46–48]. These rates translate into maximal currents up to
∼3 pA,

IV. LIMITING FACTORS

Condition (11) is an upper bound for the pumped cur-
rent generated by the single-spin resonance. In addition to
the conditions leading to this maximum current (β h̄ω0 � 1
and �2T1T2 � 1), there are a few factors that could reduce
the efficiency of this resonant pumping. For instance, any
mechanism that leads to the local-spin relaxation without
creation of a 2kF electron-hole pair will decrease the dc
current, for a fixed value of the Rabi coupling. There are
several mechanisms that can relax the spin. First, suppose
the material-dependent spin-momentum locking axis z is not
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perfectly aligned with the local-spin quantization axis z′. In
that case, exchange interactions will relax the local spin in
the forward-scattering channel that entails no current. For
instance, let us consider a local spin governed by the Hamilto-
nian H = DS2

z + E (S2
x − S2

y ), integer spin, and D < 0. It can
be seen [49] that transitions between the ground state doublet
are generated by the Sz operator. Therefore, the Kondo ex-
change with the QSHI edge states is via the Szσz(0) operator,
which can only produce forward-scattering spin-conserving
transitions. In general, the quantization direction of the edge
state will depend on momentum and it can point in directions
different than the normal [15,50].

Second, spin-phonon coupling can represent an important
source of spin relaxation in paramagnetic crystals [51], in-
cluding both one-phonon direct relaxation processes, with a
typical relaxation rate proportional to T when h̄ω0 � kBT ,
and two-phonon Raman and Orbach processes [38]. Third,
the spin relaxation of the current-carrying electron-hole pair,
induced by nuclear spins [25], by other magnetic impurities,
and with other thermally excited electron-hole pairs in bulk
states would reduce the resulting current. Whereas hyperfine
interactions are typically weak, the case where more than one
magnetic center is present at the edge deserves future atten-
tion. One the one hand, having N resonating spins enhances
the spin pumping. On the other, electron-hole pairs generated
by a given spin can be reabsorbed by the others.

Another limiting factor would be the formation of a Kondo
singlet, that would quench the magnetic moment of the
local spin, reducing its effective coupling to the external
driving force.

V. DISCUSSION AND CONCLUSIONS

Here, we have proposed a mechanism that permits one
to envision an electrically detected single-spin resonance of
a magnetic impurity coupled to the edge state of a QSHI.
We have demonstrated that the spin-momentum locking at

the edge states leads to a spontaneous net current when
an electron-hole pair is created by the isotropic exchange
coupling with a local magnetic moment. If an external ac
driving is capable of inducing a departure of the station-
ary occupations from their equilibrium counterpart, this in
turns generates a measurable dc current. We have shown that,
with state-of-the-art instrumentation, the upper limit for the
generated dc current is given by the Rabi coupling � of
the local spin to the ac driving fields and presented a thor-
ough discussion of the limiting factors that could reduce this
maximum induced current. We estimate that state-of-the-art
ESR instrumentation can provide values of � that will in-
duce currents within the current sensitivity, with dc currents
well above a few tens of fA. Finally, we have proposed
several physical realizations, such as magnetic adatoms or
molecules attached at the border of a QSHI and probed by a
ESR-STM.
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