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Origin of the magnetoelectric couplings in the spin dynamics of molecular magnets
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We present a simple but attractive tool to describe and model the spin states of single molecule magnets. It
is presented through a generalized Landau-Lifshitz-Gilbert equation with bias-dependent couplings that can be
externally controlled. We provide a complete account of the various magnetic couplings [magnetic anisotropy,
exchange, Dzyaloshinskii-Moriya interactions (DMI), damping, and magnetic noise’s correlations] within a
dimer of localized moments. The inversion symmetry breaking, ensued by the bias potential, induces a DMI
between the magnetic elements that can be tuned accordingly. Through a calculation of the evolution of the spin,
we conclude that such DMI is the dominant interaction during the reversal process. Along with the prescription
to describe the time evolution of the spin moments, our results provide a qualitatively complete and integrated
picture of various systems of interest in nanomagnetism.
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I. INTRODUCTION

Magnetoelectric effects lie at the heart of the field of
molecular spintronics [1]. They may well provide the ultimate
tools required to garnish several applications [2]. The main
goal being to furnish a powerful yet flexible control of mag-
nets, it is attractive to couple them directly to electric fields.
In this way, as it is expected, an increased but subtle control
of otherwise unwieldy spin configurations will be achieved.

This work proposes an exploration into the magnetoelec-
tric control of systems of localized moments such as those
in single molecule magnets (SMM)[3]. We built upon pre-
vious results [4,5] to create an account of the dynamics of
a simple molecular magnet, a spin dimer, acting as an elec-
tronic contact between two otherwise independent leads. We
use a nonequilibrium formalism [6] in the description of the
microscopic dynamics. From there, we arrive at an intuitive
picture of the different mechanisms that affect the evolu-
tion of the localized moments’ spin. Our results are encoded
through a generalized form of the Landau-Lifshitz-Gilbert
(LLG) equation. The usual form of the LLG equation has
been used extensively in the treatment of atomistic models of
magnetism, such as those devoted to the study of fast spin
dynamics [7]. Different derivations of the LLG equation are
applicable to SMM [8–11]. We show how, to satisfy internal
consistencies demanded by the electrons’ quantum mechan-
ical behavior, it must be modified into a fully anisotropic
and nonlocal framework. Starting from a toy-model based
on itinerant electrons and localized spin moments, our
calculations encompass complete derivations of the mag-
netic anisotropy, exchange (both isotropic and anisotropic),
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nonlocal and anisotropic damping, and fluctuations. We
apply our theory to predict a voltage-induced Dzyaloshinskii-
Moriya interaction (DMI) between the localized moments
within dimer systems. The ultimate dependency of all these
couplings on the bias voltage leads us to a form of voltage-
controlled switching as expected from the literature [12,13].
Focusing on the inversion symmetry breaking, implied by the
bias potential, we conclude that the DMI is an odd function of
it and can be tuned accordingly. This DMI is restricted only to
the nonequilibrium situation, vanishing when the bias voltage
is turned off. We argue that such a coupling becomes domi-
nant at the transition between the aligned and the antialigned
configurations, dictating the course of the reversal process. We
expect such a generalized LLG equation to become a pivotal
ingredient in the analysis of the magnetic behavior of SMMs.

Aside from the semi-classical description just presented,
it is interesting to wander into the quantum regime to see
the profound implications that these findings might have [14].
Within this perspective, information is stored in the magnetic
states of our dimer in the form of spin q-bits [15]. It has
been reported that DMI provides a good source for entan-
glement [16] and opens up the possibilities of performing
quantum processing tasks. Complementary, we can imagine
the use of our proposal to induce entanglement in magnonic
states. In this sense, it is well known that the DMI induces
entangled states, as an antisymmetric exchange interaction
[17,18]. Additionally, we mention that for certain 2D ma-
terials the DMI has been proven to promote topologically
nontrivial magnonic states [19–21]. While our calculations
are semi-classical and a full quantum treatment is beyond
the scope of this paper, we expect that, our symmetry-based
arguments and, hence, our results for the coupling constants
will be qualitatively applicable as we approach the quantum
domain.
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FIG. 1. Minimal model of two localized spins, m1 and m2, in
between two semi-infinite leads characterized by their temperature
T and chemical potential μL/R, intrahopping te and contact hopping
tL/R, for left and right leads, respectively.

The molecular magnets we have in mind fit well within
the ranges of other SMM reported in the experimental
[22–26] and theoretical [27] literature. They have been pro-
posed as magnetic memories and circuits [2,28,29] and can
be integrated with other nanotechnological devices such as
graphene-based hybrids [30]. Also, we found motivation in
experiments that explore their potential in memories [31], in
the proposal of using them in logic operations [32] and as
exotic magnetic order such as toroidal configurations [33,34].

Concerning dimers, the subject we have chosen to apply
the physical ideas of the paper, we can find various reports on
the control of the relative spin orientation. Switching has been
accomplished by using the mechanically controlled break-
junction technique on two Co2+ ions [35]. Other theoretical
works on dimer configuration are usually based upon the
effects of ferromagnetic leads rather than normal metal leads
[36,37].

II. MINIMAL MODEL OF A SPIN DIMER

We studied a toy model that consists of two leads and
an electronic device as shown in Fig. 1. The device itself
is composed of two sites, each one holding a spin. There
are electronic hopping amplitudes both within the device and
toward exterior leads represented as electronic reservoirs. This
simple model provides a qualitatively compelling picture of
various systems of interest in nanoscience. For instance, one
might use it as a model of molecular magnet dimers, as we
will do in the following. Additionally, we can apply it in the
context of double quantum dots [38,39], spin-polarized STM
[40], among others. Similar configurations have been studied
in several reports [4,5,37,41–49], each one with their own par-
ticular focus and model features. Here we are interested in the
nonequilibrium effects, i.e., the effects of a bias voltage across
the device. We follow the framework presented in [4,5,50,51]
to model this kind of systems.

In contrast with those works, we include a spin-dependent
electronic hopping between the sites within the device. We
include this hopping as a first approximation to represent
the spin-orbit coupling in the electronic states within the
molecule. The simplest way to study the effects of electrical
current on an electronic device, down to the microscopic
level, is by a one-dimensional tight binding model [52], in
the nearest-neighbor approximation with a bias voltage. The
first ingredients to analyze are the left and right leads, mod-
eled as HL/R = −te

∑
〈i, j〉,σ c†

L/R;i,σ cL/R; j,σ , where te is the
spin-independent hopping parameter within each lead. The
operators c†

L(R);i,σ and cL(R);i,σ represent the fermionic creation
and annihilation operators in the left (right) lead, respectively.

The next contribution is the connection Hamiltonian that
models the system-lead interaction by an electronic hopping
between the rightmost (leftmost) site in the left (right) lead
with the left (right) site of the electronic device, H(L/R)c =
−tL/R

∑
σ (c†

L/R,σ c1/2,σ + c†
1/2,σ cL/R,σ ). Here tL and tR are the

spin-independent hopping parameters quantifying the cou-
pling between each lead and the system. In this case, c†

i,σ and
ci,σ represent the fermionic creation and annihilation opera-
tors in the device at site i. The interactions between the system
and the environment can be separated into a purely electronic
contribution along with a mixed one that combines the elec-
tronic and spin degrees of freedom, Harray = He + Hd . The
mixed Hamiltonian includes the Zeeman interaction and the
s − d interaction. Thus the electronic and mixed Hamiltonians
are

He = ε0

∑
σ

(c†
1σ c1σ + c†

2σ c2σ ) +
∑
σ,σ ′

c†
1σ tσσ ′c2σ ′ + H.c.,

(1)

Hd = H0(Ŝ1) + H0(Ŝ2) − �ŝ1 · Ŝ1 − �ŝ2 · Ŝ2, (2)

where ŝa = 1
2

∑
σσ ′ c†

aστσσ ′caσ ′ represents the electron’s spin
at site a, c†

a,σ , ca,σ are the fermionic creation and annihilation
operators, and τσσ ′ is the vector containing the Pauli matrices.
Ŝ is the operator of the localized spin-S per site and � is local
moment-electronic spin exchange coupling. Finally, H0(Ŝa)
and ε0 represent all the spin and fermionic on-site energies
due to the internal structure of the molecule, respectively,
here we include magnetocrystalline anisotropic energies [3]
and the Zeeman interaction with an external magnetic field in
H0(Ŝa). The definition of He in Eq. (1) includes the matrix
tσσ ′ = t01σσ ′ + t t̂ · τσσ ′ , where 1 is the identity matrix and t̂
is a vector that sets the direction and strength of the spin orbit
coupling (SOC). This constitutes a rudimentary form of SOC
[53,54]. The election of this vector singles out the t̂ direction
in the final emergent spin dynamics. The hopping strengths, t0
and t , correspond to the spin-independent and spin-dependent
hoppings, respectively.

III. EFFECTIVE MAGNETIC INTERACTIONS

A lengthy but straightforward analysis, based upon a de-
tailed characterization of the electronic degrees of freedom
[4,5] and a perturbative expansion on the local moment-
electronic spin exchange coupling � was performed. It led us
to the low-energy equations of motion within the semiclassical
approximation for the spin variables (for a detailed exposition
of such procedure, we refer the reader to Appendix A). The
equation for the localized spin is

dm2

dt
= m2 ×

(
H2 + η2 − α21

dm1

dt
− α22

dm2

dt

)
(3)

and a corresponding equation for m1 (exchanging indexes
1 and 2 throughout the expression). ma is the direction
of the spin at site a. This equation is quite similar to the
Landau-Lifshitz-Gilbert equation. However, it presents cer-
tain peculiarities. First, we have defined the effective field H
per site, which also depends on the orientation of the neighbor
site, through what we identify as effective spin interactions.
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It is important to emphasize that the overall behavior of the
system is not dictated by a collective energy functional. Sec-
ond, fluctuations due to interactions with itinerant electrons
are accounted for in the vector field ηa, called the stochastic
magnetic field due to the way it enters in the equations and
how it affects each localized spin directly. An important aspect
of this stochastic field is that it is a consequence of the semi-
classical approximation, so it is directly related to the system,
within our approximations, rather than a phenomenological
ingredient as often used in literature. Third, the damping is
now nonlocal and nondiagonal, meaning that each spin affects
the other one not only by the exchange interactions but also by
interchanging energy. Even more, the damping has a preferred
direction. All the above effective terms depend on the chem-
ical potential of each lead, for which we use μL = μF + eV

2
and μL = μF − eV

2 , so we now have the bias voltage V and
the equilibrium chemical potential μF as external control
parameters.

The effective field at site 2 is expressed by

H2 = − ∂E0

∂m2
+ �〈s2〉 + �2(J2m1 + D2m1 × t̂

+ A2(m1 · t̂ )t̂ + K2(m2 · t̂ )t̂ ) (4)

and a corresponding equation for H1 (exchanging indexes 1
and 2 throughout the expression). In the first-order contribu-
tion, O(�), 〈s2〉 stands for the local electronic spin due to
the effects of the SOC and the current flowing through the
system, in absence of coupling with the localized moments.
In the second-order terms O(�2), the coefficient K2 refers to
a local anisotropy and A2 to an anisotropic Ising exchange.
J2 stands for the usual isotropic exchange. Additionally, we
have D2, which sets the strength of the Dzyaloshinskii-Moriya
interaction (DMI) between the two neighbors. This interaction
favors an orthogonal configuration in the plane defined by the
SOC’s direction. Out of the usual symmetry arguments, the
symmetric configuration at zero voltage is forced to show no
DMI. It is only the inversion symmetry breaking provided
by the bias voltage that allows the DMI to acquire a value
different from zero. Indeed, as can be seen in Fig. 4 (lower
panel), and as it is required by symmetry, the DMI strength
is an odd function of the voltage and, hence, vanishes as the
bias voltage is reduced to zero. The interaction shows the rela-
tion D2(V ) = −D2(−V ), as well as, D2(V ) = −D1(V ). This
notion was put forward earlier [36] in a different model that
involved SOC in the contacts rather than within the system.

In addition to the effective field, we have the effective
damping matrix αab, which is very closely related to the
second-order interactions. However, the matrix is, in gen-
eral, not proportional to the identity, which means that the
spin faces an anisotropic damping. We note that the effective
damping mechanism is nonlocal. The dynamics of spin 1 af-
fects spin 2 through α12, and vice versa with α21. The effective
damping tensor is then expressed as

αab = �2
(
α

(i)
ab1 + α

(an)
ab t̂ ⊗ t̂

)
, (5)

where ⊗ stands for outer multiplication. As it is made explicit
in the last expression, the dissipation is naturally separated
into isotropic and anisotropic damping, however, from the
analytical calculations we would also have an antisymmetric

damping which for our analysis is discarded due to the small
numerical value relative to the other components of the tensor.
The first coefficient α

(i)
ab , also know as Gilbert damping, forces

the spins to align with the effective field. However, even
though the second coefficient α

(an)
ab acts as a damping factor

perpendicular to the time derivative of the spin, it can also be
interpreted as new field in the SOC direction.

Similarly to the damping tensor, the correlations of the field
η also have two components called symmetric and anisotropic
correlation strengths. Nevertheless, in contrast with α, the
antisymmetric part is identically zero due to the symmetries
of the model and its electronic structure. The correlation func-
tions are represented by

〈ηa(t )ηb(t ′)〉 = �2
(

j (i)
ab1 + j (an)

ab t̂ ⊗ t̂
)
δ(t − t ′). (6)

In particular, the spin-orbit induced torques act together
with stochastic fields whose statistical features are affected
by the SOC and are themselves anisotropic in nature. On one
hand, they include the previously reported [4,5] isotropic con-
tribution j (i)

ab to the correlations. However, j (an)
ab is something

exclusively related to the SOC and introduces an impor-
tant feature in the equations. Its explicit dependence on the
SOC direction emerges via the anisotropic correlation fac-
tor and changes the otherwise spherically distributed noise
contribution.

Equations (3) to (6), encapsulate the main results of the
present work. They provide a minimal model to handle lo-
calized moments interacting with electrons undergoing SOC.
Along with the effective interactions {J1,2, D1,2, A1,2, K1,2}
and the damping factors {α(i)

ab , α
(an)
ab }, it includes a prescrip-

tion to evaluate the time evolution of the localized moments.
The coefficients are calculated from the family of electronic
Green’s functions. The details of this procedure are shown
in the Appendix A. In the evaluation of the effective interac-
tions, damping coefficients and correlation strengths, we use
the parameters te = 100 meV, t0 = 2 meV, tL = tR = 10 meV,
and the on-site energies were taken as ε0 = 0 meV, however,
a difference in the on-site energy of each site can be used
as control parameters [37]. A selection of the couplings is
represented in Fig. 2 for a weak SOC regime, t = 5%t0, while
a more thorough characterization is provided in Appendix B.
Throughout the calculations we considered T ∼ 0 K, although
a nonzero temperature and even a temperature gradient can
readily be included in our model, opening a path toward
magnetothermal effects [45].

IV. DYNAMICS WITH ONE SPIN PINNED

We pursue the application of the ideas above through a
detailed analysis of a particular case. We study the situation
where one of the localized spins is pinned, so m1 is pointing
along a constant fixed direction, while m2 = m, undergoes the
dynamics prescribed by the previous section. As it turns out,
we can define the effective energy for the free spin as

Em1,t (m) = E0(m) − �〈s〉 · m

−�2[Jm · m1 + Dt̂ · (m × m1)

+ A(m · t̂ )(m1 · t̂ ) + 1
2 K (m · t̂ )2

]
. (7)
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FIG. 2. Selected voltage-induced effective magnetic interactions and damping coefficient of the spin dimer. (a) The effective symmetric
interaction J2. The system presents a preferred antiferromagnetic configuration (J2 < 0) for a narrow band delimited approximately by |μR| <

t0 − t , while for other relations of μF and V , the system prefers a ferromagnetic configuration (J2 > 0) in an x-like behavior. (b) The effective
DMI D2. The DMI presents a steplike behavior, where the thickness of the first plateau is controlled by the intensity of the SOC, this is
approximately bounded by |μR/L| < t0 − t . The interaction shows the relation D2(V ) = −D2(−V ), as well as, D2(V ) = −D1(V ). Both of
which are consistent with the broken inversion symmetry in the system. (c) The effective Gilbert damping α

(i)
22 . The maxima of the damping

are approximately at |μL| = t0 − t and |μR| = t0. The Gilbert damping can represent an energy injection for |μL| < t0 − t and |μR| > t0.
(d) The isotropic component of the correlation function j (i)

22 presents a steplike structure delimited by the same x-like lines as for the symmetric
interaction.

Hereafter, for notational convenience, we have dropped the
indexes in the different couplings, damping components, and
correlation factors. With this expression of the energy, we can
come back to equation (3) and write the equation of motion for
the free spin under the effects of the leads and the interaction
with the fixed spin. The final equation of motion reads

dm
dt

= �eff + �noise + �
(i)
d + �

(an)
d , (8)

where �eff corresponds to the torque from the effective
fields, �noise = m × η is the stochastic torque, while �

(i)
d =

α(i)m × dm
dt and �

(an)
d = α(an)(t̂ · dm

dt )m × t̂ correspond to
the torques with origin in the damping mechanisms. See
Fig. 3. Equation (8) corresponds to an anisotropic stochas-
tic Landau-Lifshitz-Gilbert equation, other extensions of this
equation has been studied in Refs. [55,56].

We study two approaches to solve Eq. (8). First, by a direct
statistical analysis by means of the implicit stochastic Euler

(a) (b)

FIG. 3. Torques acting on the free spin of the dimer. The other
spin is pinned along the fixed direction m1. The direction of the free
spin and the SOC are m and t̂ , respectively. (a) Orientation of the
dissipative torques �

(i)
d and �

(an)
d . The dashed red line corresponds to

a possible trajectory of the localized spin orientation. At a certain
instant, we evaluate dm/dt (red arrow). (b) The torque from the
effective field, �eff , can be split as a sum of �ex, originated in the
exchange coupling, �an from the anisotropy contributions and �DMI

stemming from the DMI. All torques lie within the tangent plane to
the sphere, a section of which we have illustrated with the yellow
circle.

method. This approach was sufficient to integrate the problem,
for all the parameter values studied in the present work. We
find that the effective field acting on the spin is the sum of
two contributions, �eff and �

(an)
d , since the latter gives rise to

both field and dampinglike torques. We identify the this extra
contribution as a spin-orbit induced torque [57].

The direct solutions of the Langevin equation, although
reliable, take a considerable computational effort, even in
the case of small systems. For this reason, we have com-
plemented our results with a second alternative, faster albeit
only approximately accurate, for the determination of the
expectation values using approximate solutions to the Fokker-
Planck (FP) equation [58]. In this way, we can obtain the
mean orientation of the spin for each value of the bias volt-
age. In a weak SOC regime, t = 5%t0, for the probability
density on the sphere, P (m), the approximate solution cor-
responds to the suggestive result P (m) ∝ exp (−βEm1,t (m)),
where we have defined the effective temperature Teff as
β = 1/kBTeff = 2S2h̄α(i)/ j (i). We highlight the simple rela-
tion for the effective temperature of the system, that sets
the strength of the spin fluctuations as function of voltage.
This result is in agreement with the stochastic switching
between two opposite magnetization states reported in the
literature [59].

As illustrated in Fig. 4, the system can present both
antiferromagnetic, mz ∼ −S, or ferromagnetic, mz ∼ S, con-
figurations upon different bias voltage. It is clear that the
antiferromagnetic configuration has a switching point when
we increase (reduce) the voltage from 0 to 3 mV (−3 mV),
value at which the system now prefers a ferromagnetic config-
uration. This can be explained by the more energetic itinerant
electrons scattering into the dimer, and deduced from the de-
crease of the dominant interaction, J2. Additionally, Fig. 4 also
shows that the out-of-plane component my dominates over a
small window nearby the switching point. It can be seen that
for opposite bias its direction is reversed. We conclude that the
emergent DMI dominates the course of the reversal process.
This feature is a direct and measurable consequence of the
emergent DMI.
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FIG. 4. Average value of the unpinned localized spin’s direc-
tion for each Cartesian component, using the FP method (top), the
Langevin method (middle), and the relative comparison of the ef-
fective interactions (bottom). We have denoted � = m/S and use
m1 = ẑ and t̂ = x̂. The calculation was done for μF = 0 meV, S =
5/2, T = 0 K, t = 0.05 meV, and the same values used in Ref. [5]
for the Zeeman interaction and the mangetocrystalline anisotropic
constant for easy-axis and in-plane anisotropies. We can see that the
system presents a stable antiferromagnetic configuration for low bias
voltage up to approximately ±3 mV, after which the system reverses
the magnetization to a ferromagnetic configuration, both highlighted
in green in the top panel. However, it is interesting to note that
the reversal process is dominated by the DMI interaction at around
±3 mV, D2 > J2 which allows the system to reverse the magneti-
zation in a controlled manner, highlighted in orange in the middle
panel.

V. CONCLUSIONS

We presented a derivation of the low-energy semiclassical
behavior of a symmetric dimer system of localized moments
in contact with a nonequilibrium electronic bath. This ap-
proach provides a qualitatively complete picture of various
systems of interest in nanoscience. For example, it might
be used as a model of molecular magnet dimers or one can
envision its application in the context of double quantum
dots [38,39], spin-polarized STM [40], among others. With
minor modifications, our conclusions can be applied to those
experimental setups. We used a semiclassical nonequilibrium
formalism in the description of the microscopic dynamics

that guided us towards an effective behavior for the local-
ized spins. The analysis relies on a second-order expansion
in the localized moment-electronic spin exchange coupling.
From it, we derived an intuitive picture of the different mech-
anisms that affect the evolution of the localized moments’
spin. Our analysis required a complete derivation of a general-
ized form of the Landau-Lifshitz-Gilbert equation, including
magnetic anisotropy, isotropic and anisotropic exchange, and
a voltage-induced DMI. The dynamics is complemented
by anisotropic and nonlocal damping coefficients and, cor-
respondingly, anisotropic fluctuating torques with nonlocal
correlations. We anticipate this generalized equation to be-
come a key ingredient of magnetic simulations in the context
of complex SMMs. Additionally, we found that the external
bias voltage affects each interaction’s strength. In this way,
the exchange interaction can be tuned, with the aid of the
bias voltage, from antiferromagnetic to ferromagnetic. The
inversion symmetry breaking implied by the bias potential
induces a DMI between the magnetic elements that can be
tuned accordingly. This voltage-induced DMI is the dominat-
ing torque during the reversal process. It selects the reversion
path followed by the local moments. We expect that these
results might prove useful even when taken to the quantum
regime, where they can be expected to aid in the electrical
control of entanglement properties.
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APPENDIX A: ELECTRONIC GREEN’S FUNCTIONS
CALCULATIONS

To include the nonequilibrium effects of the electrical cur-
rent, we use the Keldysh formalism to model the system [6].
The total action ST , can be separated into an electronic action
S	 , an spin action Sm and interaction action SI , where each
term is written as

Sm =
∑

a

∫
Ct

dtc

[
−h̄S

dωa

dtc
+ ma · h − E[ma]

]
, (A1)

S	 =
∫
Ct

dtc

[
ih̄

∑
σ,i

(ψ∗
Li,σ ∂tcψLi,σ + ψ∗

Di,σ ∂tcψDi,σ

+ψ∗
Ri,σ ∂tcψRi,σ ) − HR − HL − HRc − HLc − He

]
,

(A2)

SI =
∑

a

∫
Ct

dtc�ma · sa, (A3)
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where, in the action for the localized spins Sm, ωa is the Berry
phase for the spin variable [60], and in the action for the free or
itinerant electrons S	 , the terms with contour-time derivative,
ψ∗∂tcψ , are the Berry phases of the Grassmann fields [61],
and ma is the direction of the spin at site a. Here we can
expand up to second order in the s-d interaction factor � and
take the low-energy limit to explore the spin dynamics of each
localized spins.

From the expression of the total action ST = Sm + S	 +
SI , we can construct the nonequilibrium path integral over the
Keldysh contour. This can be calculated following the work

presented in Ref. [5], however, here we present the additional
steps to extend their results for the present work. First we need
to integrate the electronic degree of freedom, but due to the
interacting action SI we need to expand up to second order in
the s-d interaction factor �. A common way yo expand it is
by using the Cumulant expansion [58], where we obtain the
integral Kernel

Ki j
ab(tc, tc

′) ≡ i

2h̄

[〈
T si

a(tc)s j
b(tc

′)
〉 − 〈

si
a(tc)

〉〈
s j

b(tc
′)
〉]
. (A4)

So the effective action up to second order in � is

S = Sm +
∫
Ct

dt ′(S�
∑

a

ma · 〈sa(t ′)〉 +
∫
Ct

dt ′′�2
∑
i j,ab

mi
a(t ′)Ki j

ab(t ′, t ′′)m j
b(t ′′)). (A5)

The expression of the integral kernel in eEq. (A4) can be expressed in terms of a electronic Green functions iGaσ ;bσ ′ (t, t ′) ≡
〈T ψaσ (t )ψ∗

bσ ′ (t ′)〉 with the aid of the Wick theorem, as

Ki j
ab(t, t ′) ≡ i

8h̄

∑
σσ ′μμ′

τ i
σσ ′τ

j
μμ′Gaσ ′;bμ(t, t ′)Gbμ′;aσ (t ′, t ). (A6)

This expression is customarily associated with a bubble diagram

With that, we can calculate the energy representation using electronic transport theory [62]. So we obtain the energy representa-
tion of the dimer kernel in terms of the electronic Green’s function (GF) components.

Ki j(±)
ab (ε) = −1

8

∑
σσ ′μμ′

τ i
σσ ′τ

j
μμ′

∫
dε′

2π

dε′′

2π

G>
aσ ′;bμ(ε′)G<

bμ′;aσ (ε′′) − G<
aσ ′;bμ(ε′)G>

bμ′;aσ (ε′′)

ε± − ε′ + ε′′ , (A7)

Ki j(K )
ab (ε) = − iπ

4

∑
σσ ′μμ′

τ i
σσ ′τ

j
μμ′

∫
dε′

2π

dε′′

2π
δ(ε − ε′ + ε′′)[G>

aσ ′;bμ(ε′)G<
bμ′;aσ (ε′′) + G<

aσ ′;bμ(ε′)G>
bμ′;aσ (ε′′)]. (A8)

The electronic GF can be calculated from the advanced and retarded GF that contemplates the self-energies of two semiinfinite
leads. However, now we need a connection between the lesser and greater GF, and the advanced and retarded GF. From the
electronic Green’s function that contemplate both site and spin, we now have a nondiagonal matrix in spin for the advanced and
retarded GF of the form:

G(±)
aσ ;bσ ′ (ε) = G(s)(±)

ab (ε)Iσσ ′ + G(t )(±)
ab (ε)[t̂ · τ]σσ ′, (A9)

where we define the singlet function G(s)(±)
ab (ε) due to be related to the symmetric part in spin space, and the triplet function

G(t )(±)
ab (ε) due to the trace-less part of the full electronic GF in spin space. The matrix components of the singlet functions

are

G(±)(s)
11 (ε) = g±

2

2

[
1

g±
1 g±

2 − (t0 + t )2
+ 1

g±
1 g±

2 − (t0 − t )2

]
, (A10)

G(±)(s)
12 (ε) = G(±)(s)

21 (ε) = −1

2

[
t0 + t

g±
1 g±

2 − (t0 + t )2
+ t0 − t

g±
1 g±

2 − (t0 − t )2

]
, (A11)

G(±)(s)
22 (ε) = g±

1

2

[
1

g±
1 g±

2 − (t0 + t )2
+ 1

g±
1 g±

2 − (t0 − t )2

]
, (A12)

and of the triplet functions:

G(±)(t )
11 (ε) = g±

2

2

[
1

g±
1 g±

2 − (t0 + t )2
− 1

g±
1 g±

2 − (t0 − t )2

]
, (A13)
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G(±)(t )
12 (ε) = G(±)(t )

21 (ε) = −1

2

[
t0 + t

g±
1 g±

2 − (t0 + t )2
− t0 − t

g±
1 g±

2 − (t0 − t )2

]
, (A14)

G(±)(t )
22 (ε) = g±

1

2

[
1

g±
1 g±

2 − (t0 + t )2
− 1

g±
1 g±

2 − (t0 − t )2

]
, (A15)

where we have define g±
i (ε) ≡ ε − h̄�±

i (ε), with the retarded
and advanced self-energies of a semi-infinite lead �±(ε). By
using the steady-state kinetic equation [5,62,63], we obtain
that the lesser and greater GF are

G≶(ε) = G(+)(ε)h̄�≶(ε)G(−)(ε), (A16)

with the aid of the in and out-scattering function �≶. Replac-
ing Eq. (A9) in Eq. (A16), we get a similar decomposition in
singlet and triplet GF for the lesser and greater components,

G≶
aσ ;bσ ′ (ε) = G(s)≶

ab (ε)Iσσ ′ + G(t )≶
ab (ε)[t̂ · τ]σσ ′, (A17)

where we have define the lesser and greater, singlet function
and triplet function as

G(s)≶
ab =

∑
c

[
G(s)(+)

ac h̄�≶
c G(s)(−)

cb + G(t )(+)
ac h̄�≶

c G(t )(−)
cb

]
,

G(t )≶
ab =

∑
c

[
G(s)(+)

ac h̄�≶
c G(t )(−)

cb + G(t )(+)
ac h̄�≶

c G(s)(−)
cb

]
with these expressions we can come back to the

G{p,q}
ab± (ε′, ε′′) ≡ G(p) >

ab (ε′)G(q) <

ba (ε′′) ± G(p) <

ab (ε′)G(q) >

ba (ε′′).

(A18)

Furthermore, we actually see that both expressions has
only three very characteristic relations between the vector in-
dices. The advanced and retarded components can be written
as

Ki j(±)
ab (ε) = − 1

4h̄

∫
dε′

2π

dε′′

2π

1

ε± − ε′ + ε′′

× [Jab(ε′, ε′′)δi j + iDab(ε′, ε′′)εi jkt̂ k

+ 2�̄ab(ε′, ε′′)t̂ it̂ j], (A19)

where

Jab(ε′, ε′′) = G{s,s}
ab(−)(ε

′, ε′′) − G{t,t}
ab(−)(ε

′, ε′′), (A20)

Dab(ε′, ε′′) = G{s,t}
ab(−)(ε

′, ε′′) − G{t,s}
ab(−)(ε

′, ε′′), (A21)

�̄ab(ε′, ε′′) = G{t,t}
ab(−)(ε

′, ε′′). (A22)

Here we clearly anticipate that Jab, Dab, �̄ab will give
the effective symmetric exchangelike interaction, the effec-
tive antisymmetric exchangelike interaction and an effective
anisotropic-like interaction, respectively. Analogously for the
Keldysh component in (A8), we find

Ki j(K )
ab (ε) = − iπ

2h̄

∫
dε′

2π

dε′′

2π
δ(ε − ε′ + ε′′)

× [ j̄ab(ε′, ε′′)δi j + id̄ab(ε′, ε′′)εi jkt̂ k

+ 2ḡab(ε′, ε′′)t̂ it̂ j], (A23)

where we define j̄ab, d̄ab, and ḡab by the same structure as
for {Jab,Dab, �̄ab}, but replacing (−) 
→ (+) in (A18). Now
that we have make the connection of the advanced, retarded
and Keldysh components to the singlet and triplet advanced
and retarded electronic Green’s functions, we can perform a
Taylor expansion for ε ∼ 0 up to first order, and find that the
zeroth-order term is related to the interactions (Jab, iDab, �ab)
and the first-order part is related to the dampings (αab, γab).
Analogously, for the correlation factors, we find that only the

FIG. 5. Average value of the unpinned localized spin’s direc-
tion for each Cartesian component, using FP method (top) and the
Langevin method (middle), and the relative comparison of the effec-
tive interactions (bottom). We have denoted � = m/S and m1 = k̂.
The calculation was done for μF = 0 meV, S = 5/2, T = 0 K, t =
1 meV, and the same values used in Ref. [5] for the Zeeman inter-
action and the mangetocrystalline anisotropic constant for easy-ayis
and in-plane anisotropies. In this case, only the antiferromagnetic
configuration is preserved since the DM interaction overcomes the
isotropic interaction before the switching voltage. Therefore the
equilibrium orientation is now orthogonal to the pinned spin. In this
case, we still can control the equilibrium configuration but without
having a parallel configuration.
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FIG. 6. Selected voltage-induced effective magnetic interactions and damping coefficient of the spin dimer. The anisotropic Ising exchange
(a) and the local anisotropy (b), both resemblance the strucutre of the symmetric interaction, however they are several orders of magnitude
smaller than J2, even though, A2 presents extra resonance lines associated to a splitting due to the SOC. The local anisotropy present the
opposite sign for the same set of parameters, which we associate to an inercia component since it only react to the alignment of the free spin
and the SO vector t̂ and it oppose the change of the other interactions. The anisotropic damping (c) and the anisotropic correlation component
(d) show the same behavior as their isotropic counterparts but, as for A2, they present a splitting in the lines that dictate the maxima due to the
SOC.

zeroth order is nonzero and sufficient to study the system
under our assumptions. For the case of one spin fixed, only

a few components are relevant for the equation of motion of
the free spin.

(J21, iD21, �21, �22) = −1

2

∫
dε′

2π

dε′′

2π

1

ε′′ − ε′ + iδ
(J21, iD21, �̄21, �̄22)(ε′, ε′′),

(α22, γ22) = −1

4

∫
dε′

2π

∂

∂ε

(
(J22, �̄22)(ε′, ε + ε′)

)
, iβ22 = −1

2

∫
dε′

2π

dε′′

2π
P

(
∂

∂ε′′ [iD22(ε′, ε′′)]
ε′′ − ε′

)
,

( j22, g22) = − i

4h̄

∫
dε′

2π
( j̄22, ḡ22)(ε′, ε′), id22 = 0, 〈sa(t )〉 = Sit̂G(t )

aa (t, t ). (A24)

For simplicity in the notation, throughout the text, we re-
place the effective factors indices as h̄{J12, J21} → {J1, J2},
ih̄{D12, D21} → {D1, D2}, 2h̄{�12, �21} → {A1, A2}, 2h̄{�11,

�22} → {K1, K2}, h̄{α21, α22} → {α(i)
1 , α

(i)
2 }, h̄{γ21, γ22} →

{α(an)
1 , α

(an)
2 }, h̄{ j21, j22} → { j (i)

1 , j (i)
2 }, and h̄{g21, g22} →

{ j (an)
1 , j (an)

2 }.

APPENDIX B: EVALUATION OF THE EFFECTIVE
COUPLING, DAMPING AND CORRELATIONS

The numerical values of the effective factors can be cal-
culated with the corresponding expression in Eq. (A24). In
Fig. 2, we show the symmetric and DM interaction, as well
as the Gilbert damping and the isotropic component of the
correlation function. Now we can see the numerical values of
the local and Ising anisotropies, and the anisotropic damping
and component of the correlation function in Fig. 6. We can
see the resemblance of the anisotropic interactions, A2 and
K2, with the symmetric interaction J2 in the x-like structure,
however the anisotropic interactions are very weak as we can
see in bottom part of Fig. 4. This explain why, even though we
have torques that would shift the equilibrium orientation from
the z direction (m̂1 direction), we still see that for low enough
voltages the equilibrium configuration is parallel or antiparal-
lel to the pinned spin. It is interesting to notice that, for most
parameter configurations, the local anisotropic interaction has
an opposite sign compared with the isotropic and anisotropic
Ising interaction. Since K2 is only sensitive to the orientation

of the free spin, we identify it as a self-interaction and can be
interpreted as an inercia factor, due to the opposition to the
change in orientation.

The anisotropic damping and correlection factor presents
similar structure as their isotropic counterparts, with the ad-
dition of extra local maxima lines. This splitting of the local
maxima is induced from the SOC, that modify the lines as
for the DM interaction. As for the anisotropic interactions,
α

(an)
22 and j (an)

22 , are several orders of magnitude smaller than
α

(i)
22 and j (i)

22 , from which we expect a low effect in the damping
and correlation function. This, however, has a more important
effect for the inversion process as well as with the DMI com-
pared with J2 for those voltages.

However, for completeness we also study the dependence
upon a stronger SOC strength for the aforementioned effective
factors, as well as for the numerical solution of the Langevin
and Fokker-Planck equation. Therefore here we include what
we call strong SOC case, i.e., t = 0.5t0, shown in Figs. 5 and
7. Additionally we compared our expressions for the case of
t = 0, where we recover the results presented in Ref. [5]. The
effect of the increase of the SOC leads to a, although small,
decrease in the isotropic interaction but an increase in every
anisotropic interaction and specially in the DMI, which now
is the strongest interaction in the system. The main properties
of each interaction does not present mayor changes in upon
increasing the SOC, however, the isotropic component of
the damping presents a strong shift in the local max-
ima, while the anisotropic component only intensify the
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FIG. 7. Selected voltage-induced effective magnetic interactions and damping coefficient of the spin dimer. The increase of the SOC,
presents a decrease of the symmetric interaction J2 (a) by a factor of 2 but it still presents both positive and negative values, therefore inducing
a ferromagnetic and antiferromagnetic configuration. However, for this case, the DMI (b) is now the dominant interaction preserving the
steplike behavior. Similar increase can be seen with the anisotropic interactions A2 (e) and K2 (f). The effective Gilbert damping (c) shows
the biggest change since now we can see how sensitive are the local maxima to the value of the SOC. The anisotropic damping (g) is now as
relevant as the isotropic damping, and it also present a significant region were it injects energy. The isotropic (d) and anisotropic (h) components
of the correlation function are now of the same order and eve preserve the structure with a bigger splitting of the local maxima from the SOC.

dependence in the extra local maxima lines. This clearly
shows that not all lines are important for all effective
terms and a proper analytical characterization is in order to
understand the microscopical origin. Analogously to the inter-
actions, the isotropic damping decreases while the anisotropic
damping increases their value with an increase of the SOC.
For the correlation functions, we see a similar behavior in
terms of increase/decrease, but now both factors decrease the
steepness of the steplike behavior and the relevance of the
extra local maxima in the anisotropic factor.

As we can see in Fig. 5, due to the dominance of the DMI,
the equilibrium orientation for the free spin goes from an an-
tiparallel to an orthogonal configuration, related to the pinned
spin, as we increase the bias voltage. Moreover, the unpinned
spin have different directions (±ŷ) according to different signs

of the bias voltage (∼ ± 3 [mV]), and aside from a small
deviation due to the symmetric interaction, the equilibrium
orientations around ±ŷ, in contrast with the weak SOC case,
are sufficiently stable under small changes in the bias voltage.
This opens the possibility to more exotic behaviors in a longer
chain. However, the antiparallel configuration at V = 0 mV
is preserved, which is expected since from the symmetries of
the system we know that D(V = 0) ≡ 0. This case is specially
interesting to test the limitations and/or validity of the approx-
imate solution of the FP equation, since the conditions are
related to the relation between the isotropic and anisotropic
damping and correlation functions. In Fig. 5, we can see that
even though the FP solution is not as reliable as in Fig. 4, the
difference are very subtle and the characteristic parts are well
represented.
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