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Space-time symmetry breaking in nonequilibrium frustrated magnetism
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Spontaneous symmetry breaking is responsible for rich phenomena in equilibrium physics. Driving a system
out-of-equilibrium can significantly enrich the possibility of spontaneous symmetry breaking, which occurs not
only in space, but also in the time domain. This study investigates a driven-dissipative frustrated magnetic
system with alternate ferromagnetic and antiferromagnetic coupling. Results show that frustration in such a
far-from-equilibrium system could lead to nonequilibrium phases with intriguing space-time symmetry breaking,
e.g., a discrete time crystal accompanied by a time-dependent magnetism with alternating tripartite stripe and
ferromagnetic orders.
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I. INTRODUCTION

Frustration arises when interaction energies cannot be si-
multaneously minimized for all bonds in a many-body system.
It hosts remarkable phenomena ranging from a classical spin
glass [1] to quantum spin liquids [2]. Typically, frustration
may lead to macroscopic degeneracy in the classical ground-
state manifold. However, this degeneracy could be lifted by
thermal or quantum fluctuations, which may select particular
configurations out of the degenerate manifold [3–5] or make a
superposition among them to form exotic quantum states [6].
For the past decades, frustrated systems have been one of the
central themes in condensed matter physics. However, with a
few exceptions [7–11], most studies have restricted their the
scope within equilibrium physics, which is governed by the
paradigm of (free) energy minimization. The effect of frus-
tration on nonequilibrium systems is far from clear, because
these systems can absorb energy from outside, and thus are
usually far from the ground state and the energy minimization
principle does not necessarily apply.

Nonequilibrium physics is richer, albeit less known com-
pared to equilibrium ones. An example is the spontaneous
symmetry breaking (SSB), which plays a crucial role in both
equilibrium and nonequilibrium systems. In contrast to ther-
mal equilibrium SSB rooted in the variational principle of
(free) energy minimization, the spatiotemporal patterns spon-
taneously emerging from nonequilibrium systems can only
be understood within a dynamical framework, even for the
steady state [12]. The nonequilibrium phases of matter differ
from the equilibrium ones in the sense that the time dimen-
sion plays an equally, if not more, important role than the
spatial dimensions in the classification of phases of matter.
For instance, incorporating the time direction enriches the
possibility of SSB, giving rise to interesting nonequilibrium
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phases, like the time crystal that spontaneously breaks the
time translational symmetry [13–33]. Frustration is a source
of the exotic phase in equilibrium physics; thus, one may
wonder whether it could lead to novel phases of matter in
far-from-equilibrium systems.

In this study, we address this question by focusing on
a driven-dissipative interacting spin model. Periodic driving
usually heats a generic closed interacting system toward an
infinite-temperature state. To avoid this featureless final state,
we introduce dissipation by coupling each spin to a heat
bath, which will drive the system to thermal equilibrium in
the absence of periodic driving, as shown in the Appendix.
Considering the notorious difficulty of dealing with quantum
many-body dynamics, we focus on a classical system that
enables us to simulate systems with dimension other than
one up to a large system size. It has been shown that the
exotic nonequilibrium phases are not restricted to quantum
systems (e.g., the time crystal phases in classical many-body
systems have recently been investigated [34–40]). Different
from previous studies about the prethermal dynamics of close
systems [10,39,40], here we focus on the long-time asymp-
totic behavior of the driven-dissipative system, and show that
incorporating frustration enriches the categories of nonequi-
librium phases of matter, and leads to magnetic states with
intriguing space-time symmetry breaking.

II. MODEL AND METHOD

We start with a two-dimensional classical spin model. The
system Hamiltonian reads

Hs = H0 + λHf , (1)

where H0 is a frustration-free Hamiltonian (transverse Ising
model) defined in a L × L square lattice:

H0(t ) = V (t )
∑
〈i j〉

sx
i sx

j −
∑

i

hzs
z
i , (2)
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FIG. 1. Sketch of a driven-dissipative magnetic system in square
lattice with next-nearest-neighboring coupling (blue bonds).

where the dynamical variable si is a three-dimensional clas-
sical vector with a fixed length |si| = 1, and the summation
of 〈i j〉 is over the two adjacent sites in the square lattice
(green bonds; Fig. 1). hz is the strength of the transverse
field. Periodic driving V (t ) = J + J ′ cos ωt is imposed on
the interaction strength instead of the external field. V (t ) can
be either positive or negative, corresponding to antiferromag-
netic (AFM) or ferromagnetic (FM) coupling. In our setup,
alternate FM and AFM couplings during the time evolution is
crucial. The frustration is introduced via the Hamiltonian Hf ,
whose strength is characterized by a dimensionless parameter
λ. The frustration interaction is defined on one diagonal of
each plaquette (blue bonds, Fig. 1). The Hamiltonian Hf reads

Hf (t ) = V (t )
∑
〈〈i j〉〉

sx
i sx

j . (3)

Only one diagonal of each plaquette is included because in
the undriven case (J ′ = 0) with λ = 1, the Hamiltonian (1)
is reduced to an AFM model defined on a triangle lattice,
a prototypical example of frustrated magnetism. Throughout
this paper, we assume J > 0 and fix the driving frequency
as ω = 2πJ . In the absence of a thermal bath, the dynamics
of each spin can be described by the equation of motion
(EOM): ṡi = h0

i × si, where the effective magnetic field h0
i =

[−V (t )s̄x
i , 0, hz] with s̄x

i = ∑
〈 j〉 sx

j + λ
∑

〈〈 j〉〉 sx
j .

The periodically driven system is stabilized by introducing
dissipation via coupling of each spin to a thermal bath, which
can be modeled using methods familiar in the context of
Brownian motion. The EOM for each spin is described by a
stochastic Landau-Lifshitz-Gilbert equation [41,42]:

ṡi = hi × si − ηsi × (si × hi ), (4)

where η is the dissipation strength fixed as η = J and hi =
h0

i + ξi(t ) is the effective magnetic field, where ξi(t ) is a
three-dimensional zero-mean (〈ξα

i (t )〉ξ = 0) stochastic mag-
netic field representing a thermal noise. We further assume
the local baths around different sites are independent of each
other, and the stochastic variables satisfy 〈ξα

i (t )ξβ
j (t ′)〉ξ =

D2δαβδi jδ(t − t ′) where α, β are the index of three space
dimensions and D is the noise strength. The ensemble

FIG. 2. In the frustration-free case (λ = 0), (a) long-time dynam-
ics of AFM order parameter mA(t ) with a weak driving (J ′ = J ) and
(b) long-time dynamics of the AFM (red solid) and FM (blue dashed)
order parameters mA(t ) and mF (t ) with a strong driving (J ′ = 5J ).
Parameters are chosen as L = 120, η = J , D = 0.01J , hz = 1.5J ,
and ω = 2πJ .

average 〈 〉ξ is over all the noise trajectories. For a ther-
mal bath with temperature T, the strengths of the dissipation
and noise satisfy the fluctuation-dissipation theorem D2 =
2T η. We fix D = 0.01J , which corresponds to an extremely
low temperature and does not play a crucial role here. The
high-temperature case is discussed in Sec. V. The stochastic
differential Eq. (A1) is discretized by adopting Stratonovich’s
formula, and solving it by the standard Heun method [43]
with a time step of 
t = 10−3J−1. The initial state for each
spin is chosen as [sx

i , 0, sz
i ], where sx

i ∈ [−1, 1] is a random
number, and sz

i is fixed according to |si| = 1. The system size
in our simulation is up to L = 120. Despite the richness of the
dynamical phase diagram of this model, below, we only focus
on the dynamical phases with SSB in both space and time.

III. FRUSTRATION-FREE CASE:
AN ANTIFERROMAGNETIC DISCRETE TIME CRYSTAL

We start with a frustration-free case (λ = 0), where we
monitor the magnetization dynamics sx

i (t ) based on Eq. (A1).
Without driving (J ′ = 0), the system will relax to an equi-
librium AFM state with a nonzero order parameter mA =
1

L2

∑
i(−1)ix+iy sx

i . Figure 2 indicates that such an AFM order
also persists in the presence of driving. Figure 2(a) shows
that in the weak driving case (J ′ = J ) where the coupling
is always AFM [V (t ) � 0], mA(t ) oscillates around a finite
value with the same frequency with driving. At strong driving
(J ′ = 5J ), one can also observe a time-dependent AFM order
[Fig. 2(b)]; however, such an AFM state differs from its equi-
librium counterpart in two aspects. First, the long-range AFM
order is present at any time, even at those time slices with
FM coupling [V (t ) < 0]. By contrast, the FM order parameter
mF (t ) = 1

L2

∑
i sx

i (t ) [the blue dashed line, Fig. 2(b)] van-
ishes in the whole evolution. Furthermore, different from the
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FIG. 3. In a fully frustrated case (λ = 1), (a) magnetization
distribution {sx

i } of the long-time asymptotic state without driving
(J ′ = 0) in a real space (left panel) and its Fourier transformation
with the peaks at momenta Q0 and 2Q0 with Q0 = ( 2π

3 , 2π

3 ) (right
panel); (b) long-time dynamics of tripartite stripe order parameter
m3(t ) in the weakly driven case (J ′ = J ); and (c) long-time dynamics
of the tripartite stripe (purple solid) and the FM (blue dashed) order
parameters m3(t ) and mF (t ) in the strongly driven case (J ′ = 5J ).
L = 120 except for (a) where L = 36. Other parameters are chosen
the same as those in Fig. 2.

weakly driven case, mA(t ) oscillates with a period doubling
with respect to that of driving, thereby spontaneously breaking

the discrete time translational symmetry from Z to 2Z group.
Consequently, such a state simultaneously breaks the space
and time translational symmetry; thus it is an AFM discrete
time crystal (DTC).

IV. FULLY FRUSTRATED CASE: A ZOO OF
NONEQUILIBRIUM PHASES OF MATTER

Now we consider a fully frustrated case with λ = 1,
where the lattice is equivalent to a triangle lattice. In equilib-
rium magnetism, frustration works against AFM order. One
may wonder whether it plays a similar role of suppressing
the aforementioned AFM-DTC order in this nonequilibrium
setup. If so, what kinds of space-time structures will emerge
once the AFM-DTC is destroyed? Without driving (J ′ = 0),
the system will relax toward an equilibrium state close to
the ground state of the Hamiltonian (1). The transverse field
distinguishes our model from the pure triangle lattice Ising
model with extensive ground state degeneracy. Figure 3(a) de-
picts the steady state magnetization with a tripartite structure
and a stripe order along the diagonal direction. This mag-
netic order is characterized by the order parameter m3(t ) =
1

L2

∑
i sin[Q0 · i]sx

i (t ) with Q0 = ( 2π
3 , 2π

3 ).
The tripartite stripe (TS) order parameter m3(t ) starts to

oscillate once the periodic driving is switched on. With weak
driving (J ′ = J ), Fig. 3(b) shows that m3(t ) oscillates around
a finite value with a period the same as driving; thus the
TS order still persists in this nonequilibrium case. For strong
driving (J ′ = 5J ), V (t ) alternates between FM and AFM cou-
pling during the evolution, thereby changing the dynamics.
Figure 3(c) illustrates that the TS/FM long-range order is
built at the time slices with AM/FM coupling. However,
this does not mean that the system adiabatically follows the
instantaneous ground state of Hamiltonian (1). Instead, it is in
a genuine nonequilibrium state because both m3(t ) and mF (t )
develop a DTC order in the time domain, indicating that a
temporal correlation is dynamically built. In other words, the
asymptotic state with strong driving is a space-time crystal
that simultaneously breaks the space-time translational sym-
metry and the Z2 symmetry in spin space. This space-time
crystal differs from the AFM-DTC phase in the λ = 0 case,
where the FM order is absent even during FM coupling.

FIG. 4. In a fully frustrated case (λ = 1) with intermediate driving (J ′ = 3J ), (a) long-time dynamics of the tripartite stripe (purple solid)
and FM (blue dashed) order parameters m3(t ) and mF (t ) [inset magnifies mF (t )]; (b) typical magnetization distribution {sx

i } in a real space
at a time slice with maximal FM coupling; and (c) comparison of the dynamics of excess energy with respect to the perfect FM state at the
time slices with maximal FM coupling for the cases with intermediate (J ′ = 3J ) and strong (J ′ = 5J ) driving. Other parameters are chosen
the same as in Fig. 2.
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The situation is more interesting with intermediate cou-
pling (e.g., J ′ = 3J ). Figure 4(a) illustrates that the TS and
the associated DTC orders still persist. However, different
from the strongly driven case, the long-range FM order is
not built during the whole period. Its order parameter mF (t )
[dashed blue line, Fig. 4(a)] stochastically oscillates with a
small amplitude that decreases with system size, as shown
in the Appendix. A typical magnetization configuration {sx

i }
at a time slice with a maximum FM coupling is plotted in
Fig. 4(b), which exhibits a wealth of FM domain walls (DWs),
and the total magnetization is close to zero. The results show
that at intermediate coupling, even though the system builds
a short-range FM correlation, it has no time to develop long-
range FM order before the coupling turns back to AFM within
a driving circle.

To measure the density of the DWs, we define an excess
energy density with respect to the perfect FM state as δe(t ) =
1

L2 〈HI
s (t )〉 − e0, where 〈HI

s (t )〉 is the instantaneous interaction
energy at time t (we only focus on the time slices with maxi-
mal FM coupling) and e0 is the energy density of a perfect FM
state along the x direction. In Fig. 4(c), for J ′ = 3J , δe(t )/e0

ultimately saturates toward a large value, indicating that it is
far from a perfect FM state and the density of DWs does not
decay in time. By contrast, for the strong driving case with
J ′ = 5J , excess energy is very small, indicating that the sys-
tem could reach an almost perfect FM state at the maximal FM
coupling. The difference between the intermediate and strong
coupling cases is because the FM coupling duration in the
former is shorter than that in the latter. In each driving circle,
the FM duration in the case of intermediate driving is not long
enough for the system to build up long-range FM correlation.

V. THE ROLE OF DIFFERENT
PARAMETERS IN THE MODEL

Above, we only studied several representative nonequilib-
rium phases by focusing on special points in the parameter
space. In the following, we will systematically examine the
role of different parameters of the models in determining
the space-time patterns of dynamical phases. The dynamical
phase transitions between them have also been studied.

A. Driving frequency ω

Above, we changed the driving amplitude but fixed the
driving frequency as ω = 2πJ . Here, we will exam the role
of ω in determining the space-time patterns of our model.

In the fast driving limit where ω � J , the periodic driving
oscillates too fast to be followed by the system. In such a high-
frequency limit, one can derive an effective time-independent
Hamiltonian to describe the stroboscopic dynamics of this
periodically driven system, similar to the Floquet analysis in
quantum systems, where the effective time-dependent Hamil-
tonian can be expressed as a expansion in terms of 1/ω. In
the high-frequency limit, the dominant term in the expansion
is an average of the Hamiltonian over one period, where
1
T0

∫ T0

0 dtV (t ) = J; therefore, the dynamics in this case is
similar to the relaxation dynamics in the undriven case (J ′ =
0), where the steady state is a stripe phase with a nonvan-
ishing order parameter m3 = 1

L2

∑
i sin[Q0 · i]sx

i (t ) with Q0 =

FIG. 5. The dynamics of the 3-period stripe order parameter
m3(t ) in the presence of (a) fast driving with a frequency ω = 8πJ
and (b) slow driving with a frequency ω = 0.02π . The x axes are
plotted in the unit of the corresponding driving periods with T1 =
0.25J−1 and T2 = 100J−1. The parameters are chosen as L = 30,
J ′ = 5J . Other parameters are chosen as η = J , D = 0.01J , λ = J ,
hz = 1.5J .

( 2π
3 , 2π

3 ). For a large but finite frequency, the order parameter
of the stripe phase will oscillate around its equilibrium value
with a frequency the same as the driving, as shown in Fig. 5(a),
where the frequency is chosen as ω = 8πJ .

In the opposite limit of slow driving, where the period of
the driving is much longer than the relaxation time ω � η

(η is the dissipation strength), the system has sufficient time
to relax; thus at any given time, the system is always close
to an equilibrium state. As a consequence, both the FM and
the stripe spatial order can be developed depending on the
sign of V (t ) in the instantaneous Hamiltonian. However, a
thermalization of a system means that it has no memory of the
information of its initial state, or the previous states far away
from it. As a consequence, for magnetic states with SSB, the
system will randomly choose one state among the degenerate
manifold with SSB since the interaction does not break the
Z2 symmetry and thus has no preference among the degener-
ate states. These symmetry-breaking phases at different time
slices barely correlate with each other, and thus cannot form
a long-range order (DTC) in the time domain, as shown in
Fig. 5(b), where the frequency is chosen as ω = 0.02π .

B. Frustration λ

Above, we only studied the unfrustrated (λ = 0) and fully
frustrated (λ = 1) cases, which exhibit nonequilibrium phases
with different SSB. Here, we will systematically study the role
of frustration by continuously tuning the frustration strength
λ. We focus on strongly driving case (J ′ = 5J ). We find
that the frustration does not change the DTC nature of the
phase, but is crucial in determining the spatial order of the
nonequilibrium phases. In general, the magnetic order pa-
rameters in these dynamics phases keep oscillating in time;
therefore, to characterize their strength, we need to derive a
time-independent order parameter. For instance, for the FM
order parameter mF (t ), we choose those time slices with t =
tF
n when mF (t ) reach its nth maximum, and perform the av-

erage over them to derive a time-independent order parameter
mF = 〈m3(tF

n )〉, and use it to characterize the strength of the
FM order parameter in these dynamics phases.

We plot the time-independent AFM, FM, and tripartite
stripe order parameters mA, mF , and m3 as a function of
λ in Fig. 6(a), from which we can find that for a small
frustration, the AFM-DTC order persist until λ = 0.68, where
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FIG. 6. (a) The time-independent AFM (mA), FM (mF ), and tripartite stripe (m3) order parameters as a function of frustration strength λ

with J ′ = 5J and D = 0.01J . (b) In the strongly driven case (J ′ = 5J ), the DTC order parameter corresponding to the FM order as a function
of noise strength D. (c) In the intermediate driven case (J ′ = 3J ), the DTC order parameter corresponding to the 3-period stripe order as a
function of noise strength D. λ = J for (b) and (c). Other parameters are chosen as L = 30, η = J , hz = 1.5J , ω = 2π .

the AFM order gives way to a FM order via a first-order phase
transition. For a frustration within the regime λ ∈ [0.68, 0.9],
one can find an intermediate phase where the long-range
FM order has been built up in the duration of FM coupling,
while there is no long-range tripartite stripe order during the
AFM coupling. In other words, frustration suppresses the
AFM order even in this nonequilibrium driven case, while
it facilitates the FM orders, since in the duration with FM
coupling [V (t ) < 0], the next-nearest-neighboring coupling
no longer leads to “frustration”; instead it increases the
effective FM coupling. When the frustration further increases,
the system experiences another first-order dynamical phase
transition at λ = 0.9 characterized by the sudden onset of
the tripartite stripe order, and the system enters a dynamics
phase oscillating between the states with long-range FM and
tripartite stripe orders, which has been discussed above in the
fully frustrated strongly driving case.

C. Thermal fluctuation D
Above, we focus on the case with weak thermal fluctuation

(D = 0.01J ), which does not change the nature of the phases
with discrete symmetry breaking. However, it is known that
the thermal fluctuation works against spontaneous symmetry
breaking, and a strong thermal fluctuation could melt the or-
dered phase and restore the symmetries. Since the space-time
crystal phase discussed here simultaneously breaks different
symmetries (space and time translational symmetries and Z2

spin symmetry), one may wonder what is the effect of the
thermal fluctuations on these dynamical orders.

As an example, we focus on the DTC order with
spontaneous Z2 symmetry breaking in the time domain,
and check whether it is possible for thermal fluctuation to
restore this symmetry. Since at low temperature, both mF (t )
and m3(t ) exhibit DTC order in the time domain, one needs to
distinguish their corresponding DTC order via different order
parameters as

DTCa = 2

t0

∫ t0

t0
2

dteiπt ma(t ) (5)

with a = F or 3 indicating the FM or tripartite stripe order
parameter, respectively. t0 = 2000J−1 is our simulation time
and the Fourier transformation is performed over the second
half of the full simulation time, during which the system has
reached the long-time asymptotic state.

We focus on both cases with intermediate (J ′ = 3J ) and
strong (J ′ = 5J ) driving and study the corresponding DTC
order parameters DTC3 and DTCF as a function of D. The
ensemble average is performed over N noise trajectories, with
N = 10. For the case with strong driving, the DTC order
parameter corresponding to the FM order persists until D ≈
0.15J , above which the discrete time translational symmetry
has been restored [Fig. 6(b)]; however, the DTC order corre-
sponding to the tripartite stripe order is much more fragile; it
vanishes for D > 0.03J (not shown here). In summary, in the
case with strong driving, there exists an intermediate noise
regime where the FM-DTC order survives but the stripe-DTC
order does not, similar to what happened in the intermediate
frustration regime discussed above. In the case with interme-
diate driving, the long-range FM order has not been built up
even in the presence of weak noise and only tripartite stripe
order exists. However, different from its counterpart in the
strongly driven case, the DTC order corresponding to this
tripartite stripe phase in the intermediately driven case is quite
robust against thermal fluctuation, as shown in Fig. 6(c). The
thermal-fluctuation-induced transitions discussed in these two
cases seem to be continuous. However, a precise determina-
tion of the position of the phase transition point and the critical
properties calls for a finite-size scaling analysis, which will be
left to future work.

VI. SPACE-TIME ORDERS AND PHASE DIAGRAM

A. Origin of discrete time crystals

The traditional routine to realize a DTC (Ref. [17], for
instance) is first considering a noninteracting spin system,
where each spin is driven periodically by a time-dependent
magnetic field. This simple system could exhibit a trivial
period doubling behavior in the presence of a set of fine-tuned
parameters of the magnetic field, and thus it is not stable.
However, once the interaction is switched on, such a period
doubling behavior becomes robust against imperfection of the
choice of parameters. In other words, the system is in a stable
DTC phase that exists in a finite regime, instead of a special
point, in the parameter space. Our model, however, proposed
a completely different mechanism to realize DTC. The key
difference is that the periodic modulation in our model is not
imposed on the external field, but on the interactions. The
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FIG. 7. The snapshots of the spin configuration {sx
i } at two representative time slices t1 corresponding to AFM coupling (upper panel)

and t2 corresponding to FM couplings (lower panel) and various J ′. Other parameters are chosen as ω = 2π , λ = 1, L = 30, D = 0.01J , and
η = J .

interaction in our model does not play the role of a stabilizer,
but a source of DTC.

To understand the nature of this DTC induced by the os-
cillating interaction, we provide an intuitive picture here. For
simplicity, we focus on the frustration-free case where the sys-
tem exhibits an AFM-DTC order. The interaction Hamiltonian
in this case reads as

HI (t ) =
∑
〈i j〉

V (t )sx
i sx

j, (6)

where V (t ) ∼ cos ωt is a periodic function (we ignore the
constant term for simplicity). 〈i j〉 indicates a pair of adjacent
lattice sites. We assume both sx

i and sx
j exhibit periodic oscilla-

tions with the same frequency ω′ and phase φ: sx
i ∼ cos[ω′t +

φ] and sx
j ∼ − cos[ω′t + φ] (the AFM order indicates that

sx
i = −sx

j ). By substituting these simplified formalisms of sx
i

and sx
j into the HI (t ) and ignoring the constant terms, interac-

tion energy turns to

HI (t ) ∼ − cos ωt cos(2ω′t + 2φ)

= − cos(ω−t − 2φ) − cos(ω+t + 2φ), (7)

where ω− = ω − 2ω′ and ω+ = ω + 2ω′. For general values
of ω and ω′, HI (t ) is time-dependent, and its long-time av-
erage is zero. However if ω′ takes the value of ω′ = ω/2
(period doubling), ω− = 0 and thus the first term in the right

side of Eq. (7) becomes time independent, while the second
term is a rapid oscillating term and thus is not important.
Therefore HI (t ) ∼ − cos 2φ, which takes its minimum value
at two degenerate points φ = 0 and φ = π . In a real-time
evolution, φ can take either of these two minima depending
on the initial state, which corresponds to the spontaneously Z2

temporal translational symmetry breaking in the DTC.
The role of other parameters can also be understood. For

instance, the dissipation makes these energy minima become
“attractive” as stated by the referee. Because the dynamics is
dissipative, these two basins are stable against small perturba-
tion imposed by noise or other imperfections. The transverse
field is also necessary to induce nontrivial dynamics of the
spin; otherwise the model is only an Ising model and the spin
dynamics will be simple procession along the z direction. In
summary, we believe such an oversimplified intuitive picture
can capture the essential physics of the periodic doubling in
our model.

B. Snapshots of the spin configurations at time
slices with AFM and FM couplings

Now we focus on the spatial magnetic orders, which can be
seen more clearly in the snapshots of the spin configurations
at different time slices. We first fix the frustration strength
λ = 1, and tune the driving amplitude J ′. The snapshots of
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FIG. 8. The snapshots of the spin configuration {sx
i } at two representative time slices t1 corresponding to AFM coupling (upper panel) and

t2 corresponding to FM couplings (lower panel) and various λ. Other parameters are chosen as ω = 2π , J ′ = 5J , L = 30, D = 0.01J , and
η = J .

the spin configuration {sx
i } at two representative time slices

corresponding to V (t = t1) > 0 (AFM coupling) and V (t =
t2) < 0 (FM couplings), respectively, and three different J ′
are plotted in Fig. 7. Such a real-space visualization indicates
that for J ′ = J , the system exhibits a tripartite stripe order
at both time slices t1 and t2. For J ′ = 3J , the tripartite stripe
order persists in the presence of AFM coupling. However, at
the time slice with FM coupling, the system develops plenty
of FM domains while the average magnetization is close to
zero, which indicates a short-range FM correlation has been
developed, but long-range FM order has not. At J = 5J ′, the
system exhibits long-range tripartite stripe order at time slices
with AFM coupling, and an almost perfect FM long-range
order at the time slices with FM coupling.

Next, we focus on the effect of frustration by fixing
the driving amplitude J ′ = 5J and increase the frustration
strength λ from 0 to 1. We plot the snapshots of {sx

i } at the
AFM and FM coupling time slices with three representative
λ. As shown in Fig. 8, for a weak frustration λ = 0.2, the
system is in an almost perfect AFM phase at the time slices
with AFM coupling, while at FM coupling time slices, the
system is in a paramagnetic state without long-range magnetic
order. For an intermediate frustration strength λ = 0.7, at the
AFM coupling time slice, the AFM order has been completely
destroyed by frustration, while the new magnetic order has
not been built up yet. On the contrary, at the FM coupling

time slice, the system exhibits an almost perfect FM order,
which indicates that in the case with λ = 0.7, the system is in
a FM-DTC phase. When we further increase λ into a strongly
frustrated regime (e.g., λ = 1), the system become an alternat-
ing DTC phase, whose magnetic order alternates between the
long-range tripartite stripe order and FM order. These results
agree with those shown in Fig. 6(a), which indicates that there
are three different nonequilibrium phases separated by two
phase transitions.

C. J′−ω phase diagram

Among all the parameters in our model, three of them are
crucial in determining the space-time symmetry breaking: the
driving frequency ω and amplitude J ′ as well as the frustration
strength λ. The overall phase diagram of the long-time asymp-
totic behavior is extremely rich and complex. We first focus on
the J ′−ω phase diagram with a fixed λ = 1 for simplicity. As
shown in Fig. 9, there are several different dynamics phases
within the parameter regime we considered. The synchronized
stripe phase indicates the system exhibits a tripartite stripe
order whose order parameter oscillates at the same period
with the driving. The stripe-DTC phase spontaneously breaks
the Z2 time translational symmetry, and exhibits the tripartite
stripe order at the time slices with AFM coupling, while at
the time slices with FM coupling, there is no long-range mag-
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FIG. 9. The phase diagram of the long-time asymptotic dynamics
in terms of the driven amplitude J ′ and frequency ω. Other parame-
ters are chosen as λ = 1, L = 30, D = 0.01J , and η = J .

netic order. In the alternating-DTC phase, the system not only
breaks the Z2 time translational symmetry, but also exhibits
an alternating tripartite stripe order and FM long-range order
at the time slices with AFM and FM coupling, respectively.
These three phases have been discussed above. The phase
which has not been mentioned above is the intermediate phase
between the stripe-DTC and the alternating DTC phases. As
shown in Fig. 10, this phase exhibits neither the DTC order
in the time domain, nor long-range magnetic order in space.
This phase resembles the high-temperature phase in our model
(the order parameter is a small but finite value due to the
finite-size effect). Further including another parameter λ sig-
nificantly complicates the phase diagram. For a fixed ω = 2π

and J ′ = 5J , the phase diagram in terms of λ has been dis-
cussed Fig. 6(a). In the intermediate frustrated regime, there

FIG. 10. Dynamics of the FM and tripartite stripe order param-
eters mF and m3 in the intermediate phase with J ′ = 4.3J . Other
parameters are chosen as ω = 2π , λ = 1, L = 30, D = 0.01J , and
η = J .

exists a new phase (FM-DTC phase), which only exhibits
FM order instead of tripartite stripe order during the time
evolution. Also, outside the parameter regime of the phase
diagram in Fig. 9, there also exist other dynamical phases. For
instance, for an extremely small ω, the system exhibits both
FM and tripartite stripe long-range order in space at different
time slices; however, there is no DTC order in the time domain
as shown in Fig. 5(b).

VII. EXPERIMENTAL REALIZATION
OF THE SPACE-TIME CRYSTALS

Even though we studied a classical model which takes an
advantage in numerical simulations, the proposed model is
difficult to be realized in natural magnetic systems. It requires
a time-dependent modulation of the interaction strength,
which can be realized using magnetophononics [44–46] al-
though the tunable coupling regime therein is small, and
corresponds to a weak driving regime in our model (J ′ < J ).
The dynamical modulated interaction can also be accessible in
synthetic quantum systems. It has been realized that the origin
of DTC may not crucially depend on the quantum or classical
feature of the interacting systems [35,38–40]. In addition,
our model is a 2D system where a long-range order with
discrete SSB is supposed to be robust against weak quantum
or thermal fluctuations. We therefore expect that the space-
time crystals predicted in our classical model can also be
observed in synthetic quantum systems like the quantum cir-
cuit and cavity QED systems, where the interaction strength
can be dynamically modified.

VIII. CONCLUSION AND OUTLOOK

In this work, we study a nonequilibrium magnetic system
with alternate FM and AFM couplings. Introducing frus-
tration into such a driven-dissipative system gives rise to
plenty of nonequilibrium phases with SSB in both space and
time. Future developments will include the generalization of
these results to models with different lattice and spin sym-
metries. For instance, in other geometric frustrated lattices
(e.g., kagome or pyrochlore), one may expect nonequilibrium
phases with other magnetic patterns (e.g., nematic or spin
ice) and temporal orders (e.g., algebraic temporal correlation
[47]) in time. A more exciting possibility is the realization
of nonequilibrium states with intertwined space-time symme-
tries that cannot be decomposed into a direct product of spatial
and temporal symmetries [48,49]. As for the spin symmetry,
the Hamiltonian (1) preserves the Ising symmetry; gener-
alizing the spin symmetry to continuous ones [e.g., U (1)]
may lead to intriguing nonequilibrium phenomena (e.g., a
Berezinskii-Kosterlitz-Thouless-like phase transition in such
a driven-dissipative system, where the traditional binding-
unbinding picture of a vortex [50] may be modified in the
context of nonequilibrium physics [51]).
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distribution of energy predicted by the EOM (A1), which agrees very well with the Boltzmann distribution. (c) The dynamics of the energy
for a two-spin model predicted by the EOM (A1) and the value predicted by statistical ensemble average (red dashed line). The parameters are
chosen as hx = J , η = J , and the temperature T = J .
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APPENDIX: DETAILS ABOUT
THE NUMERICAL SIMULATION

1. Heun algorithm

Here, we first derive the discrete formalism of the
stochastic Landau-Lifshitz-Gilbert (LLG) equation based on
Stratonovich’s formula, then formulate the Heun algorithm to
solve this stochastic differential equation (SDE). A stochastic
LLG equation reads

ṡi = 1

η2 + 1
[hi × si − ηsi × (si × hi )], (A1)

where si is a unit vector. hi(t ) = h0
i (t ) + hT

i (t ) is the effec-
tive magnetic field. h0

i (t ) comes from the interaction between
spin i and its neighbors. hT

i (t ) is a three-dimensional random
magnetic field representing the thermal noise, which satisfies

〈
hT α

i (t )
〉
ξ

= 0, (A2)

〈
hT α

i (t )hT β
j (t ′)

〉
ξ

= D2δαβδi jδ(t − t ′), (A3)

where α, β are the index of three spatial dimensions and D is
the strength of the noise. 〈 〉ξ is the ensemble average over
all the trajectories of noises. According to the fluctuation-
dissipation theorem, the strength of the thermal noise and the
dissipation satisfies the relation

D2 = 2T η. (A4)

To solve this SDE numerically, we first discretize the time
with the time step of 
t . Let the spin configuration in the mth
time step (tm = m
t ) be {sm

i }; the calculation of {sm+1
i } can be

divided into two steps in the Heun algorithm.
In the first step, we derive an intermediate spin configura-

tion {s̃m+1
i }:

s̃m+1
i = sm

i + 1

η2 + 1

[
hm

i × sm
i − λsm

i × (
sm

i × hm
i

)]

t (A5)

with hm
i = h0

i,m + h̃
T
i,m, where h0

i,m = h0
i (tm) and h̃

T
i,m is a

stochastic magnetic field satisfying

h̃T α
i,m = D√


t
ξα

i,m, (A6)

where ξα
i is a random number satisfying the Gaussian

distribution with zero mean and unit variance: 〈ξα
i 〉ξ = 0,

〈(ξα
i )2〉ξ = 1.

FIG. 12. (a) Comparison between the dynamics of FM order parameter mF (t ) with different 
t with J ′ = 5J , L = 30. Comparison between
the dynamics of FM order parameter mF (t ) with different system size L (b) in the strong driving case (J ′ = 5J ) and (c) in the intermediate
driving case (J ′ = 3J ). Other parameters are chosen as η = J , D = 0.01J , λ = J , hz = 1.5J , ω = 2π .
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In the Heun algorithm, si at the (m + 1)th time step can be
expressed as

sm+1
i = sm

i + 
t

2

[
hm

i × sm
i − λsm

i × (
sm

i × hm
i

)

+ h̃m+1
i × s̃m+1

i − λs̃m+1
i × (

s̃m+1
i × h̃m+1

i

)]
, (A7)

where s̃m+1
i has been defined in Eq. (A5), and h̃m+1

i =
h0

i,m+1 + h̃
T
i,m.

2. Benchmark: Spin models without driving

It is known that once a system couples to a heat bath, it
will finally relax to a thermodynamical equilibrium state at
the same temperature of the bath, irrespective of its initial
state. To verify the validity of the EOM (A1), we consider
two simple spin models as benchmarks, which show that the
long-time asymptotic state derived by EOM (A1) is indeed the
thermodynamic equilibrium state at a temperature determined
by Eq. (A4).

The first model we consider is a single spin model with the
Hamiltonian

Hs
1 = hzs

z. (A8)

By solving EOM (A1) using the Heun algorithm, we can find
that the energy of the system E (t ) = 〈H (t )〉 quickly relaxes
to a value with small statistical fluctuation. According to the
statistical physics, for a thermodynamical equilibrium state,
the long-time average of the system energy is supposed to be
the same with the value predicted by the statistical ensemble,
which is

Es = 1

Z

∫ π

0
sin θdθ (hz cos θ )e−βhz cos θ , (A9)

where θ is the angle between the spin vector and z axis, and
Z = ∫ π

0 sin θdθe−βhz cos θ is the partition function. As shown
in Fig. 11(a), the time-averaged value of 〈H (t )〉 agrees very
well with the ensemble-averaged value Es within the statistical
error. In addition, one can study the statistical distribution of
E (t ) during the long-time dynamics; P(E ) agrees very well
with the Boltzmann distribution, as shown in Fig. 11(b).

We also check a two-spin model with the Hamiltonian

H2
s = Jsx

1sx
2 + hz

(
sz

1 + sz
2

)
. (A10)

We study the evolution of the system, and focus on its energy.
As shown in Fig. 11(c), in the long-time limit, the system
energy will approach the value predicted by a canonical en-
semble accompanied by small statistical fluctuations.

3. Convergence of numerical results

Finite 
t . Throughout the main text, we chose a dis-
crete time step of 
t = 10−3J−1. For a stochastic differential
equation, the choice of 
t is more subtle than that in the de-
terministic equation since the random variable depends on 
t
as shown in Eq. (A6). To examine the convergence of our re-
sult with 
t , we choose different 
tJ = 2 × 10−3, 10−3, and
5 × 10−4, and compare their results. As shown in Fig. 12(a),
the results with different 
t agree with each other very well,
which indicates that the 
t chosen in our simulation is suffi-

FIG. 13. Comparison between the dynamics of FM order param-
eter mF (t ) with (a) different noise trajectories and (b) different initial
states with J ′ = 5J and L = 30. Other parameters are chosen the
same as in Fig. 12.

ciently small, thus enabling us to ignore the errors induced by
the discretization of time.

Finite L. In the main text, the system we simulated is up to
a system size with L = 120. One needs to check the system
size dependence of our results. For an ordered phase [e.g.,
the DTC phase with strong driving (J ′ = 5J )], as shown in
Fig. 12(b), the deviation between the results with L = 30,
60, and 120 is pretty small. However, in the intermediate
driving regime without true long-range ferromagnetic (FM)
order, the FM order parameter mF (t ) strongly depends on the
system size. As shown in Fig. 12(c), the amplitude of mF (t )
significantly decreases with L. This is due to the fact that in
the presence of intermediate driving, the long-range FM order
has not been built up during the FM coupling. Instead, the
system is spontaneously separated into different FM domains,
and the overall FM order parameter is a summation of the
magnetization of them. Within each FM domain, the magne-
tization oscillates as a DTC, but the phases of these DTCs are
not coherent, and thus the magnetizations in different domains
at a given time cancel with each other. As a consequence,
the overall FM order parameter decreases with the system
size.

The different finite-size dependence of the FM order pa-
rameter between the strong and intermediate driving can be
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considered as the signature of the different dynamical phases
with long-range and short-range FM orders, respectively. In
addition, the finite-size effect is supposed to be important near
the dynamical critical points, which is an important issue but
not addressed in this work.

Noise trajectories. In principle, one needs to simulate over
different noise trajectories and perform the ensemble average
over them. However, in our simulation, we only randomly
choose one noise trajectory for each set of parameters. This
is because we are only interested in the situation with weak
noise (D = 0.01J ), where a small thermal fluctuation does
not change the nature of the phases with discrete symmetry
breaking [see the comparison between the dynamics over two
different noise trajectories in Fig. 13(a)]. However, for some
special initial states, it is possible that the system could be
trapped into a metastable state if there are no thermal fluc-
tuations. The role of noise in our simulation is to thermally
activate the system and make it escape from the metastable

state after a sufficiently long time and enter the genuine
asymptotic long-time states discussed in the main text.

Initial states. In our simulation, we start from a spa-
tially inhomogeneous random initial state: for each site, we
choose its initial state as s0

i = [sx
i , 0, sz

i ], where sx
i is a random

number different from site to site and uniformly distributed
within [−1, 1]; the z component of the spin is chosen cor-
respondingly as sz

i = √
1 − [sx

i ]2. Since we focus on the
nonequilibrium phases with spontaneously symmetry break-
ing, it is well known that in this case, the final state is supposed
to be highly sensitive to the initial state. This statement does
not only work for equilibrium phases (FM or AFM order), but
also for nonequilibrium phases. For instance, for a DTC phase
with spontaneously Z2 time translational symmetry breaking,
as shown in Fig. 13(b), starting from different initial states,
the system could finally fall into either one of the Z2 breaking
phases, each of which is related with the other by a half-period
shift in time domain.
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