
PHYSICAL REVIEW B 107, 094312 (2023)

Local Hilbert space fragmentation and weak thermalization in Bose-Hubbard diamond necklaces
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We study Bose-Hubbard models in a family of diamond necklace lattices with n central sites. The single-
particle spectrum of these models presents compact localized states (CLSs) that occupy the up and down sites of
each diamond. By performing an appropriate basis rotation, the fragmentation of the many-boson Hilbert space
becomes apparent in the adjacency graph of the Hamiltonian, showing disconnected subsectors with a wide range
of dimensions. The models present a conserved quantity related to the occupation of the single-particle CLSs
that uniquely identifies the different subsectors of the many-boson Hilbert space. Due to the fragmentation of
the Hilbert space, the distribution of entanglement entropies of the system presents a nested-dome structure. We
find weak thermalization through subsector-restricted entanglement evolution and a wide range of entanglement
entropy scalings from area-law to logarithmic growth. Additionally, we observe how the distinguishability
between the different domes increases with the number of central sites and we explain the mechanism behind
this fact by analyzing the graph structure of the Hamiltonian.
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I. INTRODUCTION

The eigenstate thermalization hypothesis (ETH) predicts
how an excited state of a many-body closed quantum system
should thermalize [1–3]. Although most systems obey this
hypothesis, numerous examples of nonergodic systems have
been found. Perhaps the most prominent example is integrable
systems, where the number of conserved quantities equals or
exceeds the degrees of freedom of the system, thus exactly
determining all the eigenstates [4]. In many-body localized
systems [5], the interplay between disorder and interactions
gives rise to emergent integrability, which also leads to a
strong violation of the ETH. More recently, it was shown that
the ETH can also be weakly violated by a vanishing subset
of nonthermal eigenstates, dubbed quantum many-body scars
(QMBS). They were initially found in one-dimensional (1D)
Rydberg arrays [6] with the underlying PXP model [7,8], and
were also discovered in parallel in the Affleck-Kennedy-Lieb-
Tasaki model [9,10]. Since these initial works, QMBS have
been found in several systems where there is either a tower of
scarred eigenstates [10–23] or an isolated scar [24–32].

A broader phenomenon that also leads to weak thermal-
ization is Hilbert space fragmentation, also known as Hilbert
space shattering or Krylov fracture [33]. The Hilbert space
presents exponentially many disconnected sectors that pre-
vent the system from thermalizing completely. Remarkably,
this mechanism can lead to a weak or a strong violation of
the ETH. This effect can arise in a wide variety of systems,
such as dipole moment or center-of-mass conserving systems
[34–39], the 1D t-Jz model [40], the t-V and t-V1-V2 models
[41,42], models within the Fibonacci Hilbert space of the Ryd-
berg blockade [43], and models with dipolar interactions [44].
All the above examples exhibit fragmentation of the Hilbert
space in the product state basis [45], i.e., classical fragmen-
tation. Quantum fragmentation, which occurs in an entangled

basis, has been recently shown to arise in Temperley-Lieb spin
chains [45] and in quantum East models [46]. However, it
has yet to be determined if quantum fragmentation leads to
different phenomenology than its classical analog.

The fragmentation in the above examples has recently been
referred to as standard Hilbert space fragmentation, to dis-
tinguish it from local Hilbert space fragmentation [47], that
arises in models with [21,27,32,48,49] or without frustration
[50] and in flat band models [51]. While standard fragmenta-
tion is due to the presence of nonlocal conserved quantities,
locally fragmented systems present strictly local conservation
laws.

In this paper, we report on a family of Bose-Hubbard dia-
mond necklaces [52] that exhibit quantum local Hilbert space
fragmentation. Here, the presence of a single-particle flat band
composed of compact localized states (CLSs) gives rise to the
fragmentation of the Hilbert space when introducing on-site
interactions. As a consequence of this fragmentation, one
finds a nested distribution of entanglement entropies, sector-
restricted thermalization, and a broad range of subsectors of
the Hamiltonian that range from frozen subsectors following
area-law scaling to nonintegrable subsectors with logarithmic
scaling.

The paper is structured as follows: in Sec. II, we introduce
the system, and we describe the basis rotation that reveals the
fragmentation of the Hilbert space in Sec. II A. In Sec. II B,
we analyze the conserved quantity that characterizes the sub-
sectors of the Hamiltonian, discuss the adjacency graphs of
the fragmented Hamiltonian, and demonstrate that the system
is strongly fragmented. The numerical results are discussed
in Sec. III, which include the distribution of entanglement
entropies, the entanglement evolution and scaling, the level
spacing analysis, and a comparison between the different
models of the diamond necklace family. Finally, we summa-
rize our conclusions in Sec. IV.
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FIG. 1. (a) Diagram of the one-dimensional diamond necklace
model with n central sites. All couplings have a strength J and the
unit cell is shadowed in gray. In the second unit cell we represent
the CLS with the site amplitude being the radius of the circle and the
phase being the color (zero, red; π , blue). (b) Diagram of the rotated
model with the renormalized couplings,

√
2J , denoted by a dashed

line. The uncoupled states represent the CLSs, |Ak〉.

II. PHYSICAL SYSTEM

We study a system of interacting bosons loaded onto a one-
dimensional lattice of diamond necklaces with n central (i.e.,
spinal) sites [see Fig. 1(a)]. Each unit cell k is composed of
the sites C1,k · · ·Cn,k , Uk , and Dk (with k = 1, . . . , Nc), and all
the couplings have the same magnitude J . The Hamiltonian
of this system is Ĥn = Ĥ0

n + Ĥint
n , where the single-particle

Hamiltonian reads

Ĥ0
n =J

∑
k

[
ĉ†

n,k (ûk + d̂k ) + (û†
k + d̂†

k )ĉ1,k+1

+
n−1∑
j=1

(ĉ†
j,k ĉ j+1,k )

]
+ H.c., (1)

where ĉ j,k is the annihilation operator of the state |Cj,k〉 at the
central site j = 1, . . . , n in each unit cell k, and ûk and d̂k are
the annihilation operators of the states |Uk〉 and |Dk〉 at the up
and down sites of each diamond, respectively. In particular,
the n = 2 case corresponds to a type of orthogonal dimer
chain [53–63] with absent vertical couplings. The interaction
Hamiltonian reads

Ĥint
n = U

2

Nc∑
k=1

[
n̂u,k (n̂u,k − 1) + n̂d,k (n̂d,k − 1)

+
n∑

j=1

n̂ j,k (n̂ j,k − 1)

]
= Ĥint

n,diam + Ĥint
n,cent, (2)

where we distinguish the terms of the up and down sites of
each diamond, Ĥint

n,diam, and the central sites, Ĥint
n,cent. n̂u,k =

û†
k ûk , n̂d,k = d̂†

k d̂k and n̂ j,k = ĉ†
j,k ĉ j,k are the number operators

at the up, down, and central sites, respectively.
An interesting characteristic of this family of Hamiltoni-

ans is that each diamond presents a single-particle CLS that
only populates the sites Uk and Dk , (|Uk〉 − |Dk〉)/

√
2 [see

Fig. 1(a)]. Due to the presence of the CLS in each diamond of
the lattice, all models of this family exhibit a single-particle

spectrum with a zero-energy flat band. We are interested in
the many-body states where some of the particles occupy
a CLS, and how the existence of these states modifies the
thermalization properties of the whole system. The numerical
results that we present in Sec. III can be better interpreted by
performing a basis rotation and analyzing the symmetries of
the system, which we discuss in the next subsection.

A. Basis rotation

Consider the symmetric and antisymmetric superpositions
of the up and down states of each diamond:

|Sk〉 = 1√
2

(|Uk〉 + |Dk〉), |Ak〉 = 1√
2

(|Uk〉 − |Dk〉), (3)

where ŝ†
k and â†

k are the respective creation operators and |Ak〉
is the CLS in unit cell k. By using these states to perform a
basis rotation on the single-particle Hamiltonian, in Eq. (1),
only the couplings associated to the diamonds are altered:

Ĥ0′
n =

∑
k

[√
2J (ĉ†

n,k ŝk + ŝ†
k ĉ1,k+1) + J

n−1∑
j=1

(ĉ†
j,k ĉ j+1,k )

]

+ H.c. (4)

One obtains a linear chain that includes the symmetric states,
|Sk〉, and the central states |Cj,k〉, with renormalized couplings
corresponding to the diamonds,

√
2J . Additionally, the CLSs

in each unit cell, |Ak〉, become decoupled [see Fig. 1(b)]. In
analogy with the transformation of Ĥ0

n, only the interaction
term of the up and down sites of each diamond, Ĥint

n,diam in
Eq. (2), is altered by the basis rotation:

Ĥint′
n,diam = U

4

Nc∑
k=1

[
4ŝ†

k â†
k ŝk âk +

∑
σ=a,s

(σ̂ †
k σ̂

†
k σ̂k σ̂k )

+ â†
k â†

k ŝk ŝk + ŝ†
k ŝ†

k âk âk

]
, (5)

where σ̂k (σ̂ = ŝ, â) are the annihilation operators of |Sk〉 and
|Ak〉, respectively. The first term corresponds to a nearest-
neighbor interaction that arises when there is at least one
particle in |Sk〉 and one in |Ak〉, akin to the intercirculation
interaction term appearing in Hubbard models of excited or-
bital angular momentum states in optical lattices [64,65]. The
second term is an effective on-site interaction that occurs
when there are at least two particles in either |Sk〉 or |Ak〉.
Finally, the last two terms correspond to a two-particle tun-
neling between the decoupled states |Ak〉 and the states |Sk〉.
Therefore, on-site interactions induce a coupling between the
CLSs and the dispersive linear chain through the two-particle
tunneling.

B. Local and total CLS number parity

Let us consider the two-particle tunneling term that ap-
pears in the rotated interaction Hamiltonian of Eq. (5). As a
consequence of this process, the system presents a conserved
quantity, the local CLS number parity, that reads

P̂k = eiπ n̂a,k , (6)
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FIG. 2. Adjacency graphs for open boundary conditions and U/J = 1. (a) Ĥ′
1, with N = 2 particles in Nc = 2 unit cells. (b) Ĥ′

1, with
N = 3 and Nc = 3. (c) Largest subsector of Ĥ′

1, with N = 4 and Nc = 4. The width of the lines indicates the strength of the couplings between
basis states and the color of the nodes represents the diagonal terms, ε, in (a) and (b) and the total number of particles in a CLS, NCLS, in (c).
For each cluster, the values of the total CLS number parity are given as well as the vector P for the local CLS number parity. In (a), each basis
state is represented by a node and labeled using the notation |NC,1 NS,1 NA,1 NC,2 NS,2 NA,2〉, where Nj,k is the number of particles in state | jk〉
( j = C, S, A) in the unit cell k.

where n̂a,k = â†
k âk is the CLS number operator at unit cell k.

This operator commutes with the rotated interaction Hamil-
tonian, [Ĥint′

n,diam, P̂k] = 0, and consequently with the total
rotated Hamiltonian, [Ĥ′

n, P̂k] = 0. The operator P̂k can be
evaluated at each unit cell k (which contains a single diamond)
and takes the eigenvalues Pk = 1, for an even number of parti-
cles, and Pk = −1, for an odd number of particles. We define
the local CLS number parity vector as the vector that contains
the eigenvalues of P̂k at each unit cell, P = (P1, . . . ,PNc ).
This conserved quantity corresponds to a Z2 local gauge sym-
metry governed by the two-particle tunneling term in Eq. (5)
[66–68]. Additionally, one can define the total CLS number
parity as the sum of the local operators in all unit cells,
P̂ = ∑

k P̂k . Given that the rotated Hamiltonian commutes
with the local operator, it is straightforward to see that it also
commutes with the total CLS number parity, [Ĥ′

n, P̂] = 0.
The eigenvalues of the total parity are determined by the
number of unit cells and the number of particles that can
occupy the CLSs. If there are at least as many particles, N , as
unit cells, N � Nc, there are Nc + 1 sectors with eigenvalues
P = −Nc,−Nc + 2, . . . , Nc − 2, Nc. For N < Nc, the number
of sectors reduces to N + 1 as the lowest eigenvalues become
unavailable. We note that the Z2 local gauge symmetry makes
the subsectors in this model similar to the superselection
sectors present in lattice gauge theories, where the shattering
of the Hilbert space naturally stems from the gauge field and
leads to nonergodicity [69–71].

Spinless fermions in diamond lattices with nearest-
neighbor interactions present a locally fragmented Hilbert
space where the number of particles occupying a CLS is
conserved, which corresponds to a U (1) local gauge sym-
metry [72]. The authors note there that for bosons or spinful
fermions, the two-particle tunneling implies that the number
of particles in a CLS is no longer conserved. Here, we show
that for bosons with on-site interactions a new conserved
quantity emerges, the CLS number parity, which preserves the
fragmentation of the Hilbert space.

In Fig. 2, we represent three examples of the adjacency
graph of the rotated Hamiltonian. Unless otherwise specified,
we consider open boundary conditions, and for all simulations

we fix U/J = 1 and consider an integer number of unit cells.
Henceforward, the eigenvalues Pk are denoted as ±. The
width of the lines indicates the strength of the couplings be-
tween basis states and, for Figs. 2(a) and 2(b), the color of the
nodes indicates the diagonal terms of the rotated Hamiltonian,
ε = 〈 f |Ĥ′

n| f 〉, where | f 〉 is a basis state. Figure 2(a) repre-
sents the diamond chain, Ĥ′

1, a known square-root topological
insulator [63,73], with N = 2 particles in Nc = 2 unit cells.
Each basis state is represented by a node and labeled using
the notation |NC,1 NS,1 NA,1 NC,2 NS,2 NA,2〉, where Nj,k is the
number of particles in state | jk〉 ( j = C, S, A) in the unit cell k.
We obtain several uncoupled clusters of basis states with dis-
tinct local eigenvalues P , i.e., the Hilbert space is fragmented.
Each sector with total parity eigenvalue P is composed of one
or more uncoupled subsectors with eigenvalues P . There is a
one-dimensional (or frozen) subsector with a single basis state
with the two particles occupying the two CLSs, P = −2, and
which is not coupled to any other basis state. There are two
subsectors sharing the same total CLS parity value, P = 0,
where only one particle is in a CLS, while the other particle
occupies the dispersive chain. The two subsectors arise due
to the two CLSs that the particle can occupy, which leads to
different orderings in the elements of the vector P . Finally,
most of the basis states of the largest subsector have the two
particles in the dispersive chain and zero in a CLS. However,
due to the two-particle tunneling, there are two special basis
states with two particles occupying the same CLS, |002000〉
and |000002〉, which yield the same eigenvalue for the local
and total CLS number parity, P = (+,+) and P = 2.

In Fig. 2(b), we present the same system, Ĥ′
1, for a larger

lattice: Nc = 3 unit cells with N = 3 particles. The number
of subsectors proliferates due to the presence of an additional
CLS in the lattice. More precisely, for N � Nc, the number
of subsectors is given by 2Nc , while for N < Nc, the number is∑N

k=0

(Nc

k

)
. The subsectors P = −1, like the subsectors P = 0

in Fig. 2(a), have only one particle in the dispersive chain,
while all the other particles occupy distinct CLSs. These
particles cannot access the two-particle tunneling in Eq. (5)
and thus are trapped in the CLSs. Therefore, these subsec-
tors are effectively single-particle systems with a nonuniform
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on-site potential distribution. For the larger subsectors, there
are at least two particles in the dispersive chain, making these
subsectors sensitive to interactions. Note that the different
subsectors with the same eigenvalue P for the total CLS num-
ber parity are not degenerate due to the different positioning of
the diagonal terms. This will prove to be an important factor in
distinguishing between the different domes of the distribution
of entanglement entropies, as we discuss below in Sec. III D.

As an example of a subsector with a large dimension, we
represent the largest subsector of Ĥ′

1, with N = 4 particles in
Nc = 4 unit cells in Fig. 2(c). The color of each basis state
represents the total number of particles that are in a CLS,
NCLS| f 〉 = ∑

k n̂a,k| f 〉. Most of the basis states have zero par-
ticles in a CLS. However, there are also some basis states with
four particles in a CLS (either four particles in the same CLS
or two pairs of particles in different CLSs), and many more
with two particles in the same CLS. This embedding of special
basis states has some consequences on the distribution of
entanglement entropies of the system, which will be discussed
in Sec. III D.

It is important to note that the Hilbert space fractures
into a series of uncoupled subsectors only on the rotated or
entangled basis. Meanwhile, the Hilbert space in the original
or product-state basis exhibits a connected adjacency graph.
Thus, the results of this section show how this system exhibits
quantum Hilbert space fragmentation, a distinction recently
proposed in [45]. In contrast, the Hilbert space of classically
fragmented systems is shattered in the product-state basis.
While the fracture is only revealed on the rotated basis, it
still has some dramatic consequences on the thermalization
properties of this family of models, which we explore in
Sec. III.

Another recently proposed classification of Hilbert space
fragmentation distinguishes between strongly and weakly
fragmented systems in the context of dipole conserving mod-
els [34,35,74]. The ratio between the dimension of the largest
sector Dmax and the dimension of the full Hilbert space D
either tends to 1 in the thermodynamic limit, signaling weak
fragmentation, or tends to zero, signaling strong fragmen-
tation. Typical initial states of a weakly fragmented system
belong to the largest sector, and thus completely thermalize,
while only a vanishing subset of initial states is nonthermal.
For strongly fragmented systems, most initial states only have
access to a small subset of the Hilbert space, which precludes
full thermalization. Thus, these two types of fragmentation
are associated with a weak or a strong violation of the ETH,
respectively. For our model, the dimension of each subsector
in a sector P is

DP =
� N−m

2 �∑
�=0

(
(n + 1)Nc + N − 2� − m − 1

N − 2� − m

)(
Nc + � − 1

�

)
,

(7)

where the integer � counts the number of pairs of particles
that populate the CLSs and m is defined as m = (Nc − P )/2.
The dimension of the largest subsector Dmax corresponds to
P = Nc. Given the dimension of the full Hilbert space,

D =
(

(n + 2)Nc + N − 1

N

)
, (8)

FIG. 3. Mean level spacing ratio for the subsectors with P =
4, 2, 0 of Ĥ′

4, with N = 4 particles in Nc = 4 unit cells. The blue
dotted line indicates the value corresponding to the Gaussian orthog-
onal ensemble, 〈r〉GOE = 0.536, and the dashed green line indicates
the value for a Poisson distribution, 〈r〉P = 0.386. The error bars are
standard errors of the mean. The subsectors P = −2 and −4, which
are not included, correspond to the integrable effective single-particle
subsectors and the integrable frozen state, respectively.

the ratio Dmax/D tends to zero at the thermodynamic limit,
indicating strong Hilbert space fragmentation for this family
of models. Thus, this result points to a strong violation of the
ETH, as we will numerically argue in the next section.

Finally, this system exhibits local Hilbert space fragmenta-
tion, a term recently coined in [47], as the fragmentation stems
from a local conservation law, namely, the local CLS number
parity, [Ĥ′

n, P̂k] = 0.

III. EXACT DIAGONALIZATION RESULTS

A. Level statistics

In order to characterize the properties of the different sub-
sectors of the Hilbert space, we analyze their level statistics
using exact diagonalization. For each subsector, we consider
the ordered eigenvalues En, and the nearest-neighbor gaps
sn = En+1 − En. From those, one can define the level spacing
ratios for each pair of gaps [75],

rn = min (sn, sn+1)

max (sn, sn+1)
, (9)

and the corresponding average 〈r〉. Nonintegrable systems
with time-reversal symmetry are expected to approximate
the probability distribution P(r) of the Gaussian orthogonal
ensemble, with an average value 〈r〉GOE = 0.536 [76]. For
integrable systems, a Poisson distribution is expected, with a
characteristic value 〈r〉P = 0.386. In Fig. 3, we represent the
average spacing ratio for Ĥ′

4 with N = 4 particles in Nc = 4
unit cells for the subsectors P = 4, 2, 0. We observe how
most subsectors are within a few error bars of 〈r〉GOE. The
value of 〈r〉 increases with the total CLS number parity, P , as
less particles are trapped in a CLS. Additionally, the lowest
values of 〈r〉 correspond to the subsectors with the smallest
dimension (i.e., smaller P), for which the P(r) distribution is
not so well defined. Besides the subsectors shown in Fig. 3, the
system also presents the integrable subsectors with P = −2,
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FIG. 4. Distribution of entanglement entropies and entanglement
evolution of a trial state for Ĥ′

2, with N = 4 particles in Nc = 4 unit
cells. (a) Half-chain bipartite von Neumann entanglement entropy of
each eigenstate as a function of the energy. The horizontal lines are
the sector-restricted Page values for each sector and the color of the
dots indicates the normalized density of data points, increasing with
warming colors. (b) Average of the entanglement entropy evolution
for ten random rotated basis states of each sector with eigenvalue P .
In both figures, the entropy is normalized to the number of sites in
the subsystem, S̃ = S/NL .

the effectively single-particle subsectors, and P = −4, the
frozen one-dimensional subsector.

B. Entanglement entropy and evolution

In this section, we calculate the bipartite von Neumann
entanglement entropy, S, for each eigenstate of the full
Hilbert space by partitioning the lattice into two subsystems:
left L and right R. The entanglement entropy is then S =
− tr(ρL ln ρL ), where ρL is the reduced density matrix of the
left subsystem. We consider the half-chain entanglement en-
tropy by partitioning the lattice in the middle, with the same
number of sites in each subsystem and such that the cut never
falls between the U and D sites of a single diamond.

Figure 4(a) represents the entanglement entropy of all
eigenstates of the system for Ĥ′

2 with N = 4 particles in
Nc = 4 unit cells. We give the results in terms of the nor-
malized entanglement entropy, S̃ = S/NL where NL is the
number of sites of subsystem L. The entanglement entropy
is not a continuous function of the energy density but presents
a nested-dome structure. Similar structures have been found
in the distribution of entanglement entropies of systems with
[21,27,32] or without frustration [50], as a similar shattering
mechanism is known to arise in spin systems [77]. In Fig. 4(a),
each dome corresponds to a sector with a given value for the
total CLS number parity, P .

(1) The upper dome corresponds to the largest subsector,
with P = 4, where most basis states have all particles in the
dispersive chain and none are trapped in a CLS.

(2) The second dome from above corresponds to the sub-
sectors with P = 2, where most basis states have one particle
in a CLS and the other three are in the dispersive chain. As
the subsystem partition does not fall between the sites U and
D of any diamond, the contribution to the entanglement of the
particle occupying a CLS is exactly zero. Thus, the eigenstates
belonging to the sector P = 2 have an upper bound for the
entanglement entropy given by the maximum number of par-
ticles in the dispersive chain of the corresponding basis states.

(3) The third dome corresponds to P = 0, where most
basis states have two particles in a CLS and two in the dis-
persive chain. Consequently, those subsectors have an even
lower bound for the entanglement entropy.

(4) The subsectors with P = −2 have only one particle in
the dispersive chain, making them effectively single-particle
systems. As a result, their distribution of entanglement en-
tropies does not form a dome structure. Most eigenstates
accumulate at a constant value, which one would expect for
a linear chain, while some fall below as a consequence of the
interaction-induced on-site potentials, e.g., a particle occupy-
ing the |Ak〉 CLS can be translated into an effective on-site
potential of strength U acting on a second particle located at
|Sk〉 of the dispersive chain, due to the first term of H′int

n,diam in
Eq. (5). These potentials act as impurities that either attract
or repel the wave functions, and they induce an asymmetry
between the L and R subsystems that lowers the half-chain
entanglement entropy.

(5) Finally, there is a single state with exactly zero en-
tanglement entropy and zero energy that corresponds to the
subsector with P = −4, for which all the particles are trapped
in a CLS.

The interaction-induced on-site potentials are the origin
of the many-body localization transition observed in [72,78]
for the diamond chain with nearest-neighbor interactions and
spinless fermions. For spinless fermions, the two-particle tun-
neling is not present, thus completely decoupling the CLSs
from the dispersive chain, and the random on-site potentials
cause a transition to a many-body localized phase when the
interaction, i.e., the effective disorder, is increased.

Additionally, we plot in Fig. 4(a) the sector-restricted Page
value (horizontal lines), for each of the sectors with a given
total CLS number parity P . The Page value is the average
entanglement entropy of a random vector, for which Don N.
Page derived an analytical expression for a generic bipartite
quantum system [79]. We find the Page value using normal-
ized random vectors |ψ〉 of the form

〈 f | ψ〉 = α f ,ψ + iβ f ,ψ

Nψ

, (10)

where the basis states | f 〉 belong to a particular subsector P ,
α f ,ψ and β f ,ψ are taken from a normal distribution with zero
mean, and Nψ is the normalization constant. The entangle-
ment entropy of each random state is computed by projecting
|ψ〉 onto the full Hilbert space. Then, we compute the average
of the entanglement entropy for 1000 random vectors belong-
ing to a particular subsector, such that the sector-restricted
Page value is given by the average value of the corresponding
subsectors. Each sector-restricted Page value coincides with
the top of each dome [see Fig. 4(a)]. In Fig. 4(b), we take
ten random basis states for each sector and let them evolve
through time (in dimensionless units, J t). The evolved wave
functions are computed numerically using the time-evolution
unitary operator defined through the rotated Hamiltonian,
Eqs. (4) and (5). We observe how the average entanglement
entropy at which the evolved states saturate is bounded by
the corresponding sector-restricted Page value indicated in
Fig. 4(a). This sector-restricted weak thermalization induced
by the fragmentation of the Hilbert space constitutes a viola-
tion of the ETH.
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FIG. 5. Average entanglement entropy for each sector P as a
function of the number of unit cells Nc for Ĥ′

2 with N = 3 particles.
The inset shows sector P = −1. The lines are represented as a guide
to the eye.

C. Entanglement scaling

In order to further characterize the properties of the dif-
ferent sectors of the Hamiltonian, we compute the scaling of
the entanglement entropy S with system size for each of the
sectors P . In Fig. 5, we plot the average entanglement entropy
for the eigenstates of each sector as one increases the number
of unit cells of the Hamiltonian Ĥ′

2 with N = 3 particles.
The eigenstates of each sector are identified by diagonaliz-
ing the system in the rotated basis, applying the P̂ operator
to the rotated basis states, and determining the sector from
the amplitudes of each eigenstate. The sectors P = 3 and 1
exhibit logarithmic entanglement growth, thus demonstrating
subthermal behavior within each sector [10,80]. However,
the growth rate of both sectors is different, as most basis
states in sector P = 3 contain three particles in the dispersive
chain while none are trapped in a CLS. In contrast, most
basis states in sector P = 1 only have two particles in a
dispersive state while one is trapped in a CLS. Both sectors
present a logarithmic growth of the form S = σ ln(Nc) + υ

with {σ = 0.708 ± 0.016, υ = 1.148 ± 0.027} for P = 3 and
{σ = 0.217 ± 0.006, υ = 0.973 ± 0.010} for P = 1.

The sector P = −1 corresponds to the effectively single-
particle subsectors, for which one observes a surprising slight
decrease in the entanglement entropy as the size of the system
increases (see inset in Fig. 5). This is due to the on-site
potential terms that arise in the dispersive chain reflecting the
presence of one particle in |Ak〉 and one in |Sk〉. Any left-right
subsystem asymmetries in the location of the two nodes of
the adjacency graph with an on-site potential will lower the
entanglement entropy. For Nc = 2, there is a single subsector
where the two basis states that have an on-site potential fall
in opposite subsystems L and R. As the size of the system
increases, more CLSs are available and thus there are more
subsectors where there is some asymmetry in the location
of the on-site potential (e.g., the two potentials may fall in
the same subsystem L or R). Thus, the average entanglement
entropy of the sector P = −1 slightly decreases with system
size. The decrease is more pronounced for small numbers of
unit cells, and it seems to tend to an asymptotic value. This
constitutes an antivolume correction that should also play a

role in sectors P = 1, 3, though it is not noticeable there as
the logarithm term dominates.

The sector with P = −3 includes the one-dimensional sub-
sectors where all the particles are trapped in a CLS. This
sector follows an area-law scaling, which in one dimension
corresponds to a constant value. As a particle in a CLS does
not contribute to the entanglement entropy, the average entan-
glement entropy for these subsectors is zero for any system
size. For this sector, the diagonalization of the full Hilbert
space results in a series of degenerate states that correspond to
the different CLSs that the three particles can occupy. Then,
the entanglement entropy obtained through this method is
higher than the one shown in Fig. 5, as it corresponds to an ar-
bitrary numerical superposition of those states. Consequently,
one should compute the entanglement entropy of this sector
in the rotated basis analytically. Note that this sector does not
exist for Nc = 2 unit cells: as the number of particles is N = 3,
one particle will always occupy the linear chain.

These results demonstrate that the system exhibits weak
thermalization with respect to the full Hilbert space through
its fragmentation, while also exhibiting subthermal behavior
within each nonintegrable sector.

D. Model comparison and boundary conditions

In this subsection, we analyze the effect that the number
of central sites of the lattice has in the distribution of entan-
glement entropies by comparing the different models of the
family of diamond necklaces. Figure 6 shows the distribu-
tions of entanglement entropies and the adjacency graphs of
different models for N = 4 particles in Nc = 4 unit cells. The
represented models are (a, e) Ĥ′

1, (b, f) Ĥ′
2, (c, g) Ĥ′

3, and (d,
h) Ĥ′

4. The left subplots in the upper row show the normalized
entanglement entropy S̃ for each eigenstate as a function of
the energy. The color indicates the density of data points.
The right subplots in the upper row represent the density of
data points η as a function of S̃ for the eigenstates around
E = 0. To obtain a clear picture, we take the eigenstates
whose energy fulfills −|E0| × 0.2 < E < |E0| × 0.2, where
E0 is the ground-state energy, and normalize the density η to
1. The lower row of plots shows the second and third largest
subsectors in the adjacency graph of the rotated Hamiltonian.
The color of the nodes indicates the total number of particles
that occupy a CLS, as given by NCLS| f 〉 = ∑

k n̂a,k| f 〉.
We see how increasing the number of central sites in the

lattice, going from Ĥ′
1 to Ĥ′

4, increases the visibility of the
different domes. This can be understood in terms of the ad-
jacency graphs of the different models. In Figs. 6(e)–6(h),
most of the basis states of the lower row of subsectors have
two particles in different CLSs, in purple, although there are
some special basis states, in yellow, where an additional pair
of particles also occupies a CLS. A similar pattern occurs in
the subsectors of the upper row, for which most basis states
have one particle in a CLS, in green, while some have three
particles occupying CLSs, in red. These special basis states
appear due to the two-particle tunneling term in the rotated
Hamiltonian of Eq. (5), and thus are present in all sectors
except for the integrable ones. The eigenstates that have some
weight on those basis states will have a lower entanglement
entropy than those that do not, and they might fall below
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FIG. 6. Distribution of entanglement entropies and adjacency graphs for N = 4 particles in Nc = 4 unit cells for the following models:
(a, e) Ĥ′

1, (b, f) Ĥ′
2, (c, g) Ĥ′

3, and (d, h) Ĥ′
4. (a–d) Left: Normalized entanglement entropy S̃ as a function of the energy, where color

represents the density of data points. (a–d) Right: Normalized density of data points as a function of S̃ for the middle region of the spectrum,
−|E0| × 0.2 < E < |E0| × 0.2. (e–h) Second and third largest subsectors in the adjacency graphs of the rotated Hamiltonians with the color
of the nodes indicating the total number of particles occupying a CLS, NCLS.

the dome of the subsector, thus obscuring the visibility of
the nested-dome pattern. When one increases the number of
central sites in the lattice, these special basis states become
more sparse compared to the main basis states, which have
a lower number of particles in a CLS [see Figs. 6(e)–6(h)].
Therefore, the visibility of the nested-dome structure in the
distribution of entanglement entropies can be enhanced by
increasing the sparsity of the CLSs. This, in turn, increases
the sparsity of the special basis states with a higher number of
particles in a CLS due to the two-particle tunneling.

Let us consider what would occur for different numbers
of particles. For each particle added with respect to a fixed
number of unit cells, an extra dome appears on top and
one dome (or sector) is removed from below. For example,
for N = 5 and Nc = 4 unit cells, the frozen subsector is
unavailable. However, the number of domes for N � Nc is
conserved, as it corresponds to the number of sectors. As
one increases the number of particles, there is a global shift
to the right in the distribution of entanglement entropies,
which corresponds to an increased energy of the eigenstates
due to the repulsive interaction. For each particle removed,
keeping the number of unit cells fixed, the upper dome dis-
appears, as there are less particles populating the dispersive
chain. Additionally, the frozen subsectors multiply, due to
the different CLSs that the particles can occupy, and become
degenerate.

Up to now, we have assumed open boundary conditions;
however, this analysis also holds for periodic boundary con-
ditions. The visibility of the domes when one introduces
periodic boundary conditions is notably worse than for open
boundary conditions. This is due to the fact that periodic
boundary conditions make the system translation invari-
ant, which introduces degeneracies in the spectrum between

subsectors belonging to the same sector. As a result, one
numerically finds arbitrary superpositions of the degenerate
eigenstates which have arbitrary entanglement entropies. The
cause of the deteriorated visibility can be corroborated by
introducing vertical couplings between the U and D sites of
each diamond and making their strength different for each
unit cell. In that case, although the system still has periodic
boundary conditions, it is no longer translation invariant, and
the visibility of the domes is restored.

IV. CONCLUSIONS

We have studied Bose-Hubbard models in a family of
diamond necklace lattices with n central sites. Such models
possess a single-particle spectrum with a flat band, which
is composed of CLSs located in each diamond. Due to the
presence of these CLSs, when adding more bosons with
on-site interactions, the Hilbert space becomes locally frag-
mented. We have demonstrated how this fragmentation is
revealed in the adjacency graph of the Hamiltonian when
applying an appropriate basis rotation that decouples the
CLSs at the single-particle level, making it an instance of
quantum local Hilbert space fragmentation. Also, by ana-
lyzing the dimension of the largest sector, we have shown
that the system exhibits strong fragmentation, which leads
to a strong violation of the eigenstate thermalization hy-
pothesis. We have found a conserved quantity that uniquely
identifies each subsector of the Hamiltonian, the local CLS
number parity. The subsectors present a wide range of di-
mensions, including one-dimensional subsectors, and also
entanglement entropy scalings ranging from area-law to log-
arithmic growth, while also including one sector with an
antivolume correction. As a result of the fragmentation, the
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distribution of entanglement entropies presents a nested-dome
structure, that stems from the number of particles that are
trapped in a CLS. We have found weak thermalization through
subsector-restricted entanglement evolution and subthermal
entanglement growth within each nonintegrable sector. Addi-
tionally, we have shown how the visibility of the nested-dome
structure can be enhanced by increasing the sparsity of the
CLSs, and how the results hold both for open and periodic
boundary conditions.

These results can be generalized to higher-dimension
versions of the diamond necklace while another interesting ex-
tension of this paper is the study of other flat-band models, as
these systems have been realized in a variety of experimental
platforms (see [81] and references therein). Lattices support-
ing orthogonal CLSs can be detangled into a dispersive lattice
and a series of decoupled CLSs [82], thus already providing
the first ingredient for many-body Hilbert space fragmenta-
tion and weak fragmentation. Optical lattices can generate
a variety of trapping geometries to simulate Bose-Hubbard
models, while also allowing the control of interactions
through Feshbach resonances [83]. This makes them a ver-
satile platform to study thermalization dynamics [84,85]. In
particular, the model studied in this paper can be implemented
in a diamond optical lattice using two counterpropagating

lasers forming a 45◦ angle in a quasi-1D cigar-shape
geometry [86].
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