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Recently, Floquet systems have attracted a great deal of interest as they offer the unprecedented ability to
engineer topological states through the tuning of an external time-periodic drive. Consequentially, seeking
new driving protocols that allow for more exotic topological phases and transitions becomes imperative for
the Floquet engineer. In this paper, we study the Su-Schrieffer-Heeger model driven by two time-dependent
periodic sources with commensurate frequencies and an amplitude modulation. Imposing more than one driving
frequency allows us to realize even more exotic topological phases resulting from new couplings appearing
in the Fourier space representation. Moreover, we find an experimentally practical method for sweeping the
system through a topological phase transition by varying the amplitude mixture of the commensurate sources.
We employ the local Chern marker, a real-space representation of the Chern number, to simulate topological
phase diagrams of the two-drive Floquet Hamiltonian in a variety of driving cases.
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I. INTRODUCTION

Topology has signaled a shift in modern condensed-matter
research since the emergence of the quantum Hall effect [1].
Many systems with desirable physical behaviors are now
known to have an underlying nontrivial topological classi-
fication [2–5]. These systems are promising platforms to
potentially revolutionize technology as we approach the limit
of traditional semiconductor-based devices [6]. One idea is
to design electronics using the robust conducting edge states
of topological insulators [7,8] that could replace standard
transistor-based switching components. Another idea is to
leverage topologically protected spin-locked states as a basis
for memory in spintronics [9]. Finally, topological insulators
and superconductors [10] have been proposed as a basis for
quantum computing [11]. With all of these possible applica-
tions at stake, it is clearly imperative that we maximize our
ability to design and control topological phases of matter.

Consequently Floquet engineering [12], where systems are
governed by a Hamiltonian possessing dynamic periodicity,
has emerged as a promising candidate for precise tuning of
topology through the laser-matter interaction. Floquet engi-
neering has already been used both to emulate the Thouless
pump with quantized energy as opposed to charge [13,14],
and as a method to create novel topological phases from
initially trivial phases [15–20]. The recent growth in this field
is due to advances in experimental capabilities and theoretical
understanding [21–25] in the field of laser-driven quantum
mechanics. Much work has been done, particularly in one-
dimensional (1D) systems to observe nontrivial phases and
transitions of Floquet engineering [26–32]. One powerful
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theoretical tool in the field of driven lattice systems [33]
establishes a mapping of the dynamic D-dimensional system
to a static (D + 1)-dimensional system, in which the modes
of the Fourier expansion play the role of lattice points in
the new direction. An intriguing feature of the mapping is
the emergence of a frequency-dependent field along the new
frequency space direction—arising uniquely from the time
derivative in the Schrödinger equation. This field dictates the
method of solution to be employed. In the case of adiabatic
driving where the driving frequency is small as the period
T → ∞, the frequency-dependent field is negligible or per-
turbative, and translational invariance along the frequency
direction is assumed. For example, an adiabatically driven 1D
Hamiltonian may be mapped to a 2D static representation,
where the Floquet-Bloch [33] formalism allows for standard
calculations of the Chern number [34,35] to classify the topol-
ogy. Alternatively in the high-frequency regime, couplings
between neighboring Fourier modes become perturbative with
the unperturbed Hamiltonian being a time-derivative operator
[36]. In the intermediate-frequency region, because the en-
ergy scales of the new field and the static Hamiltonian are
comparable, approaches beyond perturbation theory should be
employed.

In this paper, we study the topological properties of a
system driven by two distinct frequencies in the adiabatic and
intermediate frequency regimes. Floquet engineering is often
employed for a single-frequency drive, with multifrequency
(MF) cases being studied more recently [14,37–39]. Broadly
speaking, there are two options within the MF formalism:
frequencies with (i) commensurate [40] and (ii) incommen-
surate [41] relationships. The formalism of incommensurate
multifrequency driving demands the introduction of a Fourier
manifold for each additional drive [41], which has yielded
useful application for zero-dimensional qubit frequency mix-
ers [42]. However, this formalism and computation could be

2469-9950/2023/107(9)/094310(8) 094310-1 ©2023 American Physical Society

https://orcid.org/0000-0002-6140-6448
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.094310&domain=pdf&date_stamp=2023-03-22
https://doi.org/10.1103/PhysRevB.107.094310


SAM OLIN AND WEI-CHENG LEE PHYSICAL REVIEW B 107, 094310 (2023)

cumbersome for two-dimensional systems and above. More-
over, the results in the Floquet formalism rely on truncation
of the typically infinite-dimensional Fourier mode space. Two
competing truncation methods for a two-tone incommensu-
rate drive may cause complications. Commensurate driving,
on the other hand, has already been employed in a variety
of situations with great experimental impact. The topology
of 1D lattice systems under commensurate driving has been
studied before to examine topology, the quality of local-
ization in edge modes, and phase transitions [14,37,38,43].
Another example is commensurate frequency driving being
used to create quantum destructive interference in a Fermi-
Hubbard model to suppress heating effects [44], which is
a prevalent problem in all of Floquet engineering. Finally
two-tone drives have been used to engineer nontrivial band
structures [45,46].

We employ the commensurate frequency framework de-
veloped in [37] to express the MF Floquet formalism using
a single period, and we apply this drive to the Su-Schreiffer-
Heeger (SSH) model. Note that single-frequency driven SSH
variations have already generated great interest in the field
[29,30,47,48]. In the adiabatic driving scheme, we map the
commensurate drives to the frequency space, resulting in
the emergence of new couplings. Careful tuning of the fre-
quencies would allow for simulating nontrivial couplings. To
demonstrate this, we explore effects such as next-nearest-
neighbor Floquet hopping and large-lattice hopping with
two larger, close-by frequencies. The latter effect motivated
our interest in this study as a potential temporal analog
to the moiré pattern observed in twisted bilayer graphene
[49]. Finally, we demonstrate that the dual frequency drive
provides an experimentally appealing method for creating
a topological phase transition. The different topological re-
gions are simply reached through varying the amplitude
mixture.

In simulating the model, we find that standard compu-
tational approaches to topology can be troublesome in the
presence of the frequency-dependent field originating in the
intermediate frequency regime. We address this by employing
a real-space variant of the Chern number, called the local
Chern marker [50]. Additionally, the Chern marker does not
rely on the k-space formulation for the Berry curvature, thus
it is more appropriate than neglecting the frequency-field and
assuming nonphysical periodic boundaries along the fictitious
Fourier manifold. This method allows for visualization of the
effect of open boundaries, disorder, and external electromag-
netic fields on the topology locally.

II. MODEL

A static Su-Schreiffer-Heeger (SSH) model is known to
possess a dimer-type lattice with atoms A, B forming the
members of each dimer, and it is topologically nontrivial pro-
vided that the intercell coupling is stronger than the intracell
coupling. To demonstrate the consequences of multifrequency
driving, we consider a Floquet Su-Schreiffer-Heeger (FSSH)
model with timevarying, two-frequency tunneling coeffi-
cients. The Hamiltonian is kept similar to previous works
[51,52] to ensure that upon relaxing the two-drive condition

to a single drive, we recover well-established results,

H (t )=
N∑
n

U1(t )ĉ†
n,B(t )ĉn,A(t ) + U2(t )ĉ†

n+1,A(t )ĉn,B(t )VA(t )ĉ†

×n+1,A (t )ĉn,A(t ) + VB(t )ĉ†
n+1,B(t )ĉn,B(t ) + H.c. (1)

In Eq. (1), U1(t ),U2(t ) are the intracell and intercell tunneling
strengths, respectively, which are periodic in T . Addition-
ally, we consider the next-nearest-neighbor coupling terms
VA(t ),VB(t ). Pulse schemes such as these may be realizable in
the cold-atom systems [28,29,53] as noted by several authors
[28,30,51,52]. The real-space coordinate can have a periodic
boundary condition (N + 1 = 1) or an open boundary. The
tunneling coefficients

U1(t ) = u[1 + 2(cos �1t + α cos �2t )],

U2(t ) = u[1 − 2(cos �2t + α cos �2t )],

VA(t ) = v[cos (�1t + θ ) + α cos (�2t + θ )],

VB(t ) = v[cos (�1t − θ ) + α cos (�2t − θ )]

are dynamical with driving frequencies �1,2 and tunneling
amplitudes u, v for the nearest- and next-nearest-neighbor
hopping, respectively. The �2 driving factor possesses an
“offset” amplitude α, the consequences of which will be dis-
cussed in Sec. III.

A. Dual-frequency driving

Here we outline the treatment of Eq. (1) in which the
sources are periodic in T1 and T2 and are subject to the fol-
lowing condition:

T1

T2
= n2

n1
(2)

for {n1, n2} ε Z+, meaning that we may always find [37] a
period, T , such that

T = n1T1 = n2T2, (3)

which may be used to employ the Floquet theory. Note that
�1,2 = 2π

T1,2
. The Hamiltonian may be expressed in terms of

components for each period,

H (r, t ) = H0 + HT1 (r, t ) + HT2 (r, t ), (4)

where the components have the following periodicity:
HT1(T2 )[r, t + T1(+T2)] = HT1(T2 )(r, t ), and the system has
HT1(T2 )(r, t + T ) = HT1(T2 )(r, t ). The H0 term is the un-
driven Hamiltonian. It is important to note that the period
of the system is T and so Floquet theory is employed
on T , not on either T1 or T2. Due to this condition, the
derivation of the Floquet Hamiltonian, K, is the same as
in the single-frequency case. The single-frequency Floquet
Hamiltonian has been derived many times, so we refer the
reader to Refs. [12,54]. The general procedure is as follows:
from the time-dependent Schrödinger equation H (t ) |ψ (t )〉 =
ih̄∂t |ψ (t )〉, with periodic Hamiltonian H (t ) = H (t + T ), ex-
press the eigenstates as Floquet states that are composed
of a nonperiodic phase factor and a T -periodic function:
|ψ (t + T )〉 = e−iεαt/h̄ |φα (t )〉. The factor εα is the so called
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quasienergies named in analogy to the quasimomenta of
the familiar Bloch theorem. Then expand the states using
a Fourier expansion that moves the time dependence to
the phase: |φα (t )〉 = ∑

m e−im�t |φm
α 〉. Note that the |φm

α 〉’s
are Fourier coefficients, which must be stacked up to form
the overall Floquet state (for more details, see Ref. [54]).
The single-frequency case diverges from the dual-frequency
case as we take the expansion in terms of the components of
Eq. (4). The components are written in Eq. (5),

K = (HT1 (r, t ) + HT2 (r, t )) − i
∂

∂t
. (5)

The Fourier expansion on the Floquet modes is then substi-
tuted into Eq. (5),

(HT1 (r, t ) + HT2 (r, t ))
∑

m

eim�t
∣∣φm

α

〉

+
∑

m

m�eim�t
∣∣φm

α

〉 = εα

∑
m

eim�t
∣∣φm

α

〉

meaning that the matrix elements of Eq. (5), given by the
universal equation 〈α, n| · · · |β, m〉 = 1/T

∫ T
0 dt · · · , may be

computed in the usual way. However, we must consider
each new hopping term emerging from each commensurate
frequency,

∑
m,n

∫ T

0
dtHT1 (r, t )ei�t (m−n) +

∫ T

0
dtHT2 (r, t )ei�t (m−n)

= εα − m�δm,n,

resulting in

∑
m,n

(
HT1

(m−n) + HT2
(m−n)

) ∣∣φm
α

〉 + m�δm,n

∣∣φm
α

〉 = εα

∣∣φn
α

〉
, (6)

where HT1(T2 )
(m−n) = 1

T

∫ T
0 dtHT1(T2 )(r, t )ei�t (m−n), and the εα

eigenvalues are the quasienergies of the system. Note that
the Fourier factor ei�t (m−n) is left in �, the frequency of the
system, not in either �1 or �2. The result of mapping our
Hamiltonian to the static 2D version is shown in Fig. 1. We
now discuss the terms in Eq. (6). Note the effective field m�

appearing in the 2D representation is a consequence of the
time derivative in Eq. (5). This field, commonly denoted as
the “Stark field,” [12,54–56] may be considered as a fictitious
electric field emerging along the Fourier manifold. The energy
scale h̄� often dictates the solution. With adiabatic (slow,
long-time) driving (T → ∞,� → 0), the scale is set by the
couplings mh̄� � HT1,T2

m−n , which emerge from new frequen-
cies added in the drive. The coupling factor in the Floquet
Hamiltonian in Eq. (6) compared to the single-frequency case
reveals that multimode theory with commensurate drives al-
lows for construction of new kinetic terms. One may expect
a new coupling for each commensurate drive added. Careful
construction of these new frequencies may yield exotic new
physics, or open the route for Floquet systems to mimic the
physics of some experimentally intractable static systems in
condensed matter.

FIG. 1. 2D Static Floquet SSH representation. In gray: intracell
hopping, purple: intercell hopping, green: nearest-neighbor Floquet
(NNF) hopping, yellow: next-nearest-neighbor Floquet (NNNF) cou-
pling. The basic couplings are shown, but the Hamiltonian allows
for any combination, e.g., NNNF+intercell off-diagonal element is
present in H .

III. RESULTS

The Hamiltonian [Eq. (1)] is constructed for atoms A, B
with 20 dimers, resulting in 40 real-space matrix elements. We
set u = 1, v = 0.2, θ = 0.5π, α = 2 unless otherwise stated.
We employ the multifrequency Floquet theory [Eq. (6)] to
map the time-dependent 1D system to the static 2D enlarged
space (Fig. 1). Provided that the driving is adiabatic (mh̄� �
HT1,T2

m−n ), it is common [51,52] to assume a periodic boundary
condition along the Fourier space and subsequently define a
Floquet quasimomentum k f . The frequency is taken as small
as possible to ensure adiabaticity, but large enough for mea-
surement [51]. However, we argue that the approximation
is not ideal because (i) the driving frequency cannot be ne-
glected, thus breaking Fourier-space translational invariance,
and (ii) there is no physical operator connecting the largest
and smallest cutoff frequencies of the expansion. We there-
fore leave the system in the real-space matrix form. While
this matrix is technically infinite, we can study a truncated
space using the Chern marker to examine the topological
order [54,57]. We consider 200 Floquet modes, m, resulting
in an 8000 × 8000 matrix unless otherwise stated, which we
construct and diagonalize in FORTRAN. All presented calcu-
lations of the Chern number are accurate up to a maximum
error of 1%. Where stated, the Stark field is considered by
adding in the m�-dependent value along the Floquet diagonal
δnm. As for the coupling, the integers chosen in Eq. (2) result
in different δ functionals after integration of Eq. (6) in the
Floquet space due to the cosine drive. For example, n1 =
10 → δn,m+10 + δn,m−10. Although theoretically any integer
ratio may be employed, here we consider the {n1, n2} cases
of {1, 1} (single-drive reference), {1, 2} (Floquet next-nearest
neighbor), and {10, 11} (close-by beat frequency).

A. Topology—Single drive

Our model relaxes to a single-drive case by setting α = 0,
and setting �1 as the base frequency. In Fig. 2, we plot the
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FIG. 2. Two plots of the Chern marker in the case � → 0. Left
is the Chern marker over the whole system, in two dimensions, real
space, and Floquet space. The average Chern number is 0, due to the
trace identity [50]. In the region away from the edge as shown in the
right plot, we obtain a Chern marker of 1, corresponding to the bulk
topology. The marker is stable in the bulk, and nonphysical near the
edges.

Chern marker over the static 2D representation of the sample
in the presence of periodic boundaries. As expected [50],
averaged over the entire sample the marker is 0 due to its
commutator definition. However, in the bulk of the sample, the
average Chern marker yields 1, in excellent agreement with
the Fukui method. Previous works [52] have discovered that
the single-drive Hamiltonian is topologically nontrivial for
nonzero θ . However, these predictions enforce translationally
invariant samples and rely on computational methods using
k-space, meaning the effect of the Stark field on the topolog-
ical order is ignored. By employing the local Chern marker
[50], we provide both real-space confirmation of single-drive
topology, and simple determination of topology in the face of
the Stark electric field. An advantage of computing topology
using the Chern marker is that we may easily reintroduce
the Stark field along the frequency direction for small values
of �. Consequently, the topology may be visualized along
each direction in response to increasing field value, or even
disorder along the real-space direction. In Fig. 3, we plot the
Chern marker along real and frequency space with increasing
Stark electric field ∝ �. We see the real-space Chern marker
unaffected everywhere by increasing �. Similarly, for finite
but small � the frequency space Chern marker remains unaf-
fected. However, as � increases, the LCM along the frequency
space does not remain topologically invariant and the system
does not have a meaningful topology. At the very center of the
sample where m = n ≈ 0, the expected topology is recovered,
which is consistent with the adiabatic theorem for small fields
(m�). Consequently, this calculation may be used to probe
maximum allowed values of � above which the topology
becomes ill-defined.

B. Multifrequency drive: Case 1,2

1. Topological phase transition

We examine the effects of the second drive for the fre-
quency ratio n1, n2 = 1, 2. This ratio has been studied before
for a variety of systems, including 1D chains [14,37,38,43–
46]. The band structure and the Chern marker under periodic
boundaries in each direction (adiabatic driving � → 0, trans-
lational invariance along the Fourier manifold) are computed
and shown in Fig. 4. The interpretation of this model is the

FIG. 3. Chern marker plotted in (a) real space and (b) Floquet
space, for increasing �, the magnitude of the Stark field. Note that
only 100 Floquet modes were used. In (a) the real-space Chern
marker is not strongly changed by increasing �—a sensible result
as the Stark field only permeates the Floquet space. In (b) the Stark
field destroys the topological order in the sample as � increases,
but notice that for small m the Chern marker returns to the expected
Chern number of 1, confirming the adiabatic theorem for small �.

presence of a next-nearest-neighbor coupling along the fre-
quency space. The system still possesses a gap for n1, n2 =
1, 2, but only when the two drives have a difference in ampli-
tude are different. Here we fix α = 2. Due to the invariance,

FIG. 4. The band (left) and Chern marker interior (right) for the
case n1 = 1, n2 = 2, and � → 0. This case simulates a second-
neighbor hopping in the Floquet space—impossible to achieve
without a second drive. The system is found to be insulating with
a quasienergy gap of ∼2.0, meaning topology can be computed.
The right plot shows the interior of the Chern marker, and the bulk
average value of 2.
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FIG. 5. The Chern number in red plotted against the �2 driving
amplitude α for the case � → 0. Note that the amplitude on �1 is 1.
Below the transition point 1, the Chern number is robustly 1. Above
the transition point, the Chern number is robustly 2. The quasienergy
gap is shown to close at the transition point in green. The color
gradient is shown to signify that even changing parameters such as
θ, u, v will yield the same results provided that the gap is not closed.

the Chern marker is seen to be relatively stable with little
variation over the sample bulk. We find that the Chern number
is 2, indicating that an advantage of commensurate driving is
the ability to engineer phases with C > 1. Surprisingly, we
discover that the offset amplitude between the drives functions
as a tuning parameter for a topological phase transition (TI).
This transition is plotted in Fig. 5. For α < 1, C = 1, and for
α > 1, C = 2. The transition occurs through the gap closing
condition of α = 1. Note that the gap is computed as the
difference between the lowest conduction-band and highest
valence-band quasienergies. The gap closes on Brillouin zone
corners {kx, k f } = {−π,−π}, etc., but initially the smallest
difference is elsewhere in the Brillouin zone. This transition
is not unique to the case of n1, n2 = 1, 2. We expect this
behavior for any choice of �1,�2 provided that the system
remains gapped. The Chern number will transition with the
amplitude mixture controlling the critical point, and the fre-
quencies controlling the topology. This amplitude modulation
of a two-frequency drive should be experimentally feasible. It
does not rely on fabrication of the lattice or on a quantum-well
thickness [58]. The current formalism presents an easily tun-
able topological phase transition, based simply on the control
of the driving lasers. However, it is also known [46] that
the relative phase of the two-frequency drive can change the
symmetry of the system, which is being examined in ongoing
calculations.

2. Edge states

The topology present in this drive case has an observ-
able physical effect, manifested in the emergence of edge
modes (states that have a nonzero wave function only along
the boundary of a sample) along the edges of the effective
2D sample. In Fig. 6 we plot the zero-quasienergy eigen-
states upon opening both the Floquet and the real-space

FIG. 6. Edge modes occurring along the real-space edge in the
case � → 0, and n1, n2 = 1, 2 driving frequency ratio. The contour
is computed for ψ†ψi, j , for i, j the real and frequency space, respec-
tively. The states plotted are the zero-quasienergy states.

boundary. The states are seen in Fig. 6 to occupy the real-
space boundary, with amplitude diminishing to 0 in the center
of the sample. This plot is constructed by taking ψ†ψi, j for
i, j, the real and frequency space elements, respectively, for
the eigenstates at zero-quasienergy. The real-space treatment
easily allows us to plot the zero-quasienergy states for a va-
riety of boundary conditions. For example, one may reinstate
translational invariance along the SSH chain, break invariance
of the Fourier manifold, and recompute the amplitude of 6. In
this case, we find that the edge states exist along the “Fourier
edge” only. Unlike SSH chain edge states, which may be
observable in current measurements, Fourier edges are only
an artifact of the theoretical Floquet mapping and subsequent
truncation scheme, so we neglect the result in the current
paper.

C. Multifrequency drive: Case 10,11

1. Exotic topology

Here we examine the effects of the second drive in the case
of frequency ratio n1, n2 = 10, 11. The band structure and
the Chern marker for the case of periodic boundaries in each
direction are computed and plotted in Fig. 7. The system pos-
sesses a gap for n1, n2 = 10, 11, with condition α = 2. The
Chern marker is seen to be not as stable over the sample bulk
as in the n1, n2 = 1, 2 case, resulting from interference be-
tween the two close-by frequencies. We again tune α through

FIG. 7. The band and Chern marker interior for the case n1 =
10, n2 = 11, and � → 0. The band is shown in the left, and the
system is found to be gapped in quasienergy, meaning topology can
be computed. The right plot shows the interior of the Chern marker,
and the bulk average value of 11. Note that the n1, n2 = 10, 11 shows
more interference in the LCM than the 1,2 case.
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FIG. 8. The Chern number in red plotted against the �2 driving
amplitude α in the case � → 0. Note that the amplitude on �1 is
1. Below the transition point 1, the Chern number is robustly 10.
Above the transition point, the Chern number is robustly 11. The
quasienergy gap closes at the transition point of α = 1. The color
gradient is shown to signify that even changing parameters such as
θ, u, v will yield the same results provided that the gap is not closed.

the critical point, as plotted in Fig. 8. The system displays the
same phase-transition behavior as in the n1, n2 = 1, 2 case.
The Chern number is found to be C = 10 for α < 1 and
C = 11 for α > 1. Our motivation in studying the multifre-
quency driving was to model a beat frequency Hamiltonian.
This is based on the hope that the disorder induced by the beat
frequency along the Floquet direction would be a temporal
analog to the twisted bilayer graphene, in which maximum
disorder occurs for certain “magic” angles. The requirement,
therefore, is that the two drives possess frequencies that are
close in value. The size of the matrix must accommodate
long-range couplings. The case for n1, n2 = 10, 11 is explored
using our current FORTRAN code, but larger frequency ratios
like 100,101 demand a much larger matrix. This larger case
would be ideal to consider for the beat frequency analog.

2. Edge states

Since the system still possesses topological order, we can
plot edge modes by opening the sample boundaries. We plot
the zero-energy states in the case of broken periodic bound-
aries in each case. This result is shown in Fig. 9. Again as
in the n1, n2 = 1, 2 case we find states existing along the
real-space edge only. As noted in the case of n1, n2 = 1, 2,
we also may break translational invariance along the Fourier
space. In this case, the amplitude is only nonzero for certain
modes along the Fourier manifold, as opposed to the modes at
the very “edge.” The presence of mode-localized states could
be an artifact of the truncation scheme, so their effect is best
seen in defining and computing a physical observable in the
1D time-dependent model.

IV. DISCUSSION

A. Multitonal driving—Integer multiples

There are, broadly speaking, three contrasting multitonal
driving cases for which the Floquet formalism may be

FIG. 9. Edge modes occurring along the real-space edge in the
case � → 0 and n1, n2 = 10, 11 driving frequency ratio. The con-
tour is computed for ψ†ψi, j , for i, j the real and frequency space,
respectively. The states plotted are the zero-quasienergy states.

constructed. The simplest is when the frequencies are not only
commensurate but related via integer multiple. Examples for
�2/�1 = n1/n2 are n1, n2 = 2, 4 or n1, n2 = 1, 3. In this case,
one frequency may be determined in terms of the other. The
relative phase of the drives plays a critical role, as explored in
recent works [44–46]. The formalism of Eq. (2) is unnecessary
for this driving protocol. In fact, constructing the formalism
in terms of the base period may yield incorrect computation
of observables. For example, treating n1, n2 = 2, 4 with a
base frequency with n = 1 will encode an extra integer lattice
spacing, yielding new nonphysical twisting in the Berry cur-
vature from 
k → 
k + d
k. For example, the computation of the
transition would yield C = 2 → C = 4 when it is physically
C = 1 → C = 2.

B. Multitonal driving—Commensurate and incommensurate

On the other hand, there is another sort of commensu-
rate two-tone drive where the integers cannot be uniquely
expressed via an integer multiple, such as n1, n2 = 4, 5 or
n1, n2 = 10, 11. The Floquet theorem and topology of this
case may be studied with the formalism of [37], and the
topology may be computed using the frequency-space Chern
marker presented here. This treatment follows from the fact
that the time degree of freedom should have a one-to-one cor-
respondence with the Fourier transform to the extended space.
The Floquet lattice obtains new couplings computed from the
off-diagonal matrix elements of Eq. (5). This case is distin-
guished from the incommensurate frequency driving [41] in
which each frequency yields an additional Fourier manifold.
To treat the 1D SSH in this case would require a 3D com-
putation. Additionally, two truncation schemes of the Fourier
space are needed. It could be advantageous to approximate
certain incommensurate ratios with nearby commensurate
ones and carry out the simpler calculations presented here.

C. Floquet edge states

Upon opening the “Fourier boundary,” we find the zero
quasienergy modes localized to the truncation edge in the
case of n1, n2 = 1, 2, and localized to certain frequencies in
the case of n1, n2 = 10, 11. Since the Fourier boundary phys-
ically does not exist, it is simply an artifact of the theoretical
mapping; these results are neglected as byproducts of the
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frequency truncation. The distinction between the two cases
(one edge-localized and one mode-localized) could arise from
the fact that the matrix size stays the same, but for higher fre-
quencies the kinetic terms populate even further off-diagonal
elements. In other words, increasing the cutoff may cause the
mode-localized states to shift to the edges. While the Floquet
edge is nonphysical, it is possible to break periodic boundary
conditions along the Fourier manifold with a small Stark field.
The consequences are best observed in this case by computing
observables such as current in the original time-dependent
representation.

V. CONCLUSIONS

In this paper, we have shown that the commensurate mul-
tifrequency driving formalism may be modeled using the
Fourier mapping of Floquet theory to gain practical levels of
engineering control. The frequency ratio may be chosen to
create new couplings, which allows the Floquet formalism to
mimic difficult static systems. We find that a second commen-
surate drive amounts to an extra hopping term in the Fourier
manifold. This approach necessitates only one Fourier man-
ifold extension, meaning that commensurate driving can be
studied easily in one- and two-dimensional systems. Finally,
only one truncation scheme is needed in the extended space as
opposed to two or more for incommensurate driving.

To explore the topological properties, we have employed
the real-space Chern marker instead of the Berry curva-
ture in k-space representation, which allows us to study the

adiabatic and intermediate frequency regimes using the same
framework. The model can incorporate disorder and fields,
more closely approximating a real system. This approach
yields direct examination of the local fluctuations in topology
resulting from interference, and of the edge states. Moreover,
our work provides a method for controlling the topological
phase of an SSH sample, and an appropriate choice of the
frequency ratio allows for engineering of Chern numbers C >

1. Consequently, the amplitude proportion of the two drives
may be tuned to induce topologically distinct states, meaning
that these systems can be engineered to sweep through a
topological phase transition. Since these topological phases
are induced via the amplitude, this model hosts an experimen-
tally appealing transition that does not rely on a switching
mechanism such as in the quantum wells. We have further
demonstrated a computation technique to view edge states in
the insulating phase, providing additional confirmation that
these systems are topological insulators.
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