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Electron-phonon interaction and phonon frequencies of doped polar semiconductors are sensitive to long-
range Coulomb forces and can be strongly affected by the screening effects of free carriers, the latter changing
significantly when approaching the two-dimensional limit. We tackle this problem within a linear-response
dielectric-matrix formalism, where the screening effects can be properly taken into account by generalized
effective charge functions and the inverse scalar dielectric function, allowing for controlled approximations
in relevant limits. We propose complementary computational methods to evaluate from first principles both
effective charges—encompassing all multipolar components beyond dynamical dipoles and quadrupoles—and
the static dielectric function of doped two-dimensional semiconductors and provide analytical expressions for
the long-range part of the dynamical matrix and the electron-phonon interaction in the long-wavelength limit. As
a representative example, we apply our approach to study the impact of doping in disproportionated graphene,
showing that optical Fröhlich and acoustic piezoelectric couplings, as well as the slope of optical longitudinal
modes, are strongly reduced, with a potential impact on the electronic/intrinsic scattering rates and related
transport properties.
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I. INTRODUCTION

The electron-phonon interaction (EPI) is one of the most
thoroughly studied topics in solid state physics [1–5] due to
the fundamental role it plays in the determination of a variety
of physical properties. The prediction and interpretation of,
e.g., transport experiments [6–16], excited carriers relaxation
[17–19], and superconductivity [3,20], relies on the accurate
calculation of the EPI from first-principles, which has be-
come possible in recent years thanks to the development of
density functional theory (DFT) [21,22], density functional
perturbation theory (DFPT) [23], and Wannier interpolation
technique [24–26], as well as swift progress of computational
infrastructures [27–29].

In insulators and undoped semiconductors, long-range
Coulomb interactions arise from the charge polarization and
lead to nonanalytic contributions to phonons and EPIs, in-
cluding the well-known splitting of longitudinal (LO) and
transverse (TO) optical modes [30] as well as the Fröhlich
[31] and piezoelectric electron-phonon interactions [32]. In
the absence of free carriers and in the long-wavelength limit,
the form of such nonanalytic contributions is known exactly,
enabling a precise evaluation of related effects [23,32–35].
Due to the strong screening provided by free carriers in par-
tially filled bands, those long-ranged Coulomb interactions
are expected to vanish in metals. In doped semiconductors,
on the contrary, Coulomb-mediated interactions are only par-
tially screened by the small fraction of added charge carriers.
In this intermediate situation between insulator and metal,
the long-wavelength behavior of phonons and EPI may be
significantly altered, as recently shown for 3d doped semicon-

ductors [36]. Going beyond semiphenomenological correc-
tions of the screened quantities [37], the formalism developed
in Ref. [36] proposes a clean separation between macroscop-
ically unscreened (or “bare”) quantities and their screening,
thus enabling the evaluation of doping and temperature effects
on both of them. In regimes where doping and temperature
effects on the bare quantities are negligible, this allows for an
efficient yet precise evaluation and interpolation of phonons
and EPIs at a given temperature and doping via the modifica-
tion of screening only.

Given that electrostatically doped 2D materials are at
the heart of the quest for high-efficiency electronic devices
[38,39], the same rigorous treatment of screened Coulomb
interactions in quasi-2d systems would be highly benefi-
cial. However, it is now well established that dimensionality
alters the dielectric screening behavior in 2d undoped semi-
conductors and insulators, and consequently any phonon or
EPI involving long-range Coulomb interactions [40]. The im-
plementation of DFPT in 2d boundary conditions [41] has
allowed to study those effects; most notably, the LO-TO split-
ting breaks down at zone center and increases linearly with
momentum [42,43], while the Fröhlich EPI stays finite [44] in-
stead of diverging as the inverse of momentum, as in 3D [32].
Yet, as for 3d materials, the doping effects on the 2d long-
range Coulomb interaction are virtually always neglected
[45–51], and occasionally included via approximate models
[52]. Nonetheless, a direct computation of both phonons and
EPIs in the presence of electrostatic doping, as recently imple-
mented in DFPT [41], showed that metallic screening causes
a vanishing of the linear-in-momentum LO-TO splitting spe-
cific of 2d semiconductors [43], a sizable effect that might
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be detected by momentum-resolved electron energy loss spec-
troscopy in a transmission electron microscope (TEM-EELS)
[53]. The intrinsic dimensionality reduction combined with
careful Brillouin-zone sampling allowed to compute transport
properties from the Boltzmann equation formalism in highly-
doped 2d semiconductors without resorting to Wannier in-
terpolation methods [54,55]. However, such a procedure is
intrinsically costly and limited due to the fine sampling of
electronic states needed to account for a small Fermi surfaces,
especially at small dopings. Thus as typical DFPT calcula-
tions scale like the fourth power of the number of atoms in
the simulation cell, small dopings, large systems or multiple
doping and temperature conditions of the same system remain
out of reach. This latter shortfall in particular prevents any sys-
tematic study of a material transport properties, which is of the
outmost importance for the development of electronic devices.
Recently, a procedure based on the formalism of Ref. [40]
has been proposed to deal with some of the above shortfalls
[56], but neglecting the effects of doping and temperature on
bare interactions and on the local fields components of the
response.

Motivated by the above considerations, we extend the the-
oretical framework recently outlined for 3d systems [36] in
order to deal with quasi-2d doped semiconductors. Using a
static linear-response dielectric matrix formulation, we in-
troduce screened and unscreened effective charges. Along
with the inverse scalar dielectric function, these are used
to derive general expressions for the long-range Coulomb
contributions to the dynamical matrix and EPI. At vanishing
doping, they reduce to the well-established formulas, both
for 3d and 2d systems. This allows for controlled approx-
imations of the screening effects in appropriate doping and
temperature regimes, whose range of validity can be assessed
within the general theoretical framework. The main approx-
imation of our approach is the neglect of dynamical effects
on both the screening response and effective charges, that
may play an essential role when the characteristic phonon
frequency is comparable with the plasma frequency, as, e.g., in
weakly doped semiconductor [57], or with the electronic band
gap in narrow-gap semiconductors and semimetals [58,59],
respectively.

At variance with the 3d case, the presence of a nonperiodic
direction complicates the electrostatic problem and enforces
the dependence of all the response functions on the out-of-
plane component z. Nonetheless, a great deal of simplification
comes when the wavelength of the interaction is much larger
or much smaller than the typical out-of-plane thickness of the
material t . We denote these regimes as the thin and thick lim-
its, characterized respectively by a wave-vector dependence
of the in-plane Coulomb kernel being of the form q−1 and
q−2. In such regimes, for materials displaying in-plane mirror
symmetry, one can integrate out the out-of-plane variable via
layer-averages to a good approximation. The resulting long-
range components (LRC) of both the dynamical matrix and
EPI can then be connected, as in the 3D case, to a properly
modified version of the well-known phenomenological theory
of Born and Huang [30], involving in-plane effective charges
and the inverse scalar dielectric function ε−1. We further
discuss their range of validity for the two-dimensional case.

The layer-averaging procedure is naturally appropriate for
those single layers materials where the physical observables
are mainly determined by in-plane electrostatics. Nonethe-
less, even when out-of-plane perturbations are important (e.g.,
when considering remote couplings with surrounding mate-
rials), our approach allows for a simple extraction of bare
phonon perturbations that are macroscopically unscreened
both from the in-plane dielectric response and from the pres-
ence of periodically repeated images. This makes it suitable to
be integrated in frameworks that account for remote screening
in heterostructures such as the one proposed in Ref. [60],
which proposes a treatment of the out-of-plane electrostatics
a posteriori.

Operatively, we propose a fast and precise technique based
on first-principles calculations and Wannier interpolation that
is grounded in our general theoretical formulation and sup-
ported by the computation of both screened and unscreened
charge responses. Crucially, in controlled regimes, accurate
quantities can be obtained from ab initio calculations per-
formed only for the undoped setup, while still accounting
for the most relevant doping and temperature effects beyond
the state-of-the-art, and with a great reduction of the com-
putational workload with respect to brute-force methods. We
validate our findings in disproportionated graphene, i.e., a
particular realization of gapped graphene which can be found
in the presence of substrates causing a symmetry-breaking
modulation of potential [61–63] and that has been recently
proposed to host strong polar responses [59]. Our approach
shows that there exists a small doping regime where the LRCs
can be described using the effective charges value of the
undoped setup at zero temperature and an RPA expression
for the screening. The existence of this regime is expected for
any two-dimensional material. In the strong doping regime,
instead, this simplification does not occur and the effective
charges are mostly determined by the appearance of intraband
terms in the electronic polarizability; one shall then resort to
the ab initio calculation of the macroscopically screened and
unscreened effective charge functions in the doped setup.

As a practical example of the implications of our devel-
opments, we show that electronic lifetimes can be strongly
affected by the presence of free carriers, with likewise crit-
ical implications for physical observables. In particular, the
reduction of the electronic lifetimes with doping opens the
way to the engineering of new upper limits to the carriers
mobility in 2d materials via a fine-tuned choice of the doping
and temperature regimes, with important consequences for the
design of efficient field-effect transistors.

The paper is organized as follows: in Sec. II, we present
the general theoretical framework of our approach, starting
from the introduction of the response functions and of the
effective charges for two-dimensional materials to arrive at
the expressions of the LRCs of the dynamical matrix and
of the EPI; in Sec. III, we discuss the implementation of
our theoretical considerations into an operative computational
approach; in Sec. IV, we apply our developments to the case
of disproportionated graphene; finally, in Sec. V, we draw
our conclusions; the appendices are devoted instead to the
treatment of technical details which integrate the derivations
of the main text.
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II. THEORY

A. Framework and main formulae

We are interested in the effect of free carriers on the
dynamical matrix C and electron-phonon interaction g as a
function of the chemical potential and of the temperature T .
To reconcile with the doped semiconductor literature, we pre-
fer to use the free carrier concentration n as a variable, which
evaluates to zero in the case of an undoped semiconductor,
rather than the chemical potential which is more appropriate
for metals.

Our aim is to evaluate the expressions of C and g on fine
grids in reciprocal space at any given (n, T ), having at dis-
posal with a reasonable effort only their value for the undoped
setup at zero Kelvin. Following the same logic as Ref. [36],
we exploit the usual separation of short- and long-range com-
ponents of C and g

C = CS + CL, g = gS + gL, (1)

and focus on the description of the long-range components
since, as we will show, they are the only ones strongly af-
fected by (n, T ). Their description, within well-defined and
controlled regimes, requires the knowledge of two main in-
gredients: (i) macroscopically unscreened effective charges
and (ii) the macroscopic inverse dielectric function. In such
regimes, doping and temperature act on the long-range com-
ponents mostly through the macroscopic inverse dielectric
function, which can be approximately expressed as a function
of quantities computed in absence of free carriers. As a result,
Eq. (1) may be described using ab initio techniques only for
(n = 0 and T = 0). Outside these regimes, we can still com-
pute long-range components at reduced cost on a few selected
lines, exploiting crystal symmetries.

The theoretical approach that we use to deduce the var-
ious components of Eq. (1) is based on the static dielectric
matrix formulation of the linear response problem for quasi-
2d materials. Despite the generality of the method and the
possibility to obtain exact results, we find that employing the
static RPA approximation [64] entails a vast simplification
of the derivations at a formal level, with at the same time
the possibility to (carefully) generalize the conclusions even
to the presence of exchange and correlation terms. As done
in Ref. [36], we therefore employ the RPA approximation in
order to derive the main theoretical results. When computing
numerical results, we will reintroduce exchange-correlation
effects and defer their theoretical discussion to appendices.
In order to simplify the theoretical treatment, we also restrict
our arguments to the in-plane electrostatic of quasi-2d systems
with in-plane mirror symmetry. Such systems do not mix
in-plane and out-of-plane responses at the first order in the
momentum expansion of the EPI, while higher orders (such as
the piezoelectric coupling) may retain information regarding
the out-of-plane components [51]. Nonetheless, the influence
of such terms on, e.g., the mobility comes mostly from the
coupling with acoustic modes [51], which may be screened
statically even at low doping since the plasma and phonon
frequencies are comparable. We therefore prefer to keep only
the leading order (yet accurate) description of the EPI and
discuss its modification is presence of doping.

As anticipated, within these approximations we can ob-
tain relations for the in-plane long-range components of the
dynamical matrix and of the EPI involving effective charge
functions and the two-dimensional macroscopic inverse di-
electric function. In particular, we define the macroscopically
unscreened/screened effective charges Z̄s,α (q)/Zs,α (q) start-
ing from the expression of the total charge change arising
in a crystal following a collective displacement of the atoms
of type s along the Cartesian direction α modulated via an
in-plane wave vector q

δρ tot
s,α (q, n, T ) = −i

eq

At
Zs,α (q, n, T ), (2)

Zs,α (q, n, T ) = ε−1(q, n, T )Z̄s,α (q, n, T ), (3)

where e is the electric charge, A the area of the primitive cell of
the crystal, ε−1 is the two-dimensional macroscopic dielectric
function which we will introduce in the next section and t
is the typical scale of the electronic response along the out-
of-plane direction. The above expressions can be viewed as
a generalization of static effective charges tensors to the case
of materials with noninteger electronic statistical occupations.
The long-range components of the dynamical matrix and of
the EPI may then be expressed as a function of the effective
charges as

CL
ss′,αβ (q, n, T ) = e2q2

A
v(q)Z̄c.c.

s,α (q, n, T )Zs′,β (q, n, T ), (4)

where v(q) is the two-dimensional Fourier transform of the
Coulomb potential, and as

gL
qν,mm′ (k) = ie2q

A
v(q) 〈umk+q|um′k〉

×
∑

sα

Zs,α (q, n, T )eν
s,α (q)lqν

(
M0

Ms

)1/2

, (5)

where eν
s,α is the eigendisplacement of the vibrational mode

ν and lqν its zero point motion amplitude, while u(r, z) are
the r-periodic part of the Bloch function and M0 and Ms are,
respectively, a reference atomic mass and the atomic mass of
the atom s.

Beside the technical interest regarding an improved ac-
curacy in the description of the phononic properties, at a
deeper level our framework allows a precise understanding
of screening mechanisms at a static level. In particular, the
extraction of bare unscreened couplings at any given doping
and temperature represents a necessary prerequisite to the in-
clusion of dynamical effects in the description of the screened
interactions, which may be of crucial relevance, e.g., in the
vicinity of the plasmon resonances.

B. 2d electrostatic and response functions

Quasi-2d systems are periodic and infinite systems in
two dimensions with a finite extension in the third spatial
direction—in the case of monolayers, this is on the order of
the atomic scale, whereas for larger thin films it can reach
up to the order of micron. Such systems present a natural
distinction between in-plane and out-of-plane properties. In-
deed, a periodical quasi-2d system is naturally described by
reciprocal space variables in the plane of the material, and
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a real space variable in the out-of-plane direction. Without
loss of generality, the out-of-plane direction is aligned to the ẑ
direction of a Cartesian coordinate system. 2d quasi-momenta
are noted k for electrons and q for phonons. To simplify the
notation, we will not distinguish between 2d and 3d vectors,
whose nature can be inferred from the context. The quasi-2d
nature of the problem is reflected in the form of the Bloch
theorem for periodic systems

ψmk(r, z) = eik·r
√

N
umk(r, z), (6)

where m is the band index and N is the number of cells in
the Born-von Karman supercell. The electrostatics of quasi-
2d systems is then formulated as a function of (q, z). In
these variables, the Coulomb kernel reads as [40,41] (see
Appendix A 1 for the transform conventions and notations)

v(q, z − z′) = 4π

∫ ∞

−∞

dqz

2π

eiqz (z−z′ )

q2 + q2
z

= 2π
e−q|z−z′ |

q
. (7)

The above kernel is involved in the expression of the dielectric
response, which in turn determines the LRCs of the dynamical
matrix and EPI, as shown in detail in Secs. II D 1 and II D 2.
Therefore all the response functions related to the dielectric
one (whose definitions are given in Appendix A 3) need to be
expressed as a function of (q, z). In this spirit, the independent
particle polarizability (IPP) of the Kohn-Sham system—i.e.,
the density-density response function of an independent parti-
cle system—is written as [65]

χ0(q + G, q + G′, z, z′) = 2e2

A

∑
mm′k

fmk − fm′k+q

εmk − εm′k+q

∫
dr,

um′k+q+G(r, z)uc.c.
mk (r, z)

∫
dr′umk(r′, z′)uc.c.

m′k+q+G′ (r′, z′),

(8)

where fmk is the Fermi-Dirac occupation of the states with
energy εmk, the factor 2 takes into account spin degeneracy,
the spatial integration runs over the unit cell, and we have used
that

um′k+q+G(r′, z′) = e−iG·r′
um′k+q(r′, z′), (9)

where the G are reciprocal lattice vectors. The dependence
of Eq. (8) on the carrier concentration n and temperature T ,
which is present both in the Fermi-Dirac distributions and in
the periodic part of the Bloch wave functions (we disregard
the latter in this work), has been left implicit not to overburden
notation. We will follow the same rule in the rest of this work
when possible.

Knowing the expressions for χ0 and for the Coulomb ker-
nel, we can express the electronic dielectric response matrix,
in the RPA for the Kohn-Sham ground state [65], as

ε(q + G, q + G′, z, z′)

= δ(z − z′)δG G′ − 2π

∫
dz′′ e

−|q+G||z−z′′ |

|q + G| χ0

× (q + G, q + G′, z′′, z′). (10)

The form of Eqs. (8) and (10) allows for effective approxima-
tions of the z, z′ dependence of the response functions. We first

assume that the periodic part of the Bloch’s wave functions
can be approximated as

umk(r, z) = umk(r)
1√
t
θ

(
t

2
− |z|

)
, (11)

where θ is the Heaviside function and t is defined as the finite
layer thickness outside which the electronic cloud vanishes
completely. This approximation corresponds to considering
the quasi-2d material as an electronically compact homo-
geneous layer along the out-of-plane direction. One could
choose more accurate forms for the z dependence of the
wave function, but the asymptotic long-range expansions of
in-plane quantities, that are the focus of this work, do not
depend on such choice, as elucidated in Appendix B.

With the approximation of Eq. (11), Eq. (8) becomes

χ0(q + G, q + G′, z, z′) = 1

t2
θ

(
t

2
− |z|

)
θ

(
t

2
− |z′|

)

× χ0(q + G, q + G′), (12)

where χ0(q + G, q + G′) corresponds exactly to the IPP of a
two dimensional system [66,67] (see Appendix A 5). In other
words, the approximation of Eq. (11) implies that the IPP
of a quasi-2d material can be modelled for the 2d case and
then extended uniformly along the z direction inside the layer
thickness, while the presence of the 1/t2 pre-factor assures the
correct dimensionality of the response.

Next, the out-of-plane variables are integrated out of the
response functions, via an average along the out-of-plane di-
rection. We define the layer averaged dielectric matrix as (see
Appendix A 3)

ε̃(q + G, q + G′) =
∫ t

2

− t
2

dz
dz′

t
ε(q + G, q + G′, z, z′).

(13)

This quantity relates to the 2D IPP as follows (see Ap-
pendix A 5):

ε̃(q + G, q + G′) = δG G′ − ṽ(q + G)χ0(q + G, q + G′),
(14)

where

ṽ(q + G) = 4π

|q + G|
e−|q+G|t − 1 + |q + G|t

(|q + G|t )2
. (15)

Equations (14) and (15) are particularly pleasant because we
can deduce the asymptotic behavior of the dielectric response
function in relevant limits where the Coulomb kernel assumes
the simple expression

ṽ(q + G) =
{ 2π

|q+G| |q + G|t � 1

4π
|q+G|2t |q + G|t � 1

. (16)

The above limits for a quasi-2d material are the aforemen-
tioned thin limit—|q + G|t � 1—and the thick limit—|q +
G|t � 1, where q is still intended to be small in order to allow
Taylor expansions. In these limits Eq. (16) shows that the
dependence of the Coulomb kernel upon in-plane components
of the wave vector assumes the formal expression typical of,
respectively, a 2d and a 3d systems.
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This observation is in line with what was already noted
in Ref. [41], i.e., there exists a scale that discriminates be-
tween the two and three dimensional character of the response
functions. The same can be easily shown also for the inter-
acting polarizability χ by considering its Dyson equation.
Of course, for a realistic material, there will be a crossover
between the two regimes as a function of |q| or |G|. For
example, if we consider systems where t is of the order
of the lattice parameter, as done in this work, then in the
long wavelength limit ε(q, q) = ε(q)—called the “head” of
the dielectric matrix—will behave as for the case of a 2d
material while ε(q + G, q + G′)—the “body”—will mostly
follow the 3d behavior (see also Appendix A 6 for terminol-
ogy). If instead the lattice parameter is very large, we can
expect the full matrix to show 2d behaviors. Conversely, if we
consider a multilayer structure with a small in-plane unit cell,
then all the elements of the response are expected to become
substantially 3d with the increase of the number of layers.
When all the relevant elements of the response are in the thin
and/or thick limit, then our layer averaging procedure is well
justified, as explained in Appendix B. Intermediate crossover
regimes, existing in ranges that depend on material-dependent
internal parameters, are far more complicated to treat since
general asymptotic formulas cannot be deduced. Brute-force
first-principles methods then have to be used to evaluate the
response functions.

From now on, unless otherwise stated, we drop the tilde
notation for the layer-averaged quantities, which can be easily
recognized from the context.

C. Effective charges

The electrostatic response of materials to external per-
turbating potentials can be effectively described in terms of
the effective charges, which are macroscopic quantities in
the sense that they do not depend on G vectors explicitly.
They do contain, however, all the information regarding the
microscopic response of the material, which instead explicitly
depends on the G vectors components (the so-called local
fields). To obtain an expression for the effective charges de-
fined in Sec. II A, we first introduce the reciprocal space
expression of the screened Coulomb potential1

w(q + G, q + G′) = ε−1(q + G, q + G′)v(q + G′). (17)

Explicit formulas relating the matrix elements of w and its
inverse w−1 are given in Appendix A 6; the long wavelength
expansion of w is given in Appendix A 6 a, and the limits
for its macroscopic components, for the case of insulators or
undoped semiconductors, reads

w(q) = ε−1(q)v(q) =
{

2π 1
q+q·B′ ·q thin

4π
t

1
q·B′′ ·q thick

, (18)

were B′ and B′′ are defined from the asymptotic form of
Eq. (A44). They are, respectively, the tensorial generalization

1Notice that the screened Coulomb potential depends on two re-
ciprocal space index, as typical for the case of nonhomogeneous
electron gas; the homogeneous part of the interaction is indeed rep-
resented by the diagonal components.

of the effective dielectric screening length reff as defined in
Ref. [41] for a material with ε0

eff ≈ 1, and of the electronic
dielectric constant ε∞.

Then, we consider a collective displacement of the atoms
of type s along the Cartesian direction α modulated via a
wavevector q. From the electronic point of view, this may be
regarded as an external charge density perturbation, which can
be expressed for in-plane displacements as (see Appendix A 2
and Ref. [68])

tδρext
s,α (q + G) = −i

Zse

A
[(qα + Gα )e−iG·τs ], (19)

where Zse is the atomic charge and τs indicates the position
of the atom in the unit cell. Its relation to the total electrostatic
potential δV tot

s,β (q), obtained as the sum of the induced and the
external potentials, in the thin and thick limits can simply be
expressed in terms of the w tensor (see Appendix C) as

δV tot
s,α (q) =

∑
G′

w(q, q + G′)tδρext
s,α (q + G′). (20)

As shown in Appendix A 7 in the RPA, we can define the
macroscopically unscreened density response δρ̄ tot:

δρ tot
s,α (q) = ε−1(q)δρ̄ tot

s,α (q), δρ̄ tot
s,α (q) = δV tot

s,α (q)

w(q)
(21)

and conveniently write

δV tot
s,α (q)

w(q)
= −i

eq

A
Z̄s,α (q). (22)

Using Eqs. (17), (20), and (22), we obtain at last

Z̄s,α (q) = i
A

eqv(q)

∑
G′

ε−1(q, q + G′)
ε−1(q)

δV ext
s,α (q + G′), (23)

where δV ext is the potential change associated to
the external perturbation tδρext, i.e., δV ext(q + G) =
v(q + G)δtρext(q + G). From the above equation it is
evident that both Z̄s,α (q) and Zs,α (q) include the local
fields components of the response that contribute to the
variation of the macroscopic potential. They differ in the
inclusion of the long-range, macroscopic components of
the screening response through Eq. (3). As anticipated,
the macroscopic character of Eq. (22) is evident from the
absence of any explicit reference to the lattice vectors G
(see also Appendix C). As shown in Appendix A 7, δρ̄ tot

s,α (q)
is analytical and allows for a Taylor expansion. Therefore
Z̄s,α (q) can be written as (expliciting the dependence on the
doping level n and T dependence)

Z̄s,α (q, n, T ) = i

q
Ms,α (n, T ) + qβ

q
Z∗

s,αβ (n, T )

− i

2

qβ

q
qγ Qs,αβγ (n, T ) + · · · (24)

Since the charge density change (and the effective charge
functions) is a real quantity in direct space, Eq. (24) com-
prises alternating imaginary and real terms in the reciprocal
space expansion. The coefficients of the expansion are site-
dependent tensorial quantities (with rank proportional to the
order in q of the expansion), and as such they comply with
the site symmetries, transforming as the totally symmetric
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irreducible representation. The rank-1 tensor Ms,α (n, T )—
a polar vector, transforming as a force—is strictly zero in
insulators/semiconductors where n = 0, as it arises from in-
traband terms. In the presence of free carriers, it is allowed
only for those atoms whose Wyckoff positions are not fixed by
symmetry, i.e., that can be subject to forces that do not lower
the crystallographic symmetries, and it is indeed related to the
presence of a Fermi energy shift (see Eq. (79) of Ref. [23] and
the discussion in Ref. [36]). The second term corresponds to
Born effective charge tensors, the third to dynamical effective
quadrupole tensors and so on (sums over repeated indexes
are intended). In Eq. (24), we highlighted the doping and
temperature dependence that mostly comes from intraband
contribution in the IPP for n �= 0, as shown in Appendix A 5.

D. Long-range components

1. Dynamical matrix

We are now ready to provide the asymptotic form for the
LRC of the dynamical matrix of a generic 2d material, valid
for insulators, semiconductors (doped or not) and metals, and
which becomes exact in the thin and thick limits. We start
from the component of the force constants matrix that gives
rise to LRCs, expressed as a function of the inverse dielectric
screening in an all-electron formalism [69]

Css′,αβ (Rp, Rp′ ) = ∂2

∂ (Rp + τs)α∂ (Rp′ + τs′ )β

×
∫

dr
∫ ∞

−∞
dzε−1(Rp + τs, r, τsz, z)

× ZsZs′e2

|r − Rp′ − τs′ | , (25)

where s, s′ are atomic indexes, α, β are Cartesian indexes and
the spatial integration runs over the whole crystal, while Rp

and τs indicate the position of the atom s in the cell p, as
detailed in Appendix A 1. The above expression is amenable
for in-plane derivatives (i.e., for α, β = x, y) while the out-
of-plane direction is more cumbersome and model-dependent.
We restrict ourselves to the study of in-plane derivatives, i.e.,
to in-plane modes. The LRCs of the out-of-plane modes are
generally less important on the final dispersion [40]; if needed,
a more refined approach based on Ref. [40] should be devel-
oped. Further restricting to single layer materials with mirror
symmetry,2 we can then fix the out-of-plane atomic coordinate
τsz = 0 and can rewrite the LRC, as shown in Appendix A 8,
as

CL
ss′,αβ (q) = ZsZs′e2

A

∑
G G′

(qα + Gα )(qβ + G′
β )

× w(q, q + G′)
wc.c.(q, q + G)

w(q)
eiG·τs−iG′ ·τs′ .

(26)

2In the case of more layers, one can model the response of the
material as constant along the out-of-plane direction within the slab
of the material, or one can introduce more refined models where each
layer is treated separately, and remote couplings are considered.

If we now recast Eq. (26) as a function of macroscopic phys-
ical quantities alone, i.e., that do not depend on G, as firstly
done by Born and Huang starting from a phenomenological
theory valid only for the case of undoped semiconductors [70],
we end up with Eq. (4). One may also find it useful to rewrite
Eq. (4) in a more symmetric form, i.e., as a function of the
screened Coulomb potential as

CL
ss′,αβ (q, n, T ) = e2q2

A
w(q)Z̄c.c.

s,α (q, n, T )Z̄s′,β (q, n, T ).

(27)

Equation (4) is nonanalytical for semiconductors and insu-
lators due to the asymptotic form of the dielectric screening
[36]. The nonanalyticity is cured by the presence of free
carriers for metals and doped semiconductors, for which
limq→0 ε−1(q) = 0. For the latter, however, this happens in a
vanishingly small region around � in the limit of zero doping.

To connect to well known formulas, we rewrite Eq. (4) at
the leading order in the q expansion for the case of an insulator
or an undoped semiconductor

CL
ss′,αβ (q) = e2

A
w(q)

∑
γ

qγ Z∗
s,γ α

∑
γ ′

qγ ′Z∗
s′,γ ′β ; (28)

one can see that the thin limit of Eq. (28) is equivalent to
the in-plane component of Eqs. (45) and (46) of Ref. [40] or
to Eq. (4) of Ref. [43], while the thick limit is the standard
textbook version of the LRC of the dynamical matrix given by
Born and Huang [30] (Eq. (18) of Ref. [71]). The crossover
between the thin and the thick limit of Eq. (28) can be ob-
served not just as a function of q, where the crossover scale
is simply given by the effective dielectric screening length
reff, but also as a function of t for those layered materials
that can be brought continuously from the one layer setup
to the bulk form (as, for example, increasing the number of
layers of h-BN in the AA stacking [42,43,72]). As argued in
Appendix B, in this case, the crossover scale given by t is to
be more appropriately intended as the dielectric thickness of
the material.

2. EPI

After the derivation of the LRC of the dynamical matrix
in Sec. II D 1, we can proceed along the same line and derive
the LRC of the EPI. In this case, we start from the all-electron
expression [5]

gqν (r, z) =
∫

dr′dz′ε−1(r, r′, z, z′)gb
qν (r′, z′), (29)

where gb is the bare electron-phonon coupling induced by
a unit displacement of wavevector q of the atoms along a
mode ν

gb
qν (r, z) = �qνV e-n(r, {Rp + τs}), (30)

where

V e-n(r, {Rp + τs}) = −
∑

ps

Zse2

|r − Rp − τs| . (31)

V e-n is therefore the cell-periodic electron-nuclei interac-
tion and �qν indicates the variation following a phonon
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displacement, as more precisely defined in Appendix A 4. We bracket Eq. (29) with the Bloch functions and, leading to

〈ψmk+q|gqν (r, z)|ψm′k〉 =
∫ t

2

− t
2

dz

t
dz′ ∑

G G′ G′′
uc.c.

mk+q(G)um′k(G′)ε−1(q + G′ − G, q + G′′, z, z′)gb
qν (G′′, z′), (32)

where

gb
qν (G′′, z′) = i

2πe2

A

∑
sα

Zse−|q+G′′ ||z′|

|q + G′′| (qα + G′′
α )e−iG′′ ·τs eν

s,α (q)lqν

(
M0

Ms

)1/2

, (33)

and lqν is the zero point motion amplitude (Appendix A 4). Following exactly the same procedures as in Sec. II D 1, we obtain
the LRC as

gL
qν,mm′ (k) = i2πe2|q|

A

∑
G G′

uc.c.
mk+q(G)um′k(G′)wc.c.(q, q + G′ − G)

∑
s,α

Z̄s,α (q)eν
s,α (q)lqν

(
M0

Ms

)1/2

. (34)

Differently from the dynamical matrix case, we haven’t yet
isolated the head of the w tensor in the above expression. In
general, we cannot set G′ = G blindly because we would lose
corrections to the nonleading order expansion of the EPI due
to the dependence of the wings of w on q. We will however
set G′ = G and verify a posteriori that this approximation
is correct. We do expect the terms coming from G �= G′ to
be small because w(q, q + G′ − G) contributes to a further
power of q with respect to the terms coming from w(q) (see
also the discussion in Ref. [35]). Equation (34) then becomes
Eq. (5), which may be rewritten as a function of w(q) as

gL
qν,mm′ (k) = ie2q

A
w(q) 〈umk+q|um′k〉

×
∑

sα

Z̄s,α (q, n, T )eν
s,α (q)lqν

(
M0

Ms

)1/2

, (35)

where we have supposed that the unperturbed Bloch functions
and the phonon polarizations do not change appreciably with
n and T . To connect with well known formulas, at the leading
order for undoped semiconductors, we find

gL
qν,mm′ (k) = iw(q) 〈umk+q|um′k〉

×
∑
s,αβ

qβZ∗
s,αβeν

s,α (q)lqν

(
M0

Ms

)1/2

. (36)

One can see that Eq. (36) in the thin limit is equivalent to
Eq. (8) of Ref. [44], while in the thick limit it is equivalent
to Eq. (4) of Ref. [33]—considering the phase difference as
explained Appendix A 1—and to the long wavelength expan-
sion of Eq. (9) of Ref. [34] once the matrix element between
the periodic part of the Bloch functions is approximated
to δmn.

III. COMPUTATIONAL APPROACH

A. Connection with theory and general strategy

The theoretical framework developed in the previous sec-
tions requires the knowledge of the effective charge functions,
whose expression is given in Eqs. (3) and (24), in order to
determine the LRCs of the dynamical matrix and the EPI.
The central quantity is the layer-averaged total charge density
change per unit surface, tδρ tot

s,α (q, n, T ), that in the RPA ap-
proximation is connected to the macroscopically unscreened

and screened effective charges Z̄s,α (q, n, T ) and Zs,α (q, n, T ).
More precisely, in Appendix A 7, we show that in RPA it is
possible to deduce the macroscopically unscreened density
change δρ̄ tot

s,α (q), connected to Z̄s,α (q, n, T ) by Eq. (A48),
by simply imposing that the macroscopic component of the
layer-averaged electrostatic potential is zero. We also remark
and stress that in RPA the connection between screened and
unscreened quantities is simply attained through the macro-
scopic inverse dielectric function.

To connect to the theoretical derivations with a deeper
insight, we can sum up the above observations saying that
the layer-averaging procedure performed in the theoretical
section and Appendix A 7 was engineered to separate short-
and long-range components of the dynamical matrix and of
the EPI, and to mathematically demonstrate the analyticity
of the expansion in Eq. (24), whose terms can be deduced
from the computation of δρ̄ tot

s,α (q). However, in ab initio calcu-
lations, we can in principle retain the out-of-plane dependence
in the solution of the response problem for those quantities
that we demonstrated to be analytic functions of in-plane
momentum. In fact, the reintroduction of the z-dependence
here does not impact the analyticity of the expressions.

From an intuitive point of view, this corresponds to treat
our slab of material as a compact layer when it responds to the
long-range macroscopic electrostatic, but not disregarding its
local field dependence (even the out-of-plane) when looking
at the analyitical unscreened charges and potentials. We detail
in Sec. III C how this can be done in practice. We anticipate
that within this treatment, for both in-plane and out-of-plane
perturbations, our computational approach can be used to
deduce macroscopic charge densities and potentials with the
correct out-of-plane dependence, which are macroscopically
unscreened both from the in-plane dielectric response and
from the presence of periodically repeated images. This is of
paramount importance if one wants to extract bare couplings
to be inserted within formalisms to compute remote EPI and
their screening in van der Waals heterostructures [60].

We conclude this section by noting that for realistic DFT
calculations we will need to include exchange and correla-
tion terms; in this case, the connection between screened
and unscreened quantities is not as straightforward as in
the RPA case. The procedure of unscreening itself is not
unique, as detailed in Appendix D. In the framework of this
work, it suffices to say that a good approximation for the
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ab initio evaluation of the long-range components is attained
by computing the inverse dielectric function in the RPA+xc
approximation (i.e., RPA plus the response of the approxi-
mated DFT exchange-correlation functional [5]) and comput-
ing the unscreened effective charge functions by setting to
zero the total macroscopic electrostatic+xc potential—more
details are given in Sec. III C and Appendix D.

B. Evaluation of the macroscopic inverse dielectric function

A practical way to compute the layer-averaged inverse
dielectric matrix for a given doping and temperature is to
resort to ab initio calculations. This approach is based on the
methodology developed in Ref. [66], and consists in evaluat-
ing the inverse dielectric screening as

ε̃−1(q + G, q + G′) = δṼ tot(q + G)

δṼ ext(q + G′)
, (37)

i.e., as the variation of the layer-averaged Kohn-Sham poten-
tial δṼ tot as a consequence of the variation of the external
potential δṼ ext. In 2d materials the above equation is valid
provided that the Coulomb potential used in the DFT frame-
work has been modified with the Coulomb cutoff technique
[41]. Indeed, Eq. (37) correctly takes into account the local
fields (LFs) corrections to ε−1(q, n, T ) if δV tot(q, n, T ) is the
total electronic potential change at the end of the DFPT cycle.
If instead we stop the DFPT cycle after the first iteration,
i.e., when the response of the system is still noninteracting,
and use Eq. (37) with the corresponding potential change,
we obtain ε−1(q, n, T ) without LFs corrections. We remind
that, typically, LFs corrections are on the order of 10% on ε∞
for 3d materials [73–75] or on the inverse dielectric function
for 2d materials [66]; we will show in Sec. IV C that such
corrections are small also in the system under study in this
work.

At the RPA level, the macroscopic dielectric function can
also be obtained (through Eq. (14)) from the evaluation of the
IPP, which is amenable to simplifying approximations in the
doped case at finite temperature. As done in Ref. [36], one can
split the IPP into two contributions as

χ0,dop.(q, n, T ) = χ0,undop.(q) + δχ0(q, n, T ),

χ0,undop.(q) = 2e2

A

∑
mm′k

θ (εm′k )−θ (εmk )

εmk−εm′k+q
|〈umk|um′k+q〉|2,

δχ0(q, n, T ) = 2e2

A

∑
mm′k

δ fmk − δ fm′k+q

εmk − εm′k+q
|〈umk|um′k+q〉|2,

(38)

where δ f = f dop. − f undop. and εmk, εm′k are taken with re-
spect to the chemical potential. We can then write

ε(q, n, T ) ≈ 1

ε−1,undop.(q)
− v(q)δχ0(q, n, T ), (39)

and approximate ε−1(q, n, T ) ≈ 1/ε(q, n, T ), which corre-
sponds to neglecting LFs. We have also used that, within
a rigid-band approximation, band energies and overlaps can
be obtained from DFT calculations in the undoped setup. A
practical simplification comes from neglecting the full q de-
pendence of the dielectric response and using the asymptotic

expressions

1/ε−1,undop.(q) ≈
{

1 + reffq thin

ε∞ thick
. (40)

Further neglecting the sum over valence/conduction states in
δχ0 for electron/hole doping, and taking 〈umk|um′k+q〉 = δmm′

[66] in δχ0, one finally gets for the macroscopic inverse di-
electric function:

ε−1(q, n, T ) ≈
{

[1 + reffq − 2π/qδχ0(q, n, T )]−1 thin

[ε∞ − 4π/(tq2)δχ0(q, n, T )]−1 thick
,

δχ0(q, n, T ) ≈ 2e2

A

∑
mk

δ fmk − δ fmk+q

εmk − εmk+q
. (41)

The above equation depends on quantities that can be com-
puted directly in the undoped case (reff and ε∞) or that can
be evaluated via Wannier interpolation (εnk). For this second
case, restricting the sum over m only to valence/conduction
bands is particularly convenient and allows to consider only a
subset of bands which are situated near the chemical potential.
Given the above, the n and T dependence of Eq. (41) stems
only from the occupation functions fnk, which makes it easy
to implement.

C. Computation of effective charges

Within the Coulomb cutoff technique of Ref. [41], the
2D system is still replicated periodically along the ẑ direc-
tion, implying a discrete Fourier transform with reciprocal
space vectors Gz. Standard DFPT calculations readily pro-
vide all the {G, Gz} components of screened tδρ tot(q +
G, Gz, n, T ), from which we select in particular the macro-
scopic and layer-averaged G = 0, Gz = 0 component. To
obtain the macroscopically unscreened δρ̄ tot(q, n, T ) and the
related Z̄ (q, n, T ), we perform the DFPT calculation while
setting to zero the {G = 0, Gz} components of (i) the change
of the local part of the pseudopotential and (ii) change of the
Hartree and exchange-correlation potentials. This corresponds
to the condition δV tot(q) = 0. In particular, setting all the
Gz components to zero in the DFPT problem (as opposed
to disregarding only the Gz = 0 component) is coherent with
the procedure of layer-averaging the Maxwell’s equation, as
presented in Appendix C, and with the formal derivation of the
effective charge expansion (Appendix A 7). We observe that,
even though the theory of Sec. II has been developed from an
all-electron perspective, the implementation of pseudopoten-
tials in the calculation does not spoil the conclusion regarding
the long wavelength expansions presented in Sec. II. This is
because the approximations introduced by pseudopotentials
may in general fail to reproduce the all-electron results on the
response function in the opposite limit, i.e., for q → ∞ (when
core contributions may become visible).

We stress that we only modify the electrostatic problem
for the {G = 0, Gz} component, and not for all the G. This
means that for G �= 0 we are still keeping the out-of-plane
dependence of the response problem, which translates in
retaining the correct out-of-plane behavior of (unscreened)
quantities that we demonstrated to be analytic functions of
in-plane momenta. From a formal perspective, this may be
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thought as restoring the out-of-plane variable when evaluating
expressions such as Eq. (A47), an operation that does not
spoil the analyticity of the expressions. Secondly, for in-plane
perturbations in presence of in-plane mirror symmetry our
condition is asymptotically equivalent to the procedure used
to deduce in-plane effective charge functions via DFPT at
q = 0, as shown in the results sections. Finally notice that, as
anticipated in Sec. III A, the present computational procedure
allows for the extraction of bare couplings even for the case
when in-plane mirror symmetry is broken.

D. Evaluation of the LRCs

We now discuss the general procedure that shall be used
within our framework to practically implement an efficient
interpolation of the long-range components of the dynamical
matrix and of the EPI, for general n and T .

For insulators and undoped semiconductors, Eqs. (4) and
(5) (usually approximated using 〈umk+q|um′k〉 ∼ δmm′ ) are
nonanalytical asymptotic formulas in reciprocal space de-
duced in the q → 0 limit and can therefore be used only in
the neighborhoods of �. Such nonanalyticity implies that their
expression is not prone to be transformed in real space (in
order to be then back interpolated on the full BZ) using a
finite set of Wannier functions or plane waves. To overcome
this problem, within the state-of-the-art methodology one per-
forms an ansatz for the real space transform of Eqs. (4) and
(5) that is able to recover the q → 0 asymptotic behaviors of
Eqs. (4) and (5) (up to a certain order) once they are trans-
formed back in reciprocal space on the full BZ [34,76]. Notice
that the ansatz is not uniquely determined. Alternatively, one
can perform the ansatz directly in Fourier space by extending
each order expansion of Eqs. (4) and (5) at q + G vectors in
such a way that periodicity and continuity at zone boundary
is fulfilled [34]. This extended expression for the LRCs on
the full BZ (which we will refer to as xLRCs or xLs) is
then used to perform the following interpolation scheme for a
pair of points (k0, q0): one first interpolates the well-behaved
differences CS = C − CxL and gS = g − gxL, where C and g
are obtained ab initio on a coarse grid defined on the full BZ,
via Fourier or Wannier interpolation [25]; then, the xLRC are
readded evaluating their closed-form expression at (k0, q0).

For the case of doped semiconductors, as already dis-
cussed, Eqs. (4) and (5) are in principle analytical, even
though the extension of the region where the nonanalyt-
icity is cured depends on the magnitude of the carrier
concentration. Practically, for small doping levels it is not
guaranteed that Wannier interpolation can be performed with-
out isolating the LRCs, but instead we should repeat the
above described procedure for each n and T . The xLRCs
would then be formally obtained from their expression in
the undoped setup substituting Zundop.

s,α (q) → Zs,α (q, n, T ) and
Z̄undop.

s,α (q) → Z̄s,α (q, n, T ). In practice, for the doping lev-
els and temperatures studied in this work, we will assume
(and verify a posteriori) that the analytical, short-range com-
ponents of the matrix elements are the same as in the
undoped setup at zero temperature,3 i.e., that C = CS,undop. +

3At a given (small) doping, this is certainly valid in the usual case
that the initial grid is coarse enough that the xLRCs of the undoped

CxL,dop.(n, T ) and g = gS,undop. + gxL,dop.(n, T ). In this case
we can perform only one ab initio calculation of C and g on the
coarse grid for the undoped setup at zero temperature, interpo-
late CS,undop. = C − CxL,undop. and gS,undop. = g − gxL,undop. on
fine meshes, and finally add CxL,dop.(n, T ) and gxL,dop.(n, T )
with the correct n and T dependencies on the fine grid. Notice
that if we are interested in obtaining the correct expressions
for C and g only in a small region in the neighborhood of �,
then the last step of the above procedure can be simplified
since the xLRCs in reciprocal space can be evaluated using
directly the asymptotic expansions Eqs. (4) and (5).

IV. RESULTS

A. Disproportionated graphene

The sublattice symmetry of graphene can be broken via
the interaction with substrates as, e.g., SiC [61–63]. Here,
every second carbon atom has a neighbor in the bottom layer
so that a different potential is felt by atoms belonging to
different sublattices, thus breaking the equivalence between
carbon atoms, with a consequent reported band splitting up
to 0.5 eV between the valence and conduction bands at the
K point. In this setup, so-called disproportionated graphene is
equivalent to monolayer h-BN from a symmetry point of view,
and nonzero Born effective charge tensors and piezoelectric
coefficients arise in the system [59]. This system may be
efficiently simulated creating an imbalance of valence charge
between two otherwise equivalent neighboring carbon atoms,
more precisely by adding/subtracting a fractional value of
valence electrons (and a compensating ion charge) to their
pseudopotentials. The Born effective charge tensor, defined as

Z∗
s,αβ = A

e

∂Pα

∂υs,β (0)

∣∣∣∣
E=0

, (42)

where Pα is a Cartesian component of the polarization vec-
tor per unit surface and υs,β (0) is the displacement of the
atom s along the Cartesian direction β (as already defined in
Sec. II C and Appendix A 1), is diagonal with two independent
components Z∗

‖ and Z∗
⊥ describing in-plane and out-of-plane

Born effective charges [77]. Since we focus on the in-plane
components of the Born effective charges only, which are
two order of magnitude bigger than the out-of-plane ones in
disproportionated graphene, we will adopt the following no-
tation Z∗

s,xx = Z∗
s,yy = Z∗

s = (−1)sZ∗. This is consistent with
the charge neutrality condition for the undoped system (for
the doped system, as we will see, the sum over the atom of
the Born effective charges may assume nonzero values). The
piezoelectric tensor

ēαβγ = ∂Pα

∂εβγ

∣∣∣∣
E=0

, (43)

with εβγ being the strain tensor, has instead a single indepen-
dent coefficient ēyyy = −ēyxx = −ēxyx = −ēxxy, where x̂ and ŷ

and doped setups coincide on that grid. However, if the initial coarse
grid is fine enough to sample points within the metallic region of
the response, then the different forms of the xLRCs invalidates the
identity of the SRCs between the undoped and the doped setups on
the coarse grid. This is when we make an approximation.
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FIG. 1. (Top) Ab initio band structure and its Wannier interpo-
lation in the vicinity of the Fermi level, taken as energy reference
at 0 eV. (Inset) Schematics of disproportionated graphene, with the
Cartesian reference systems used in this work. (Bottom) Phonon
band structure as obtained from Fourier interpolation.

are the Cartesian directions of the reference frame of the inset
of Fig. 1. In the frozen-ion approximation, the piezoelectric
tensor is expressed as a function of the dynamical quadrupole
charges as [77]

ēFI
αβγ = − 1

2A

∑
s

(Qs,βαγ + Qs,αγ β − Qs,γ αβ )

= − i

A

[
∂ (qZ̄s,β )

∂qα∂qγ

+ ∂ (qZ̄s,α )

∂qβ∂qγ

− ∂ (qZ̄s,γ )

∂qα∂qβ

]
q=0

, (44)

which accordingly admit the nonzero components
Qs,yyy = −Qs,yxx = −Qs,xyx = −Qs,xxy = Qs; notice that the
definition of ēFI

αβγ in terms of second derivatives of Z̄ allows
the generalization to the case of finite doping and temperature.
We also have ēFI

yyy = −ēFI
yxx = −ēFI

xyx = −ēFI
xxy = ēFI.

In disproportionated graphene, the values of the Born
effective charges and of the quadrupoles are topological prop-
erties that, adopting a simple tight-binding model consisting
in a graphene Dirac Hamiltonian plus an on-site energy diag-
onal term ±�, do not depend on the magnitude of the opened
gap [59] and may be expressed in terms of the Berry curvature
of the band manifold. Nonetheless, it is found that along
with the reduction of the on-site energy and the band gap,
the region of k point where the Berry curvature is relevantly
different from 0 is closer and closer to K [59]. It follows that
for this system, even for small dopings at finite temperature,
important modifications to the values of Z∗

s and Qs may ap-
pear, differently from what found for 3d 3C-SiC [36]. For
this reason, we will study the different qualitative behaviors
of the dynamical matrix and EPI in a weak and strong doping
regimes (WDR and SDR respectively), as well as intermediate
regimes. Disproportionated graphene is a model candidate to
benchmark the whole of our theoretical developments and
compare exact results (within the DFT framework) with con-
trolled approximations.

As a conclusion to this section, we show in Fig. 1 a
schematics of disproportionated graphene and the Cartesian
reference frame that we adopt in this work, alongside with its
ab initio electronic band structure (first-principles and Wan-
nier interpolation obtained with the computational parameter
explained in Sec. IV B) and with the Fourier interpolated
phonon dispersion.

B. Computational parameters

To perform the first-principles calculations, we use a pri-
vate version of the QUANTUM ESPRESSO (QE) code [27], firstly
developed in Ref. [53] to compute EELS cross sections via the
extraction of the screened density response to external Carte-
sian perturbations. We use a lattice parameter of a = 2.46 Å,
PBE-GGA functionals [78] and norm-conserving pseudopo-
tentials where the valence charge of the two carbon atoms
has been altered, respectively by ±0.1e, in order to mimic the
sublattice symmetry breaking of disproportionated graphene
[59]. The result is a gap opening at the K point of around
EG ∼ 0.4 eV, as shown in Fig. 1. We sample the BZ with
telescopic grids—following Ref. [58]—that in the densest
region are equivalent to Monkhorst-Pack grids of dimension
2562 in order to well describe the region around the chemical
potential, and use an energy cutoff for the plane wave basis set
of 90 Ry.

To perform the ab initio calculations in the doped setup
we simulate hole densities from to n ∼ 9.5 × 109 to ∼9.5 ×
1012 cm−2 at finite temperature. We define an effective Fermi
momentum kF as the wave vector where the hole occupa-
tion halves from its value at the top of the valence band.
The doping is simulated in a double-gate setup where the
carrier concentration introduced in the graphene layer is com-
pensated by two equally distanced gates that are positioned
±4.43 Å away from the graphene plane along the ẑ direction.
The Coulomb kernel is treated within the 2d Coulomb-cutoff
technique as developed in Ref. [41], using an interlayer dis-
tance between graphene periodic images of c = 20 Å.

As already anticipated and shown later, the methodology
developed in this work requires to perform Wannier inter-
polation of electronic and vibrational quantities only for the
undoped setup. In this case, the Wannier interpolation of the
electronic properties is obtained using the SCDM method for
the determination of the starting projections [79,80] as imple-
mented in WANNIER90 [28] and EPW [29], using five Wannier
functions and a Gaussian entanglement with μ equal to the top
of the valence band and σ = 10 eV. Wannierization proves to
be of fundamental importance when describing the electronic
properties of disproportionated graphene. In fact, simple tight-
binding models cannot fully account for the complete orbital
composition of the Bloch functions implying poor accuracy
in the determination of, e.g., the angular dependency of the
EPI. The Wannier interpolation of the electron-phonon matrix
elements and of the dynamical matrix is performed using a
private version of EPW, adapted for the study of the current
work, using coarse meshes of 48 × 48 × 1 for the electrons
and 12 × 12 × 1 for the phonons. The convergence of the
electronic inverse scattering times (see Sec. IV F) is obtained
using fine grids of q points of dimensions 7002 and a Gaussian
smearing for the Dirac delta functions of 15 meV.
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FIG. 2. (Top) Dielectric response, for disproportionate graphene
in the undoped case, from the model of Eq. (46), compared with the
DFT calculation (RPA+xc) obtained using Eq. (37) with or without
the inclusion of local fields (LFs) corrections, as explained in Sec. III,
along the reciprocal space Cartesian line form (q, 0). The Cartesian
reference frame used in this work is depicted in the inset of Fig. 1.
(Bottom) Same quantities for the case of n ∼ 9.5 × 109 cm−2 and
a temperature of 4 meV, compared with the RPA approximation of
Eq. (41). The effective Fermi wave vector kF , defined in the text, is
represented by a black vertical dashed line.

C. Inverse dielectric function

The accurate description of the inverse dielectric function
is a focal point of our approach. We first note that LFs have
a quantitatively small effect on the asymptotic small q value
of ε−1(q), as shown in Fig. 2. It is evident that in both doped
and undoped cases, LFs have an impact on ε−1 of the order
of some percent for wavevectors smaller than q ∼ 0.04 Å−1.
Thus they may be neglected in this region, which is the most
interesting in practice. Incidentally, this shows that the in-
clusion of xc effects in the inverse dielectric response is of
little importance to our aims. Importantly, we notice that the
approximation of the inverse dielectric function via Eq. (41)
works very well.

D. Effective charges

Now, we can study the macroscopically screened and
unscreened layer-averaged effective charges, Zs,α (q) and

TABLE I. Reciprocal space expansion of Zs,α (q), for the case of
undoped disproportionated graphene along different directions of the
BZ; ε−1(q) is approximated as in Eq. (46).

Zs,α Reciprocal space direction

(q, 0) (0, q)

Zs,x
(−1)sZ∗+O(q2 )
1+reffq+O(q2 )

O(q2)

Zs,y
1/2Qsq+O(q2 )
1+reffq+O(q2 )

(−1)sZ∗q−1/2Qsq+O(q2 )
1+reffq+O(q2 )

Z̄s,α (q), for undoped disproportionated graphene along a spe-
cific direction in the reciprocal space. We focus on the
in-plane components of the effective charges. Within this
framework, Ms,α (n, T ) = 0 by symmetry considerations.

The choice of the line is performed in order to isolate
the different terms of the expansion of Eq. (24). In fact, the
symmetry properties of the effective charges tensors enforce
specific behaviors, as shown in Table I for two possible di-
rections. We choose the (q, 0) line since the leading order
coefficients of Z̄s,x (q) and Z̄s,y(q) are respectively the Born
effective charges and the dynamical quadrupole tensors. Since
there are no lines where the leading order of the expansion of
Z̄s,α (q) is represented by the octupole term, we will not pro-
ceed to evaluate the octupole tensor in this work. We then plot
in the upper panel of Fig. 3 the real part of Z̄s,x (q) and Zs,x (q),
alongside with the value of Born effective charges calculated
from ab initio DFPT calculation at q = 0, which we denote by
Z∗,QE

s . For small wave vectors, both ReZ̄s,x (q) and ReZs,x (q)
tend to Z∗,QE

s . For larger wave vectors (q ∼ 0.04 Å−1), the
unscreened charge departs from its asymptotic value. Indeed,
the identification of Z̄s,x(q) with the effective charges starts to
degrade because we are exiting from the thin limit—in fact, if
we evaluate t ∼ 3 Å, which is the typical interlayer distance
in graphite, at 0.04 Å−1 we have qt ∼ 0.1.

As it regards ReZs,x (q) instead, we notice that it follows
the simple model from Ref. [44]:

ReZs,x (q) = ε−1(q)Z∗,QE
s , (45)

ε−1(q) = 1

1 + reffq
, (46)

reff = (ε∞,QE − 1)
c

2
, (47)

way beyond the expected regime of validity, where c � t is
the separation of the periodic images used in the simulation.
Dividing the Born effective charges with the simplest thin
limit asymptotic expression of ε−1(q) thus works surprisingly
well.

This seems to be a feature common to different materials
[43,44,60], due to cancellation of errors between the wrong
estimations of the effective charge by its asymptotic value and
of the screening with respect to the local field inclusion at
finite wavevectors. All the above conclusions can be drawn
also analyzing the quadrupole and piezoelectric tensors, as
done in the lower panel of Fig. 3. At difference with the Born
effective charge case, the ab initio calculation of quadrupole
from DFPT in QE is not implemented at the time of writing.
We therefore estimate the quadrupole values directly from
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FIG. 3. (Top) Real part of the macroscopically unscreened
(“unscr”) and screened (“scr”) effective charge for undoped dispro-
portionated graphene at zero temperature, for the carbon atom with
increased/decreased valence charge C↑/C↓. (Bottom) Same notation
for the imaginary part divided by q, summed over the atoms in the
lowest panel to obtain 2AēFI (“piezo”) as intercept with the vertical
axis [see Eq. (44)]. In the upper panel, the continuous horizontal
lines correspond to Z∗,QE

s , while in the lower one to values of Qs

obtained as the constant term of the fit for −Im2Z̄s,y(q)/q in a small
neighborhood of the origin; the value for 2AēFI is obtained similarly.
The lines passing through the screened charge data are, respectively,

Z∗,QE
s

(1+reffq) , Qs
(1+reffq) , and 2AēFI

(1+reffq) , where reff ∼ 51.33 Å is computed using
Eq. (47).

the values assumed by −Im2Z̄s,y(q)/q near the origin. In the
same way, we estimate also the value of the frozen ion piezo-
electric tensor, as defined in Eq. (44). We find that |e|ēFI =
6.1 × 10−10 C/m, in perfect agreement with the values found
in Ref. [59].

We now consider the same quantities but in the doped case,
starting with the WDR and SDR at, respectively, n ∼ 9.5 ×
109 and ∼1.9 × 1012 cm−2. In the first case, to mimic the zero
temperature regime we use a Fermi-Dirac (FD) occupation
with a temperature of 4 meV, while in the second we use a
Methfessel-Paxton (MP) distribution [81] with a smearing of
40 meV—we will come back on elucidating this choice later.
We plot in Fig. 4 the same quantities as Fig. 3, respectively
for the WDR on the left column and for the SDR on the
right column. In the WDR regime, we observe a reduction

of the asymptotic value of ReZ̄s,x (q, n, T ) with respect to
the undoped case that only slightly impacts on the change of
ReZs,x (q, n, T ) at small wave vectors, which is instead mostly
determined by the influence of metallic screening. We also
notice that in the regime where metallicity fades out, i.e., at
large q, the charge response returns to the typical value for
the semiconductor response.

The same conclusions cannot seemingly be drawn for the
quadrupole term, since peculiar behaviors arise at small q.
This is not a serious issue since the relevant macroscopic
parameter which enters the EPI in the long wavelength limit
is the piezoelectric tensor, which is well-behaved. Indeed,
in general at the quadrupole order, we see that the added
carriers substantially alter the unscreened part of the re-
sponse through the C(q, n, T ) term of Eq. (A45), which
originates mainly from the intraband contributions to the IPP
coming from partially filled bands. In the charge expres-
sion, this means that −Im2Z̄s,x (q, n, T )/q strongly departs
from the behavior shown in the undoped case. Nonethe-
less, if we look at the value of the piezoelectric tensor
in the WDR as defined by the second derivative of the Z̄
quantities [Eq. (44)], we notice that this is very similar to
ēFI, because the sum over atoms of the term coming from
C(q, n, T ) results to cancel out almost completely. It follows
that −Im2

∑
s Zs,x (q, n, T )/q ≈ 2Aε−1(q, n, T )ēFI. The inde-

pendence of the frozen ion piezoelectric tensor from doping
in the WDR is interesting since the acoustic EPI is directly
proportional to ēFI in the long-wavelength limit. This justifies
neglecting the complicated doping and temperature depen-
dence coming from the C(q, n, T ) term in the evaluation of
the leading orders of the EPI.

In the SDR, the situation is very different. The value of
the Born effective charges is almost completely suppressed
and so is the value of the dynamical quadruple tensors, due
to the strong modifications of the wings of the dielectric
response at high doping concentrations. Notice that now the
acoustic sum rule for the Born effective charges

∑
s Z∗

s = 0 is
strongly broken. This is allowed because the total dynamical
matrix is expressed in terms of Eq. (A53) as Ctot

ss′,αβ (q) =
Css′,αβ (q) − δss′

∑
s′′ Css′′,αβ (0), and the relevant translational

invariance condition limq→0
∑

ss′ Ctot
ss′,αβ (q) = Ctot

ss′,αβ (0) [69]
is trivially satisfied in the metallic regime of the dielectric
response even if

∑
s Z∗

s �= 0.
To conclude, the qualitative difference between the WDR

and the SDR is that in the first regime the n, T dependencies
of the Born effective charges and of the piezoelectric tensor
can be considered, to a good approximation, to enter only
in the head of the inverse dielectric screening. This is highly
important because it implies a simple operative procedure to
determine the LRCs of the dynamical matrix and EPIs, disre-
garding the effects of doping on unscreened effective charges
[the C term in Eq. (A45)]. To quantify this observation,
Fig. 5 shows the ab initio screened charges of Fig. 4 together
with the expressions ε−1(q, n, T )Z∗QE

s , ε−1(q, n, T )Qs and
2Aε−1(q, n, T )ēFI, where ε−1(q, n, T ) is evaluated via Wan-
nier interpolation of Eq. (41). We also perform the same com-
parison in Fig. 6 for ReZ̄ (q, n, T ) for several different densi-
ties, using a MP smearing of 40 meV to evaluate the statistical
occupations. MP smearing has the drawback of losing the
correspondence with a physical temperature, but it requires
coarser samplings of the BZ in order to get converged results,
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FIG. 4. Same quantities and same symbol-color scheme as in Fig. 3, for the weak and strong doping regimes (left and right columns). The
horizontal lines are the values of the asymptotic quantities deduced for the undoped setup.

which is of extreme importance in order to perform numerous
calculations. In general, we find a good agreement between ab
initio calculation and the RPA modeling but, as expected, this
increasingly deteriorates while approaching the SDR.

E. Frequencies and EPI

Now that the behavior of Z̄s,α (q, n, T ) and Zs,α (q, n, T )
is understood, we turn to the interpolation of the dynamical
matrix and EPI, using the procedure exposed in Sec. III D. In
principle, Eqs. (4) and (5) are rigorously valid only in the thin
and thick limits. Nonetheless, we can expect the validity of
Eq. (5) to be extended like that of Zs,α (q, n, T ) in Eq. (46),
provided that v(q) is evaluated in the thin limit. For Eq. (4),
the considerations are a bit different since the LRC of the
dynamical matrix depends both on the unscreened and the
screened charge density changes. Here, the validity of Eq. (4)
is extended using for Z̄s,α (q, n, T ) the leading order asymp-
totic value obtained for the undoped setup, i.e., Z∗,QE

s . This
is coherent with the fact that at large q the LRC perform a
crossover to the value of the undoped setup. At sufficiently
small wave vectors instead, the correct numerical value of
Z̄s,α (q, n, T ) is not thoroughly needed since the whole LRC
is suppressed via screening.

As discussed in the previous section, the evaluation of
Zs,α (q, n, T ) may be performed exploiting the RPA approx-
imation of the head of the inverse dielectric screening. If this
is not precise enough, as in the SDR, Zs,α (q, n, T ) may be
evaluated ab initio. In that case, we shall perform calcula-
tions on the minimum number of lines that are required by
a symmetry analysis to describe all the relevant independent
components of Zs,α (q, n, T ), and then use symmetry relations
to complete the description on the full BZ. Also, we can sam-
ple Zs,α (q, n, T ) on each needed line on a relatively coarse set
of points and then perform an inexpensive linear interpolation
on finer sets of points. All the various steps that compose our
strategy carefully avoid to resort to brute-force calculations
of all the matrix elements of the dynamical matrix and EPI
on the full BZ. Of course, for special regimes which fall very
far from the thin or thick limits, our machinery is no more
applicable.

The previous observations are quantified in Fig. 7, interpo-
lating on the line (q, 0) for the dynamical matrix and EPI for
the WDR and SDR (left and right columns). In both cases the
LRCs are evaluated using directly the Zs,α (q, n, T ) coming
from ab initio calculations. The long-range features of the
coupling and of the phonon dispersion are strongly suppressed
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FIG. 5. Same quantities and same symbol-colo-r scheme as in
Fig. 3, for the weak doping regime, compared to the results obtained
screening Z∗,QE

s , Qs, and ēFI with the ε−1(q, n, T ) evaluated via
Wannier interpolation of Eq. (41) (dashed lines).

in the region near kF , and an excellent agreement between
ab initio calculations and interpolated quantities is obtained.
Finally, as for effective charges, frequencies and EPI values
for different dopings are plotted in Fig. 8. Ab initio results
are compared with those obtained computing the LRCs with
the RPA approximation to ε−1(q, n, T ). As for the charges,
we find that the general trends agree in the WDR while they
are increasingly different while approaching the SDR.

F. Lifetimes

We can finally quantify the impact that the correct descrip-
tions of the EPI and phonon frequencies have on physical
observables; in particular, we compute the electronic inverse
lifetimes evaluated in the self-energy relaxation time approxi-
mation (SERTA) [12] as

τ−1
mk = 2π

h̄

∑
m′ν

∫
dq
ABZ

|gqν,m′m(k)|2

× [(1 − fm′k+q + nνq)δ(εmk − εm′k+q − h̄ωνq)

+ ( fm′k+q + nνq)δ(εmk − εm′k+q + h̄ωνq)], (48)

where ABZ is the area of the BZ and nνq is the Bose-Einstein
occupation factor of the phonon of frequency ωνq.

FIG. 6. Comparison of ReZs,x (q) obtained with ab initio calcu-
lations (top) and the RPA approximation as explained in Sec. III B
(bottom), for different values of hole concentration per unit cell,
reported in units of 10−3e in the legend.

We compare the cases where the asymptotic expressions
of the LRCs are evaluated using the effective charges of the
undoped setup screened by the undoped dielectric screening
or with correct screening dependence on n and T , within the
RPA approximation to ε−1(q, n, T ). We choose a setup tai-
lored to highlight the differences between the two approaches.
We fix the chemical potential at the top of valence band and set
T = 300 K, so that the numerical difference in the approaches
is only due to screening. We do not take into account the
change in the unscreened effective charges values due to n
and T since this is highly material dependent and the current
aim is to compare the present treatment of screening with
state-of-the-art methods, more than a refined calculation of
the electronic lifetimes. As shown in Fig. 9, discarding the
doping dependence of the screening, as currently done in most
state-of-the-art first-principles calculations within the rigid-
band approximation, implies a very strong overestimation of
the inverse scattering times in the region near the top of the
valence band. This is mostly attributed to a wrong estima-
tion of the piezoelectric coupling between electrons and TA
phonons. For electronic states that are below 200 meV from
the top of the valence band, we also observe an overestimation
of the scattering times which are mostly determined by the
� optical phonons, due to the overestimation of the Fröhlich
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FIG. 7. Values for the TO and LO phonon frequencies (top row) and of the EPI (middle and bottom rows) for the undoped (circles) and
doped (squares) setups, in the WDR (left column) and in the SDR (right column). The central row shows the Fröhlich coupling with the LO
mode (LO), while the lower one is relative to the coupling between the TA mode and the dynamical effective quadrupoles. The continuous
and dashed lines represent the Wannier interpolation of, respectively, the undoped and the doped setups. The TO modes and their EPI are not
showed for the doped case as they are substantially left invariant by doping.

coupling. As mentioned before, in the case of dispropor-
tionated graphene even stronger reductions of the electronic
inverse lifetimes may come from the change of the effec-
tive charge tensors with doping and temperature, which are
routinely not taken in account in state-of-the-art calculations.
Notice that the value of the scattering times does not change
further relevantly with increasing the number of carriers. This
means that our lifetimes are typical of the high doping regime
where dynamical effects are negligible. Also, such dynamical
effects may not prevent the screening of piezoelectric cou-
pling since plasma and acoustic frequencies may be of the
same order of magnitude.

V. CONCLUSIONS

We analyze the dependence on doping and temperature of
effective charges, EPI and phonon frequencies in quasi-two-
dimensional doped semiconductors, within a linear-response
dielectric-matrix formulation that allows for controlled

approximations of the effect of electronic screening. We fur-
ther propose a fast and accurate interpolation method based
on Wannier functions that enables a quantitative analysis at a
feasible computational cost. We show that neglecting free car-
rier screening on the piezoelectric and Fröhlich interactions,
as done in state-of-the-art computational approaches, leads
to a substantial overestimation of scattering rates in specific
doping-temperature regimes, which may have a strong im-
pact on the determination of transport properties. However,
our general formulation is not limited to those couplings,
but applies to any EPI that are accessible within DFPT.
The proposed approach for dealing with electronic screening
lays the foundation for further extensions tackling other less
conventional types of EPI, such as the vector coupling or
the electron two-phonon scattering, that may play an impor-
tant role in polar metals and doped quantum paraelectrics
[82–85]. As a concluding remark, we mention that the exten-
sion to finite-frequencies dependence within a time-dependent
approach can also give access to nonadiabatic effects on
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FIG. 8. Same quantities as in Fig. 7, compared between ab initio calculations (left column) and the RPA approach of Eq. (41) as described
in Sec. III B (right column).

effective charges and, hence, on lattice dielectric properties
[58,86] which contributes to the shapes of the dynamical
structure factor probed by EELS [53] and other inelastic scat-
tering experiments [87].
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APPENDIX A: CONVENTIONS, DEFINITIONS,
AND DERIVATIONS

1. Fourier transforms

We assume Born-von Karman cyclic boundary conditions
and consider a supercell made up of N primitive cells, whose
lattice vectors are T1 = N1t1, T2 = N2t2 with N1N2 = N ,
where t1, t2 are the direct lattice vectors (and g1, g2 the recip-
rocal ones). We define the Fourier transform in the Born-von
Karman supercell as

f (q + G) =
∫

f (r)e−i(q+G)·rdr, (A1)

f (r) = 1

NA

∑
q G

f (q + G)ei(q+G)·r, (A2)

where A is the area of the unit cell, the integration is in-
tended to run over the Born-von Karman supercell and q =
m1/N1g1 + m2/N2g2 where m1, m2 are integer numbers, while
G are defined as reciprocal lattice vectors. In the case of
quantities which are cell-periodic, the above expression is
evaluated at q = 0, and the domain of integration is reduced
to the primitive cell while taking N = 1. Analogously, the
Fourier transform of quantities dependent on two real space
indexes is written as

f (q + G, q + G′)= 1

NA

∫
drdr′ f (r, r′)e−i[(q+G)·r−(q+G′ )·r′],

(A3)

f (r, r′) = 1

NA

∑
q G G′

f (q + G, q + G′)ei[(q+G)·r−(q+G′ )·r′],

(A4)

where we have used that q is the same in both reciprocal space
arguments as a consequence of f (r, r′) = f (r + R, r′ + R)
for any R belonging to the direct lattice—when G = G′ =
0 we will often shorten f (q, q) = f (q). Since we need to
transform also along the out-of-plane direction to obtain the
expression for the Coulomb kernel of Eq. (6), we define

f (q + G, qz ) =
∫

f (r, z)e−i(q+G)·re−iqzzdrdz, (A5)

f (r, z) = 1

2πNA

∫ ∑
q G

f (q + G, qz )ei(q+G)·reiqzzdqz. (A6)

With these definitions, the 3d transform of the Coulomb kernel
is

v(q + G, q + G′, qz ) = 4πe2

|q + G|2 + q2
z

δG G′ , (A7)

from which Eq. (7) follows using the residue theorem on the
antitransform to the z variable.

For the transform of the force constants matrix, we define

Css′,αβ (q) =
∑

p

Css′,αβ (Rp)eiq·(Rp+τs−τs′ ),

Css′,αβ (Rp) = 1

N

∑
q

Css′,αβ (q)e−iq·(Rp+τs−τs′ ), (A8)

where Rp is the vector that identifies the cell p and τs, τs′ are
the basis vectors of the atoms s, s′ in the unit cell. Accordingly,
a phonon of polarization eν

s,α (q) induces a displacement υ

of the atom s along the direction α in the cell p that can be
written as

υν
sp,α (q) = eν

s,α (q)eiq·(Rp+τs ). (A9)

The above definition differentiates from the one of
Refs. [25,71,88,89] for the explicit presence of τs at the expo-
nential, while it is the same of Refs. [68,69]—the advantage of
this definition is that the response to such monochromatic per-
turbation behaves as a scalar under a reference frame change.

2. Definition of charge density change

In general, for the monochromatic linear response problem,
we may write the external perturbation on the atoms as [68]
υsp,α (q) = λαeiq·(Rp+τs ) where λ is the dimensional amplitude
of the atomic displacement. For a generic charge density or
potential f that depends on the set of atomic positions, we
define its variation in the linear response regime with respect
to the external perturbation as

∂ f (r)

∂λα

∣∣∣∣
λα=0

=
∑

G

δ fs,α (q + G, z)ei(q+G)·r; (A10)

∑
G δ fs,α (q + G, z)eiG·r is clearly a cell-periodic function

and, using a notation similar to the one of Ref. [23], may be
as well indicated with f q

s,α (r). As an example, the ionic charge
density change induced by a monochromatic perturbation is
written, given the unperturbed expression for the ionic charge
density ρ ion(r) = ∑

ps Zseδ(r − Rp − τs), as

∂ρ ion(r)

∂λα

∣∣∣∣
λα=0

=
∑

G

δρ ion
s,α (q + G, z)ei(q+G)·r. (A11)

Since δρ ion
s,α is itself the perturbing external charge density of

the electrostatic problem, we rename it δρext
s,α for clarity. For

a 2d material where all the atoms are disposed on one single
layer and are subjected only to in-plane perturbations of the
atoms, which is the matter of study of this work, we obtain

δρext
s,α (q + G, z) = −i

Zse

A
[(qα + Gα )e−iG·τs ]δ(z), (A12)

which, when layer-averaged as defined in Eq. (A19), gives
Eq. (19). The same definitions may be extended to the
variation of potentials. Notice that in case of the use of pseu-
dopotentials, following a collective atomic displacement the
local part of the pseudopotential produces an external charge
in a form similar to Eq. (A12), but which includes a form fac-
tor coming from the shape of the pseudopotential. The form
factor is though relevantly different from zero for q � 1/Rc,
where Rc is the core radius of the pseudopotential; similarly,
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the nonlocal part of the pseudopotential is irrelevant in the
q � 1/Rc limit.

3. Response functions

We define the following linear response functions in real
space:

�ρ ind(r) =
∫

dr′χ (r, r′)�V ext(r′), (A13)

�ρ ind,H(r) =
∫

dr′�(r, r′)�V tot,H(r′), (A14)

�ρ ind(r) =
∫

dr′χ0(r, r′)�V tot(r′), (A15)

�V tot(r) =
∫

dr′ε−1(r, r′)�V ext(r′), (A16)

where �V ext is an external perturbing potential, �V ind is the
change of potential in the crystal induced by the external per-
turbation, �V tot,H = �V ind,H + �V ext and �V tot = �V ind +
�V ext where the difference between �V ind,H and �V ind is
respectively the neglect or the inclusion of the exchange cor-
relation terms in the response (we use the same superscript
meaning for the charge density ρ)4 Notice that χ0 is the IPP
of the Kohn-Sham system and is expressed in Eq. (8) with
wave functions that have been computed with the inclusion of
the xc potential [65], while � would not include the xc con-
tributions in the self-consistent field calculation; in our work,
we use the RPA approximation in which the total response χ

is approximated as

χ−1 = χ0,−1 − v − Kxc → χ−1,RPA = χ0,−1 − v; (A17)

from this approximation and ε−1,RPA = I + vχRPA, it fol-
lows that ε−1,RPAχ−1,RPAχ0 = I which means that εRPA =
I − vχ0, i.e., Eq. (10)—see Appendix D for considerations
beyond RPA. The definitions from Eq. (A13) to Eq. (A16)
are given for a general real space perturbation, and therefore
in reciprocal space they can be used with the substitution
� → δ where δ assumes the meaning given in Appendix A 2.
In this case, to connect the external perturbation to the external
charge change, we use the electrostatic relation

δV ext
s,α (q + G, z) = 2π

∫
dz′ e

−|q+G||z−z′ |

|q + G| δρext
s,α (q + G, z′).

(A18)

Also, to our aims it is useful to define the averaging of a
generic function f (�, z, z′) over the layer width t (defined in
Sec. II B) as

f̃ (�) =
∫ t

2

− t
2

dz
dz′

t
f (�, z, z′), (A19)

which we use to get rid of the z, z′ dependence of, e.g.,
the response functions. With the above definition, the layer-

4In other notations in the context of DFT or TDDFT, χ0 is referred
to as χKS or χ ir.

averaged response functions satisfy∫
dz′′ ∑

G′′
f̃ (q + G, q + G′′) f̃ −1(q + G′′, q + G′) = δG G′ .

(A20)

Notice that, from a more formal perspective, the layer-
averaging procedure may be interpreted as keeping the leading
order of the hyperbolic cosine in the appropriate expressions
of Ref. [40].

4. Definition of �qν

�qν is defined as in Ref. [5], but with phase convention
coherent with Eq. (A9), i.e., as

�qνV = eiq·r�qνv, (A21)

�qνv = lqν

∑
sα

(
M0

Ms

) 1
2

eν
sα (q)∂sα,qv, (A22)

∂sα,qv =
∑

p

e−iq·(r−Rp−τs ) ∂V

∂ (Rpα + τsα )

∣∣∣∣
r

=
∑

p

e−iq·(r−Rp−τs ) ∂V

∂τsα

∣∣∣∣
r−Rp

, (A23)

where �qνv is a cell-periodic function and again we have re-
stricted the derivation to be performed with respect to in-plane
displacements of the atoms. We also define

lqν =
[

h̄

2M0ωq,ν

]1/2

. (A24)

5. Independent particle polarizability and dielectric matrix

Starting from the approximation of Eq. (11), Eq. (8) be-
comes Eq. (12):

χ0(q + G, q + G′, z, z′)

= 2e2

At2

∑
mm′k

fmk − fm′k+q

εmk − εm′k+q

× 〈um′k+q+G|umk〉 〈umk|um′k+q+G′ 〉 θ

×
(

t

2
− |z|

)
θ

(
t

2
− |z′|

)

= 1

t2
θ

(
t

2
− |z|

)
θ

(
t

2
− |z′|

)
χ0(q + G, q + G′).

(A25)

The brakets stand for integration on the in-plane real space
variables and the expression χ0(q + G, q + G′), as already
anticipated in Sec. II, is the IPP of a two dimensional
Kohn-Sham system [66,67]. To obtain an expression for the
dielectric tensor, we plug Eq. (A25) inside Eq. (10) obtaining

ε(q + G, q + G′, z, z′)

= δ(z − z′)δG G′

− 2π

t2

P(q + G, z)

|q + G| χ0(q + G, q + G′)θ
(

t

2
− |z′|

)
,

(A26)
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where we have defined

P(q + G, z) = 2

|q + G|

⎧⎪⎪⎨
⎪⎪⎩

e−|q+G|z sinh
(|q + G| t

2

)
, z > t

2

1 − e−|q+G| t
2 cosh(|q + G|z), |z| � t

2

e|q+G|z sinh
(|q + G| t

2

)
, z < − t

2

. (A27)

We concentrate on the domain z, z′ ∈ [− t
2 , t

2 ] because it is the one where we are interested to evaluate ε−1(q + G, q + G′, z, z′).
In this region, Eqs. (A26) and (A27) can be further simplified using the definition of layer-averaged dielectric function of
Eq. (13). Plugging Eqs. (A26) and (A27) in Eq. (13), we finally obtain Eq. (14) of the main text.

The appropriate long wavelength expansions of Eq. (14) are obtained analyzing the asymptotic behaviors of χ0. For insulators
and undoped semiconductors at zero temperature, we can write for the leading orders

lim
q→0

χ0(q) = 2e2qαqβ

A

∑
mm′k

θ (εm′k ) − θ (εmk )

εmk − εm′k

〈
umk

∣∣∂kα
um′k

〉∗ 〈umk|∂kβ
um′k〉 = qBq, (A28)

lim
q→0

χ0(q, q + G′) = 2e2qα

A

∑
mm′k

θ (εm′k ) − θ (εmk )

εmk − εm′k

〈
umk

∣∣∂kα
um′k

〉c.c. 〈umk|um′k+G′ 〉 = q · A(G′), (A29)

lim
q→0

χ0(q + G, q + G′) = 2e2

A

∑
mm′k

θ (εm′k ) − θ (εmk )

εmk − εm′k
〈umk|um′k+G〉c.c. 〈umk|um′k+G′ 〉 = C(G, G′), (A30)

where it is intended that Eq. (A29) is valid for G′ �= 0 and Eq. (A30) for G �= 0 and G′ �= 0. To obtain the above expressions,
we have used that 〈umk|um′k〉 = 0 if m is a valence state and m′ a conduction state (or vice versa) and that there are no
intraband transitions that can vanish the energy denominator, so that the q dependence of the limits is coming only from the
long-wavelength expansion of the periodic part of the Bloch functions. For the dielectric matrix, we find

ε(q + G, q + G′) = 1

t

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − v(q)q · B · q G, G′ = 0

−v(q)q · Ac.c.(G′) G = 0

−v(G)q · A(G) G′ = 0

δGG′ − v(G)C(G, G′)

, (A31)

where v is defined in Eq. (15). For metals or doped semiconductors, the asymptotic limits for the IPP instead read

lim
q→0

χ0(q) = 2e2

A

∑
mk

fmk − fmk+q

εmk − εmk+q
+ qBq, (A32)

lim
q→0

χ0(q, q + G′) = 2e2

A

∑
mk

fmk − fmk+q

εmk − εmk+q
〈umk|umk+G′ 〉 + q · A(G′), (A33)

lim
q→0

χ0(q + G, q + G′) = 2e2

A

∑
mm′k

fmk − fm′k+q

εmk − εm′k+q
〈umk|um′k+G〉c.c. 〈umk|um′k+G′ 〉 + C(G, G′), (A34)

where we have used the approximation that 〈umk|um′k+q〉 =
δmm′ and therefore the sum over m is restricted to the states
whose occupation is significantly different from 1 or 0. In this
case, the response functions depend on the carrier concentra-
tion n and temperature T through the occupation factors, i.e.,
ε(q + G, q + G′) → ε(q + G, q + G′, n, T ). Using a purely
qualitative argument, the expression of the dielectric matrix
as a function of n can be obtained in the degenerate limit
performing the substitution q · B · q → k2

T F (n) + q · B · q in
Eq. (A31), where k2

T F (n) is the Thomas-Fermi screening wave
vector of the material, or using q · B · q → k2

D(n, T ) + q · B ·
q in the nondegenerate limit, where kD(n, T ) is the Debye
screening wave vector [90]; we are here supposing that the
wings of the dielectric response matrix are not affected by
doping—as shown in Sec. IV, this is not rigorously true, but
as a matter of fact wings are less sensitive to doping than
the head. The above substitution cures the nonanalyticity of
the LRCs of the dynamical matrix and of the EPI typical of

the insulator case (see Secs. II D 1 and II D 2), smoothing their
singular behaviors in a small region around �. Quantitatively,
the above description of the doping effect on the screening is
too rough since this is strongly dependent on the microscopic
details of the material and temperature, and therefore more
refined strategies, as the one proposed in Eq. (41), have to be
implemented.

6. Inversion of w−1

We define the inverse screened Coulomb potential w−1 as
the inverse of Eq. (17):

w−1(q + G, q + G′) = ε(q + G, q + G′)
v(q + G)

. (A35)

The w−1 matrix is Hermitian because of the Hermiticity of χ0

and Eq. (14). For a generic Hermitian matrix w−1, following
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Refs. [68,69], we write

w−1 =
(

P Q
Q† S

)
, (A36)

w =
(

W X
X † Z

)
, (A37)

where P = w−1(q) is the head of the matrix, Q = w−1(q, q +
G′) is the wing and S = S† = w−1(q + G, q + G′) is the
body, and the same goes for W, X, Z . We have

W = (P − QS−1Q†)−1, (A38)

X = −W QS−1, (A39)

Z = S−1 + X †W −1X. (A40)

w may then be rewritten as

w =
(

W X
X † S−1 + X †W −1X

)
. (A41)

We also define

ŵ =
(

W X
X † X †W −1X

)
, (A42)

which can be rewritten as

ŵ(q + G, q + G′) = ŵ(q, q + G′)ŵ(q + G, q)

ŵ(q)

= ŵ(q, q + G′)ŵc.c.(q, q + G)

ŵ(q)
. (A43)

For the case of undoped semiconductors, the ŵ tensor contains
all the nonanalytical terms that give rise to the LRCs of the
EPI and of the dynamical matrix; notice that the head and the
wings of the w and the ŵ tensors coincide.

a. Asymptotic expansion of the w tensor

To evaluate Eq. (22), we need to know the asymptotic
expressions of the w tensor, given the inversion formulas of
Appendix A 6. For insulators and undoped semiconductors,
these are

w(q + G, q + G′) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w(q) G, G′ = 0

w(q)[q · A′c.c.(G′)] G = 0

w(q)[q · A′(G)] G′ = 0

L(G, G′) + S−1(G, G′)

,

w(q) =
{

2π
|q|+q·B′ ·q thin
4π
t

1
q·B′′ ·q thick

, (A44)

where c.c. stands for complex conjugate and the expressions
for A′, L, H , which are different for the thin and thick limits,
can be easily worked out. For metals or doped semiconductors,
the above expressions have to be generalized to include the
terms coming from the expansions Eqs. (A32)–(A34). The
generalization can be easily worked out and is not reported
here. We though notice that if we are just interested in the ratio
between the wing and the head of the w entering Eqs. (26) and

(22), then we can can recast it as

w(q, q + G′, n, T )

w(q, q, n, T )
=

{
1 G′ = 0
q · A′c.c.(G′) + C(q, n, T ) G′ �= 0 ,

(A45)

where the term C(q, n, T ) stems formally from the change
of χ0 due to (marginally) the modification of the interband
terms and to (substantially) the appearance of an intraband
contribution to χ0 in presence of doping at finite temperature
[see Eqs. (A32) and (A33) for the limiting values]; practically,
we associate the presence of C(q, n, T ) exclusively to the ex-
istence of intraband contributions. Such a term can be detected
in the density response in the region where the dielectric
response acquires strong metallic features (see Sec. IV).

7. Proof of Eq. (24)

To prove the expansion of Eq. (24), we consider the elec-
trostatic problem imposing that the G = 0 component of the
change of the total potential, δV tot

s,α (q), is null for any possible
charge density perturbation—notice that we are considering
the electrostatic problem where each term of the Maxwell’s
equation has been layer-averaged independently (see also Ap-
pendix C). This request can be satisfied only if in Eq. (A37)
we have W = η and X = η where η is an infinitesimally small
number. We notice that limη→0 ŵ = 0, so that we are left only
with the short-range components of the w matrix. The total
potential may now be written, for G �= 0 as

δV̄ tot
s,α (q + G) =

∑
G′ �=0

S−1(q + G, q + G′)tδρext
s,α (q + G′);

(A46)

the bar over a quantity is here used to indicate that it is
computed imposing δV tot

s,α (q) = 0—the bar notation for Z̄s,α

introduced in Sec. II is not casual, as we will see in a moment.
By the definition of X 0, we obtain

tδρ̄ ind
s,α (q) =

∑
G �=0
G′ �=0

χ0(q, q + G)S−1(q + G, q + G′)

× tδρext
s,α (q + G′). (A47)

To obtain the total charge density change in this particu-
lar setup, δρ̄ tot

s,α (q), we sum δρext
s,α (q) to δρ̄ ind

s,α (q). Using the
asymptotic expressions for w, χ0 and S−1 [for the first see
Appendix A 6 a, for the second see Appendix A 5, while for
the third we just get S−1(G, G′)] both in the thin and thick
limits one finds that tδρ̄ tot

s,α (q) is exactly equivalent to the
asymptotic expansion of the left hand side of Eq. (22), i.e.,

δρ̄ tot
s,α (q) = −i

eq

At
Z̄s,α (q). (A48)

This means that −i eq
A Z̄s,α (q) corresponds to the Fourier trans-

form of the total charge density change generated by tδρext
s,α (q)

once that we have imposed the absence of macroscopic elec-
tric fields, i.e., tδρ̄ tot

s,β (q)—exactly as in the three dimensional
case studied in Ref. [36]; the reason for the use of the bar
notation for the unscreened effective charges is now evident.
Eq. (A47) also shows us a fundamental property: tδρ̄ tot

s,β (q) is
manifestly analytic and as such may be expanded in a Taylor
series, therefore justifying Eq. (24).
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From Eqs. (A48), (22), (2), (3), and the RPA electrostatic
relation between charges and potentials we deduce Eqs. (21),
from which the definition of Zs,α (q) starting from Z̄s,α (q)
[Eq. (3)] is now naturally clear, and is coherent with Eq. (2).
Notice that the relation between screened and unscreened
charges, explicitly deduced here for the first order of the
expansion, is valid at all orders, as shown by the alternative
derivation given in Appendix D.

The above argument is fundamental to prove that Eq. (24)
contains the in-plane dynamical effective charges. For exam-
ple, the Born effective charge is defined as in Eq. (42), which
in our notation (see Appendix A 2) is equivalent to write

Z∗
s,αβ = A

e

∂Pα

∂λβ

∣∣∣∣
λ=0,q=0,E=0

; (A49)

notice that the star notation here does not mean complex
conjugate but has always been historically used to identify
the Born effective charges, that are properly real quantities.
We now define the cell-periodic layer-averaged charge density
change on a single atom (SA) exploiting the superposition of
the charge density change in the linear regime for the response

δρ̄SA
s,β (r − Rp − τs) = A

(2π )2

∫
dqδρ̄

q,tot
s,β (r)e−iq·(Rp+τs−r),

(A50)
with the inverse transform given by

δρ̄
q,tot
s,β (r) =

∑
p

δρ̄SA
s,β (r − Rp − τs)eiq·(Rp+τs−r). (A51)

Then, we write

∂Pα

∂λβ

∣∣∣∣
λ=0,q=0,E=0

= 1

NA

∑
p

∫
dr(rα − Rp,α − τs,α )

× δρ̄SA
s,β (r − Rp − τs)

= i
∂

∂qα

δρ̄ tot
s,β (q)

∣∣∣∣
q=0

, (A52)

where the integration is intended to run over the whole crystal.
The last equality of Eq. (A52) proves the identification be-
tween effective charges and the expansion of the unscreened
charge density change; the same can be done also for higher
orders. We need to stress here that these identifications are
exact only in the thin and thick limits, i.e., in the regimes in
which the LRCs can be matched to phenomenological expres-
sions that involve only effective charges and the head of the
inverse screening matrix. In these cases, these identifications
are crucial in order to have an operative simple method to
extract from ab initio calculations the value of the dynamical
effective charges, avoiding the direct evaluation of Eq. (23)
which may depend on the modellization of the response.

8. Derivation of Eq. (26)

For a single layer, we can write for the dynamical matrix
in reciprocal space

Css′,αβ (q) = 2πZsZs′e2

A

∑
GG′

eiG·τs−iG′ ·τs′
∫ ∞

−∞
dz(qα

+ Gα )(qβ + G′
β )ε−1(q + G, q + G′, 0, z)

× e−|q+G′ ||z|

|q + G′| . (A53)

To obtain asymptotic formulas, we now wish to get rid of the
z dependence of the above equation. To do so, we replace
ε−1(q + G, q + Ḡ′, 0, z) with its layer average contextually
restricting z ∈ [− t

2 , t
2 ]. In fact, we can approximate ε−1 as-

suming that the induced density is uniform inside the slab
of width t , and vanishes outside, obtaining an expression
similar to Eq. (A26)—see Appendix B for a discussion on this
approximation. We also define

Q(q + G) = 4π

|q + G|2t
(1 − e−|q+G| t

2 ), (A54)

which let us rewrite Eq. (A53) as

Css′,αβ (q) = ZsZs′e2

A

∑
G G′

(qα + Gα )(qβ + G′
β )

× w(q + G, q + G′)
Q(q + G′)
v(q + G′)

eiG·τs−iG′ ·τs′ .

(A55)

In the thin and thick limits, we have Q(|q+G′|)
v(q+G′ ) → 1; since we

are interested in these limits we can set the ratio of the two
functions to 1, obtaining eventually Eq. (26) when isolating
the nonanalytical terms coming from the w tensor. For inter-
mediate regimes, the behavior of the dynamical matrix (and
EPI) will be, in general, strongly model dependent and there-
fore the division into short- and long-range components is not
well-defined. The evaluation of Eq. (A55) passes through the
knowledge of the w matrix; the inversion of the w−1 matrix
can be performed symbolically, in line with Refs. [68,69], as
already shown in Appendix A 6.

APPENDIX B: LAYER THICKNESS
AND LAYER-AVERAGING

The physical working hypotesis assumed in Sec. II is
that, in appropriate limits, we can approximate a quasi two-
dimensional system as a electronically compact homogeneous
layer of width t along the ẑ direction, following Eq. (11).
More specifically, we assume that whenever a z-dependent
quantity enters an exact relation, we can substitute its value
with its layer-average given by Eq. (A19). The validity of this
approximation is debatable, and indeed we show in Figs. 10
and 11 that the unperturbed electronic density along the ẑ
direction is not a window function, but it decays exponentially
on a certain characteristic length, in contradiction with what
assumed in Eq. (11). Nonetheless, we now argue that even in
the exact treatment of the z, z′ dependence of our problem,
we would obtain the same closed forms of the long-range
components involving in-plane effective charges as if starting
from Eq. (11), with the only assumption that there exists a
scale t̂ which can be used to define the thin and thick limits.
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FIG. 10. Heat-maps of the in-plane electronic density of disproportionated graphene, expressed in atomic units, for several values of the
z coordinate. The graphene layer is situated at z = 0. The heat-maps are taken at (top left) z = 0, (top right), 0.246, (bottom left), 0.492, and
(bottom right) 0.738 Å.

We start from the expression of the dielectric tensor

ε(q + G, q + G′, z, z′, n, T )

= δ(z − z′)δG G′ − 2π

∫
dz′′ e

−|q+G||z−z′′ |

|q + G| χ0

× (q + G, q + G′, z′′, z′, n, T ). (B1)

In the thin limit, we can define a scale t̂ corresponding
to the typical size of the extension of the induced charge
along the out-of-plane direction; with this definition, we can

FIG. 11. Slice of electronic density for a line along the z direction
whose projection on the graphene layer is situated at the point r =
(1.23, 0) Å.

approximate e−|q+G||z−z′ | ∼ 1 for |q + G|t̂ � 1, to obtain

ε(q + G, q + G′, z, z′, n, T ) ∼ δ(z − z′)δG G′

− 2π

|q + G|
∫

dz′′χ0(q + G, q + G′, z′′, z′, n, T ). (B2)

A similar relation holds between ε−1 and χ−1. Now, since
to get to the formulas of the LRC of the dynamical matrix
all the relevant approximations involve products of ε−1 with
exponentials in the z, z′ coordinates, that can be approximated
to unity, the final form of the LRC depends only on the layer-
averaged value of the inverse dielectric matrix that can be
defined from Eq. (B2) using Eq. (A20) over the length t̂ . The
asymptotic formal expressions of the LRC of the dynamical
matrix are therefore equal to the one of our model, since the
layer-averaging does not introduce in general changes to the
asymptotic limits of the inverse dielectric matrix; of course,
this is true only if we stick to the in-plane components of
the expansions, otherwise further terms coming from the out-
of-plane direction may be present as shown in Ref. [40]. For
the LRC of the EPI, modifications of the asymptotic formulas
may come from the out-of-plane integration of the product
of the inverse dielectric matrix with the periodic parts of the
Bloch functions at k and k + q. Nonetheless, in the general
case we expect such integration to tend to a constant nonzero
value in the limit q → 0 and therefore to recover the form of
the LRCs of our model even in this case. Even if the form
of the asymptotic models are the same, one would need to
obtain the correct prefactors coming from the different kinds
of approximation: we overcome this obstacle in our work by
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taking the values of the effective charges and of the dielectric
constants directly from ab initio calculations.

Analogously, for |q + G|t̂ � 1, we can use that the inte-
gral of Eq. (B1) is relevantly different from zero only when in
the IIP we have z′′ ≈ z:

ε(q + G, q + G′, z, z′) ∼ δ(z − z′)δG G′ (B3)

− 2π
P(q + G, z)

|q + G| χ0(q + G, q + G′, z, z′)

∼ δ(z − z′)δG G′ − 4π
1

|q + G|2 χ0(q + G, q + G′, z, z′).

(B4)

In the derivation of the LRCs for every occurrence of the
inverse dielectric function under the integration sign together
with e−|q+G||z−z′ |, we can use the same approximation of
Eq. (B3). Again, the asymptotic in-plane limits are not modi-
fied and the LRCs have the same formal expression as for our
model.

From the above considerations, it follows that the typical
scale t̂ shall be regarded as the scale where the charge re-
sponse of the system is substantially different from zero.

APPENDIX C: LAYER-AVERAGED MAXWELL’S
EQUATIONS

The Maxwell’s equations are classical equations which
relate macroscopic physical densities and currents to elec-
tromagnetic fields. In this Appendix, we discuss the form of
the first Maxwell’s equation in the thin limit within the RPA
approximation. We start from the RPA electrostatic relation
between charge and potential

δV tot(q + G, z) = 2π

∫
dz′ e

−|q+G||z−z′ |

|q + G| δρ tot(q + G, z′).

(C1)

We now substitute each term of the above equation with its
layer-average, as defined in Appendix A 3 and discussed in
Appendix B; we have

δV tot(q + G) = v(q + G)tδρ tot(q + G); (C2)

if we now specify δρ tot = δρ ind + δρext and use the relation of
Eq. (A14) between δρ ind and δV tot, we obtain

∑
G′

ε(q + G, q + G′)
δV tot(q + G′)

v(q + G)
= tδρext(q + G),

(C3)

which using Eq. (A35) becomes∑
G′

w−1(q + G, q + G′)δV tot(q + G′) = tδρext(q + G).

(C4)

For the thin limit, in particular, we can write

∑
G′

ε(q + G, q + G′)δV tot(q + G′) = 2π
tδρext(q + G)

|q + G| ,

(C5)

where tδρext(q + G) is dimensionally a 2d density and the
left hand side is not explicitly dependent on t . The above
relation, which follows from Eqs. (C1) and (A15), relates the
total potential change to the external charge perturbation, and
includes all the in-plane nonlocal fields components of the
response.

The form of the classical Maxwell’s equation instead fol-
lows from the relation between the total potential change
and the macroscopically unscreened total charge change
through the macroscopic inverse dielectric tensor, as shown in
Sec. II D 1 and in particular in Eq. (22). Such an equation may
be rewritten for clarity as a function of the density as

δV tot
s,α (q) = w(q)tδρ̄ tot

s,α (q). (C6)

Notice that if we compare the above expression with Eq. (C2)
evaluated at G = 0 we obtain the relation of Eq. (21) between
macroscopically screened and unscreened charges. Physically,
this means that δρ̄ tot

s,α (q) acts electrostatically as a macroscopic
bare charge but contain the effects of the local fields of the
system under consideration.

APPENDIX D: XC AND RESPONSE FUNCTIONS

The many body theoretical treatment of the response func-
tions has been performed up to now directly in the RPA
approximation, therefore neglecting any effect stemming from
the presence of an exchange-correlation kernel Kxc in the
response. We will now try to extend the treatment beyond
such an approximation. For the sake of clarity, we will restrict
ourselves to the thick limit only and will take t = 1.

In absence of Kxc, the screening function and its inverse are
written as

ε−1,RPA = I + vχRPA, (D1)

εRPA = I − vχ0; (D2)

We define the screened Coulomb interaction as

w = ε−1,RPAv; (D3)

if we now take Eqs. (A46) and (A47), using Eq. (A39), we
obtain

δρ̄ ind
s,α (q) + δρext

s,α (q) =
∑
G′

w(q, q + G′)
w(q)

δρext
s,α (q + G′).

(D4)

Now, one uses Eq. (22) (where it is only used that V ext =
vρext) and eventually it follows:

δV tot
s,α (q) = w(q)δρ̄ tot

s,α (q), (D5)

δρ tot
s,α (q) = ε−1(q)δρ̄ tot

s,α (q), (D6)

Zs,α (q) = ε−1(q)Z̄s,α (q). (D7)

A first crucial observation is that, numerically, in the undoped
case the value of the unscreened Born effective charges is the
same when computed in the RPA or in the RPA+xc with an
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LDA kernel, while this is not true for the value of ε−1(q):5

with Eq. (A47) in mind, we use this finding to state that at
small q the values of all S−1 elements are fairly independent
of xc effects in the undoped case.6

In presence of Kxc, the screening function and its inverse
(which cannot be called ‘dielectric’ anymore) are written as

ε−1 = I + (v + Kxc)χ, (D8)

ε = I − (v + Kxc)χ0; (D9)

properly speaking Kxc should present a long-wavelength
behavior proportional to 1/q2, in the most common approx-
imations Kxc is independent of q (in LDA) [91] or dependent
on positive powers of q (in GGA) [92]. We still define the
screened Coulomb interaction as

w = ε−1v, (D10)

even though the matrix is now not Hermitian and the rules for
inversion change. For a generic non-Hermitian matrix w−1,
we write [69]

w−1 =
(

P Q
R S

)
, (D11)

w =
(

W X
Y Z

)
, (D12)

where the inversion rules are now

W = (P − QS−1R)−1, (D13)

X = −W QS−1, (D14)

Y = −S−1RW, (D15)

Z = S−1 + YW −1X, (D16)

where we notice that Eq. (D14) is equal to Eq. (A39). The
wing of w−1 is now (assuming local Kxc with no local field
dependence for the sake of simplicity of the argument)

Q(q, q + G) = −v(q) + Kxc(q)

v(q)
χ0(q, q + G). (D17)

As already discussed before, in the undoped case the presence
of Kxc in the response affects mainly the terms of w which
depend on W . Also, xc terms are not expected to cure the
nonanalytical behaviors typical of the RPA case, so that we are
still induced to split the w matrix in a short-range component
involving only the body S−1, which is mainly RPA-like, and
a remainder which is nonanalytical. To isolate the short-range
component, we are therefore induced to adopt the same pre-
scription of the RPA case to nullify the total macroscopic

5In two dimensions, the difference between the dielectric screenin
in RPA and RPA+xc for undoped semiconductors is anyway small.
The same conclusions are reached though also for the three dimen-
sional case of Ref. [36], where the difference is more marked.

6The effects of the exchange-correlation terms in χ0 are present
through the periodic part of the Bloch function and the electronic
energies; nonetheless, such effects are considered also in the RPA
approximation.

potential, comprised now also of the xc component; this ex-
plains the procedure described in Sec. III C. Also, within our
interpolating procedure explained in Sec. III D, this splitting
means that in the doped case we are approximating S−1 as the
one of the undoped case; the goodness of the approximation
is therefore connected to the magnitude of xc contributions to
the local fields in presence of doping.

With the above prescription, Eq. (A47) can now be written
as

δρ̄ ind
s,α (q) = −

∑
G �=0
G′ �=0

v(q)

v(q) + Kxc(q)
Q(q, q + G)

× S−1(q + G, q + G′)δρext
s,α (q + G′). (D18)

We use Eq. (A39) obtaining

δρ̄ ind
s,α (q) =

∑
G′ �=0

w(q, q + G′)
ε−1(q)[v(q) + Kxc(q)]

δρext
s,α (q + G′),

(D19)

δρ̄ tot
s,α (q) = δρ̄ ind

s,α (q) + δρext
s,α (q). (D20)

As evident, in principle, we lose the correspondence between
the above equation and Eq. (22), and therefore barred quan-
tities are no more related to the unbarred ones simply via
the screening function. In practice, for the undoped case or
small dopings and for the ordinary approximations to Kxc, we
find that the correspondence is respected to a satisfactory pre-
cision. Notice that our considerations imply the well-known
consequence that in the undoped case the Born-Huang for-
mulas works even when their ingredients are computed in a
RPA+xc approach; in fact, ε−1 in the above equations now
contains the effects due to the presence of Kxc in the response,
while as already mentioned the effective charge functions
are fairly insensitive to xc effects. Notice also that, formally,
with the current prescription the definition of, e.g., the Born
effective charge tensors of Eq. (42) is evaluated at total macro-
scopic field equal to zero, and not only the electrostatic one.

In a more general treatment, we find it interesting to rewrite
the responses as

ε−1 = I + vχ̃ ε = I − vχ̃0, (D21)

χ̃ = v−1[v + Kxc]χ χ̃0 = v−1[v + Kxc]χ0. (D22)

In this case, we can interpret χ̃0 as the polarizability response
that enters in the Maxwell’s equations. We now define a new
induced density, namely,

δ ˜̄ρ ind
s,α (q) =

∑
G �=0
G′ �=0

χ̃0(q, q + G)S−1(q + G, q + G′)

× δρext
s,α (q + G′); (D23)

summing the above expression to the external density, we
obtain

δ ˜̄ρ ind
s,α (q) + δρext

s,α (q) =
∑
G′

w(q, q + G′)
w(q)

δρext
s,α (q + G′)

(D24)
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and therefore we can identify it with Eq. (22); we therefore
have

δV tot
s,α (q) = w(q)δ ˜̄ρ tot

s,α (q) = −i
eq

A
w(q) ˜̄Zs,α (q). (D25)

Interestingly, the expression of gL is the same as Eq. (5) with
the replacement Z → Z̃ , while in the expression for CL we
can approximate Z̄ at its undoped value and send Z → Z̃ .

We end this section noting that the definition of effective
charges given in presence of xc in the context of this work, i.e.,

in the context of interpolation of short- and long-range com-
ponents of the dynamical matrix and of the EPI, is not physical
for the case of doped semiconductors or metals. The physical
value would be in fact obtained defining the effective charges
from the total density change obtained at null macroscopic
electrostatic potential, leaving the xc component of the total
potential unaltered; such density would be automatically an-
alytical and would respect translational invariance. We leave
the investigation of such effective charges to future works.
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