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Lattice dielectric properties of rutile TiO2: First-principles anharmonic self-consistent phonon study
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We calculate the lattice dielectric function of strongly anharmonic rutile TiO2 from ab initio anharmonic
lattice dynamics methods. Since an accurate calculation of the � point phonons is essential for determining
optical properties, we employ the modified self-consistent approach, including third-order anharmonicity as
well as fourth-order anharmonicity. The resulting optical phonon frequencies and linewidths at the � point agree
much better with experimental measurements than those from a perturbative approach. We show that the four-
phonon scattering process contributes as much as the third-order anharmonic term to phonon linewidths of
some phonon modes. Furthermore, incorporating the frequency dependence of phonon linewidth reveals that
experimentally known but unidentified peaks of the dielectric function are due to the two-phonon process. This
work emphasizes the importance of the self-consistent approach in predicting the optical properties of highly
anharmonic materials.
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I. INTRODUCTION

Titanium dioxide (TiO2) is a polar semiconductor, which
has been studied extensively from both experimental and
theoretical perspectives for its phenomenal dielectric con-
stants of 111 and 250 along the x and z axes, respectively.
The consequent high refractive index is advantageous for
various technological applications such as pigments and ca-
pacitors. Rutile TiO2 thin film has also attracted attention
as a high-κ dielectric material for DRAM [1]. The impor-
tance of rutile TiO2 has instigated several experimental and
theoretical studies on dielectric properties [2–11]. The large
dielectric constant directly links to substantial Born effec-
tive charges and a low-frequency transverse optical phonon
mode (A2u; see Fig. 1). The frequency of the A2u phonon
rapidly increases with increasing temperature [12], as in
the case of ferroelectric crystals, and is accompanied by a
decrease in the static dielectric constant. However, unlike
ferroelectric crystals, the frequency of the A2u phonon does
not become zero with lowering temperature, and therefore
the system does not undergo a phase transition. Several
perovskites (e.g., KTaO3) are known as such materials and
are called incipient ferroelectric. The strong anharmonic-
ity of the lattice [6] is the reason for such remarkable
temperature-dependent behavior. Gervais and Piriou [7,8] ap-
plied the four-parameter semiquantum model (FPSQ) as a
model of the dielectric function and successfully fitted ex-
perimental reflectivity data. The model partially accounts for
anharmonic effects employing different damping parameters
for each transverse optical (TO) and longitudinal optical
(LO) phonon. The FPSQ model studies [7–10] showed a
marked difference in damping parameters between each LO
and TO phonon, indicating that the conventional harmonic

vibration model breaks down, especially for the A2u phonon
mode.

The first ab initio study on the lattice dynamics of rutile
TiO2 by Lee et al. [13] successfully calculated large Born
effective charges and static dielectric constant, which led to
many other studies on harmonic phonon properties of rutile
TiO2 using input from first-principles calculations [14–21].
These calculations unveiled the importance of the mixed cova-
lent and ionic bonding of s orbitals of oxygen and d orbitals of
titanium, the cause of which is large polarizability due to long-
range Coulomb interactions between the ions. The high Born
effective charges could be caused by the dynamical transfer
of electrons associated with atomic displacements. Therefore,
careful convergence testing is required to get meaningful re-
sults. Also, the phonon frequencies of the A2u and TA phonons
show strong strain dependencies [15,17,20]. For example, the
generalized gradient approximation (GGA) of Perdew-Burke-
Ernzerhof yields an overestimation of the lattice constants,
resulting in the A2u phonon with imaginary frequency [14].
These results indicate that the phonon frequencies are sensi-
tive to exchange-correlation functionals and the accuracy of
the pseudopotentials [18]. While LDA functionals are often
used in previous calculations and have been successful in
describing lattice dynamics despite the underestimation of the
lattice constants, recent works [18,21] revealed that meta-
GGA and hybrid functionals give us more accurate lattice
constants.

Recently, an ab initio computational framework of phonon
anharmonicity has been developed to calculate lattice ther-
mal conductivity, phonon lifetime, and other phonon-related
properties. In the framework, harmonic and anharmonic
interatomic force constants (IFCs) are extracted from
first-principles density functional theory (DFT) or density
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FIG. 1. (a) Unit cell of rutile TiO2, which contains two titanium
atoms (black) and four oxygen atoms (red). (b)–(e) Schematic views
of atomic displacements for the A2u mode and the three Eu modes.

functional perturbation theory (DFPT) calculations. Com-
puting a dynamical matrix from harmonic IFCs give us
frequencies and eigenvectors of ordinary harmonic phonons,
whereas anharmonic IFCs determine self-energies that cause
the frequency shifts and linewidths.

Regarding rutile TiO2, several previous studies [22,23]
have calculated thermal conductivity using this framework.
Fu et al. [23] found that the finite-temperature effective IFCs
[24], including higher order anharmonicity, are essential for
predicting thermal conductivity, whereas calculations only in-
cluding third-order anharmonicity underestimated the thermal
conductivity. This result suggests that including higher-order
IFCs explains the lattice properties of rutile TiO2. The va-
lidity of perturbative approaches taken in previous studies is
questionable in highly anharmonic cases such as rutile TiO2,
where the anharmonic term contributes as much as 20% of
the A2u phonon frequency at room temperature. The self-
consistent phonon (SCPH) theory [25,26], which includes the
frequency shift associated with fourth-order anharmonicity in
a self-consistent manner, can treat such strongly anharmonic
crystals. Recently, the SCPH+B theory has been developed,
including the frequency shift associated with third-order an-
harmonicity within a quasiparticle approximation [27]. It
could describe the possible cancellation of frequency shifts
of third- and fourth-order anharmonicity in the A2u phonon.

While the accurate SCPH theory has been successful in
many thermal conductivity calculations, there have been few
such attempts for lattice dielectric properties [28,29], only
discussing static dielectric constants. Perturbative approaches
have been applied to lattice dielectric properties of weakly
anharmonic materials. The Lorentz oscillator or FPSQ model
studies revealed that the anharmonic term of four phonon scat-
tering (4ph) is not negligible for calculating optical properties
[30,31]. Fugallo et al. [32] used the Cowley formula [33] to
incorporate the frequency dependence of a damping parame-
ter, and successfully obtained the dielectric spectra of MgO
in good agreement with experiment. Here we aim to study

the lattice dielectric properties of strongly anharmonic rutile
TiO2, where such a perturbative approach does not apply.

In this work, we perform first-principles lattice dynamics
calculations to predict the IR optical properties of strongly
anharmonic rutile TiO2. The second-, third-, and fourth-order
IFCs are computed using the least absolute shrinkage and se-
lection operator (LASSO) technique based on first-principles
calculations. Phonon frequency shifts and linewidths were
calculated using SCPH+B and the Cowley formula was uti-
lized to calculate the dielectric function. We found that the
results of the r2SCAN functional are in good agreement with
experimental measurements and that a self-consistent method
is essential for describing the strong anharmonicity of the
rutile TiO2.

II. THEORY

A. Dielectric properties

The lattice dielectric function at photon energy h̄ω is gen-
erally described by the classical Lorentz model

ε(ω) = ε∞ +
∑

j

�ε jω
2
0 j

ω2 − ω2
0 j + iωγ0 j

, (1)

where ωq j , �ε j , and γq j are the resonant frequency, the oscil-
lator strength, and the damping (FWHM) of the phonon with
wave vector q and mode j. ε∞ is the electronic dielectric con-
stant. Although this model can describe dielectric properties
qualitatively, it may not work well quantitatively because it is
based on Newton’s equation of motion, ignoring the frequency
dependence of damping constants.

According to Maxwell’s equations, the poles of a dielectric
function are TO phonon frequencies and the poles of an ex-
tinction coefficient η = 1/ε are LO phonon frequencies. The
following factorized form was devised to analyze LO and TO
phonons having different phonon frequencies and dampings.
This model is called FPSQ, as there are four parameters per
mode:

ε(ω) = ε∞ ∏
j

ω2
0 j,LO − ω2 + iωγ0 j,LO

ω2
0 j,TO − ω2 + iωγ0 j,TO

. (2)

When LO-TO splitting is large, namely, ωLO � ωTO, the
difference in a damping is more pronounced and the FPSQ
model is more suitable than the Lorentz model. Even though
the model does not consider the frequency dependence of
damping, it successfully explains the experimental values well
for a wide range of materials.

On the other hand, Cowley [33] derived an equation in-
corporating the full frequency dependence of dampings using
the anharmonic lattice dynamics theory [34] and the linear
response theory (see Appendix A for derivation),

εαβ (ω) = ε∞
αβ + 1

v0

∑
j

S j
αβ

(ω0 j )2 − ω2 − 2ω0 j�0 j (ω)
, (3)

where v0 is the volume of the unit cell, α and β are
Cartesian indices, and �(ω) = −�ω(ω) + i�(ω) is phonon
self-energy, where �ω(ω) and �(ω) are called frequency shift
and linewidth, respectively. Phonon lifetime τq j is related to
linewidth as τq j = 1/2�(ωq j ), and a damping parameter in
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FIG. 2. Feynman diagrams of phonon self-energies. Solid lines
and open circles represent phonon propagators and phonon vertexes,
respectively.

the Lorentz model or the FPSQ model holds γ0 j = 2�(ω0 j ).
Summations are taken only for TO phonons at the � point. S
is called mode-oscillator strength defined as follows [35]:

S j
αβ =

(∑
κα′

Z∗
κ,αα′

eκα′ (0 j)√
mκ

)⎛
⎝∑

κβ ′
Z∗

κ,ββ ′
eκβ ′ (0 j)√

mκ

⎞
⎠, (4)

where κ is the index of the atoms, Z∗ is a Born effective
charge, mκ is the mass of the κth atom, and eακ (q j) is a
phonon eigenvector normalized as

∑
κα[eκα (q j)]∗eκα (q j′) =

δ j j′ .
The reflectivity R of optical waves normal to the surface is

given by

R(ω) =
∣∣∣∣
√

ε(ω) − 1√
ε(ω) + 1

∣∣∣∣
2

. (5)

B. Phonon self-energy

Calculating a dielectric function from Eq. (3) requires esti-
mating the phonon self-energy �. As the main contribution to
the self-energy, we consider the following terms:

� = �T + �B + �L + �4ph. (6)

Here, T, B, L, and 4ph stand for tadpole, bubble, loop, and four
phonon scattering. Figure 2 depicts the Feynman diagrams of
these self-energies. These diagrams are given by the following
formulas [36]:

�T
q (ω) =−1

h̄

∑
q2, j1=TO

V (−q, q, 0 j1)V (0 j1, q2,−q2)
2n2 + 1

ω0 j1

,

(7)

�B
q (ω) = 1

2h̄

∑
q1,q2,s±1

|V (−q, q1, q2)|2

×
[

n1 + n2 + 1

sωc + ωq1 + ωq2

− n1 − n2

sωc + ωq1 − ωq2

]
, (8)

�L
q (ω) = −

∑
q1

V (q,−q, q1,−q1)
2n1 + 1

2
, (9)

�4ph
q (ω)= 1

6h̄

∑
q1q2q3,s±1

V (−q, q1, q2, q3)V (−q1,−q2,−q3, q)

×
[

(n1 + 1)(n2 + 1)(n3 + 1) − n1n2n3

sωc + ωq1 + ωq2 + ωq3

+ 3n1(n2 + 1)(n3 + 1) − (n1 + 1)n2n3

sωc − ωq1 + ωq2 + ωq3

]
. (10)

Here and in the following, we use q for the shorthand
notation of (q, j), satisfying q = (q, j) and −q = (−q, j).
ni = n(ωqi ) = 1/(eβ h̄ωqi − 1) is the Bose-Einstein distribution
function and ωc = ω + i0+ with 0+ being a positive infinites-
imal. In addition, the summation in Eq. (8) is restricted
to the pairs (q1, q2) satisfying the momentum conservation
q1 + q2 = q + G, where G is a reciprocal lattice vector. Sim-
ilarly, the sum of the 4ph diagram (10) is limited to the pairs
(q1, q2, q3) satisfying q1 + q2 + q3 = q + G. V (q1, q2, q3)
and V (q1, q2, q3, q4) are three and four phonon scattering
matrices defined as

V (q1, q2, q3) = 1

N1/2

(
h̄

2

)3/2 ∑
κ1μ1

l2κ2μ2
l3κ3μ3

�0κ1,l2κ2,l3κ3
μ1μ2μ3

× eκ1μ1 (q1)eκ2μ2 (q2)eκ3μ3 (q3)√
mκ1 mκ2 mκ3

ei(q2·r2+q3·r3 ),

(11)

V (q1, q2, q3, q4) = 1

N

(
h̄

2

)2 ∑
κ1μ1

l2κ2μ2
l3κ3μ3
l4κ4μ4

�0κ1,l2κ2,l3κ3,l4κ4
μ1μ2μ3μ4

× eκ1μ1 (q1)eκ2μ2 (q2)eκ3μ3 (q3)eκ4μ4 (q4)√
mκ1 mκ2 mκ3 mκ4

× ei(q2·r2+q3·r3+q4·r4 ), (12)

where μ is a Cartesian index, l is the index of unit cells, rl

is the position of the lth primitive cell, and � represents the
third- and fourth-order IFCs, which is the derivative of the
potential energy U with respect to atomic displacements u as
follows:

�l1κ1,...,lnκn
μ1···μn

= ∂U

∂uμ1 (l1κ1) · · · ∂uμn (lnκn)
. (13)

The tadpole and loop diagrams are real constants, while the
bubble and 4ph diagrams are complex numbers that depend
on the frequency. Thus only the bubble and 4ph diagrams
contribute to phonon linewidths. We ignore the frequency
shifts due to thermal expansion and isotope effect because
they are small in rutile TiO2 at room temperature [37].

As mentioned before, the anharmonicity of rutile TiO2

is so strong that these self-energies must be treated in a
self-consistent manner. �T and �L are considered self-
consistently in the SCPH theory and anharmonic phonon
frequencies are obtained with solving the following self-
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consistent equation for ω:[
GS

q (ω)
]−1 = [

G0
q(ω)

]−1 − �T[GS] − �L[GS]. (14)

Here, G0
q and GS

q are harmonic and SCPH phonon Green’s
functions, respectively. We write the resultant SCPH frequen-
cies as ωS

q . The SCPH+bubble (SCPH+B) theory [27] has
recently been proposed to consider �B in the SCPH theory.
After solving the SCPH equation (14), this method solves the
following nonlinear equation for �:

�2
q = (

ωS
q

)2 − 2ωS
q Re�B

q [GS,�3](ω = �q). (15)

In the following, we write the SCPH+B phonon frequencies
as �SCPH+B.

After obtaining the anharmonic phonon frequencies and
eigenvectors by the SCPH+B equation, the imaginary parts of
�B and �4ph are considered in a frequency-dependent form as

�B+4ph(ω) = Im�B[GSCPH+B,�3](ω)

+ �4ph[GSCPH+B,�4](ω). (16)

We use not harmonic Green’s functions but SCPH+B Green’s
functions to include the phonon frequencies renormalization
effect. We finally obtain a dielectric function by substituting
these self-energies into Eq. (3) as

εαβ (ω) = ε∞
αβ + 1

v0

×
∑

j

S j
αβ(

�SCPH+B
0 j

)2 − ω2 − 2�SCPH+B
0 j �B+4ph(ω)

.

(17)

All the parameters in Eq. (17) will be determined if second-
, third-, and fourth-order IFCs are provided other than ε∞ and
Z∗, which can be calculated from DFPT. As ε∞ is well known
to be overestimated in DFT and the evaluation of ε∞ is outside
the scope of our work, we use the experimental values [2] of
ε∞

xx = 5.91 and ε∞
zz = 7.20 in the following calculations.

III. RESULTS AND DISCUSSION

A. Computational details

The IFCs of rutile TiO2 were calculated from ab initio
calculations using VASP [38]. The local density approximation
(LDA) [39] and the r2 strongly constrained and appropri-
ately normed (r2SCAN) meta-GGA [40] with the projector
augmented-wave method [41] were used for exchange and
correlation functionals. We have also performed calculations
with the PBEsol functional [42] to see how results change
due to functionals and the results are discussed in Sec. III E.
The semicore 3s and 3p states are considered as the valence
electrons in the Ti pseudopotential. The plane-wave energy
and charge cutoffs are 800 eV and 1200 eV, respectively. The
energy convergence threshold is set at 1 × 10−9 eV.

Before phonon calculations, the lattice parameter and
geometry optimization was performed with the electronic
sampling of a 10 × 10 × 10 Monkhorst-Pack grid, which con-
verged to the maximum error in forces of 1 meV/Å and
stresses of 0.01 GPa. Born effective charges are obtained from

DFPT calculations for both long-range interactions and di-
electric properties.

We estimated IFCs via linear-regression optimization us-
ing DFT forces of various atomic configurations as training
data. The harmonic terms were fitted from the finite displace-
ment method with one atom moved by 0.01 Å, where the
atomic forces were calculated building a 2 × 2 × 4 supercell
with a 5 × 5 × 5 electronic wave vector grid. Then, we used
the LASSO technique [44] to extract anharmonic IFCs from
the 100 displacement-force training data sets with all atoms
moved by 0.04 Å in random directions. When constructing
the IFC model, we included all possible IFCs in a 2 × 2 × 4
supercell for harmonic IFCs. The cubic, quartic, fifth, and
sixth terms were considered with cutoffs of 15, 10, 5, and 5
bohr, respectively.

The SCPH and SCPH+B equations, including �L and the
real part of �B, were solved for 2 × 2 × 2 q points, where
a 6 × 6 × 6 q points grid was used for computing the self-
energies [25]. �T is omitted because of its smallness in rutile
TiO2. Finally, the imaginary parts of �B and �4ph are cal-
culated with using a 15 × 15 × 15 and 10 × 10 × 10 q points
grid, respectively. The extraction of IFCs, the lattice dynamics
calculations, and the SCPH calculations were performed using
the ALAMODE [45] package.

B. Phonon frequencies

Rutile TiO2 has a tetragonal unit cell and the P42/mnm
space group, as shown in Fig. 1. Because six atoms are in the
unit cell, there are 15 optical phonon modes and three acoustic
phonon modes. The optical phonons at the � point of the Bril-
louin zone belong to the following irreducible representations:

�opt = A1g + A2g + A2u + 2B1u + B1g + B2g + Eg + 3Eu.

(18)

Expressions with subscript g are Raman active, those with u
are infrared active except for B1u, while the representations
with the E symbol are degenerate. Eu and A2u are vibrations
in the xy plane and z direction, respectively, contributing to the
dielectric function’s xy and z components. In the E1

u phonon,
the softest Eu phonon, and the A2u phonon, the Ti and O ions
move in opposite directions, whereas in the E2

u and E3
u modes,

the two Ti ions move in opposite directions, as in Fig. 1.
We first present results for optimized lattice constants from

LDA and r2SCAN compared with experimental values at 15 K
and 295 K in Table I. As in previous studies, LDA slightly
underestimates the lattice constants by 0.8%. The r2SCAN
functional, a meta-GGA family, shows good agreement with
experimental values within 0.4%, though the GGA-PBE func-
tional is known to overestimate the lattice constants.

Table II shows that Born effective charges obtained from
r2SCAN are around 10% smaller than those from LDA. The
LDA values agree well with those of previous LDA studies
[13,18,49,50]. Based on the LO phonon frequencies’ re-
sults discussed below, Born effective charges calculated from
r2SCAN are considered more accurate than those from LDA.

Figure 3 shows the phonon dispersion spectrum along the
high-symmetry points in the first Brillouin zone at 300 K
with nonanalytic term correction. Figure 3(a) compares har-
monic phonon frequencies (red, abbreviated as harm) with
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(a) (b)

FIG. 3. (a) Harmonic (red) and SCPH+B (blue) band structures of r2SCAN functional at 300 K with the experimental values from inelastic
neutron scattering (orange dot). The SCPH+B DOS is also illustrated at the same time. The orange dashed lines are the peak obtained from
the inelastic neutron scattering experiment [43]. (b) The SCPH+B band structure with r2SCAN (blue) and LDA (red) functional. The green
arrow indicates the A2u mode, which is overestimated in the LDA functional.

SCPH+B frequencies (blue) using the r2SCAN functional,
while Fig. 3(b) compares the SCPH+B frequencies using
LDA (red) and r2SCAN (blue), together with inelastic neutron
scattering results from Traylor [12] (orange dots). Figure 3(a)
also shows the density of states (DOS) of r2SCAN and
SCPH+B, with the orange dashed lines being the positions
of the five DOS peaks observed in the neutron experiment by
Lan and Fultz [51]. Overall, the combination of the r2SCAN
functional and the SCPH+B calculation agrees well with
the experimental data except for the lowest optical phonon
branch (B1u), which is known to be sensitive to the choice of
functionals [17]. The frequencies of the A2u and E1

u phonons
at the � point and the TA phonon branch, considered highly
anharmonic in previous studies, differ significantly between
the harmonic approximation and the SCPH+B calculation,
with the harmonic approximation predicting smaller frequen-
cies. The potential energy surface of the A2u phonon is no
longer a quadratic function and is well described with con-
sidering functions up to the fourth order, as in Fig. 4. Table III
summarizes the � point phonon frequencies. For the A2u and
E1

u modes, the negative frequency shift by the bubble self-
energy and the positive frequency shift by the loop self-energy
cancel each other out, resulting in about 50 cm−1 positive

TABLE I. Calculated lattice constants with LDA and r2SCAN.
Experimental values are taken from a neutron diffraction study [46].
a is the lattice constant in the x and y directions and c in the z
direction. v0 is the lattice volume. The four oxygen O ions are
located at the (u, u, 0), (1 − u, 1 − u, 0), (1/2 − u, 1/2 + u, 1/2),
and (1/2 + u, 1/2 − u, 1/2) in the fractional coordinate, where u is
a parameter.

a (Å) c (Å) u c/a v0 (Å3)

LDA 4.552 2.922 0.3038 0.642 60.55
r2SCAN 4.602 2.961 0.3046 0.643 62.71
Expt. 300 K [46] 4.593 2.959 0.3048 0.644 62.42
Expt. 15 K [46] 4.587 2.954 0.3047 0.644 62.15

frequency shift. The A2u phonon frequency within the har-
monic approximation is 139 cm−1, which rises to 220 cm−1

by SCPH. The frequency decreases to 179 cm−1 when the
bubble self-energy is considered with SCPH+B. The contri-
bution of the anharmonic terms reachs 29%. Similarly, the
E1

u phonon frequency is 133 cm−1 for the harmonic approx-
imation, 210 cm−1 for SCPH, and 189 cm−1 for SCPH+B.
Phonon frequencies are also calculated from a usual per-
turbative approach (abbreviated as non-SC) for r2SCAN as
ω = ω0 + �ωT + �ωB + �ωL. The non-SC frequencies dif-
fer largely from the SCPH+B frequencies in the A2u and E1

u
phonons. In the A2u phonon mode, we obtained �ωB = −78
and �ωL = 144, which are too large to be handled within
perturbation theory. This calculation shows that neither the
harmonic approximation nor the perturbation method suffices
for optical properties, where an accurate estimation of the
optical phonon frequencies at the � point is necessary.

Figure 3(b) demonstrates a good agreement between LDA
and r2SCAN throughout the Brillouin zone. However, the
LDA calculation overestimates the A2u phonon at the � point.
The underestimation of the lattice constants of LDA may
cause the overestimation of the A2u phonon, as the A2u phonon
is sensitive to lattice constants [14]. To clarify this point, we
have performed the SCPH+B calculation with LDA using
the experimental lattice constants. The resultant frequency
of the A2u phonon was 146 cm−1, which underestimates the
experimental value by 15%. This result shows that the A2u

mode is sensitive to the lattice constant even at the level of
anharmonic phonon calculations. For the LO phonons, the

TABLE II. Calculated Born effective charge tensors Z of the Ti
atom at (0, 0, 0) and the O atom at (u, u, 0).

Ti O

Zxx Zxy Zzz Zxx Zxy Zzz

LDA 6.34 −1.01 7.66 −3.17 1.81 −3.83
r2SCAN 5.96 −0.97 7.27 −2.94 1.71 −3.60
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TABLE III. Comparison of the computed mode frequencies (in cm−1) at the � point with various experimental data at room temperature.
The results from the harmonic approximation (harm), SCPH, and SCPH+B are shown for both LDA and r2SCAN at 300 K, while a usual
perturbation calculation (non-SC) is shown only for r2SCAN.

LDA r2SCAN Neutron [12] Raman [47] FPSQ [10]

harm SCPH SCPH+B harm SCPH SCPH+B non-SC IR [48]

Raman
A1g 612.5 620.8 616.6 599.8 613.1 613.3 627.1 610 612
A2g 395.0 424.0 413.7 456.5 432.9 451.8 458.9 NFa NF
B1g 134.7 121.9 116.6 146.5 143.0 138.9 139.1 142 143
B2g 817.5 818.2 817.2 809.6 814.4 821.8 831.4 824 826
Eg 464.3 476.0 467.5 434.4 463.1 431.5 429.0 445 447

Nonactive
B1

1u 108.1 149.6 140.2 103.2 141.0 130.0 159.5 113
B2

1u 417.9 414.8 413.8 398.4 420.7 411.7 421.8 406

TO
A2u 147.8 227.9 198.0 138.5 210.1 179.4 210.6 172.6 167 172.3
E 1

u 149.0 216.8 202.0 132.7 203.6 186.9 238.4 189 183 188.6
E 2

u 384.3 394.6 386.5 378.8 382.1 374.9 374.3 374 388 379.3
E 3

u 489.0 504.7 492.5 495.7 513.1 500.1 495.0 494 500 500.5

LO
A2u 843.9 861.5 854.2 784.9 800.6 793.1 805.2 NF 811 796.5
E 1

u 354.6 362.7 354.0 364.5 364.9 356.9 360.0 375 373 365.7
E 2

u 439.1 447.3 436.8 445.5 455.6 443.9 445.7 428 458 444.9
E 3

u 882.8 904.9 904.9 815.1 836.0 830.7 851.4 842 806 829.6

aNF = not found.

LDA results overestimate the E3
u phonon frequency, the cause

of which is larger Born effective charges by LDA than that by
r2SCAN. As r2SCAN gives better results than LDA, all the
following calculations are based on r2SCAN.

Finally, we calculated the temperature dependence of
the static dielectric constant ε0 ≡ ε(ω = 0), which directly
reflects the effect of the phonon frequency shift with

FIG. 4. Frozen phonon potential (blue) of A2u mode with x axis
being the displacement of the Ti atoms. The quartic component (red)
describes the DFT potential well, while the harmonic component
(orange) deviates from the potential.

temperature. Figure 5 compares the calculated temperature
dependence of ε0

x and ε0
z with the experimental data [3]. Both

ε0
x and ε0

z increase with lowering temperatures due to a de-
crease in the phonon frequencies. In particular, ε0

z increases up
to 250 at T = 0 because of the strong temperature dependence
of the A2u phonon frequency. The SCPH+B calculation well
reproduced experimental values for ε0

x . For ε0
z , on the other

hand, the tendency to increase is reproduced, but the value at

FIG. 5. Temperature dependence of the static dielectric constant.
The triangular dots show the experimental values and the circular
dots show the results from the SCPH+B calculations.

094305-6



LATTICE DIELECTRIC PROPERTIES OF RUTILE … PHYSICAL REVIEW B 107, 094305 (2023)

TABLE IV. Calculated linewidth (cm−1) of IR-active phonon
modes at 300 K together with the experimental parameters fitted with
the FPSQ model. The contributions from the bubble diagram, from
the 4ph diagram, and the sum of the two are shown for both non-SC
and SCPH+B results.

Non-SC SCPH+B

Bubble 4ph Total Bubble 4ph Total FPSQ [10]

TO
E 1

u 21.2 69.9 91.1 8.54 7.95 16.4 14.7 ± 8.0
E 2

u 40.7 7.09 47.8 14.5 1.81 16.2 19.3 ± 2.8
E 3

u 28.3 11.6 39.9 12.6 3.47 16.0 22.4 ± 3.1
A2u 29.3 51.8 81.1 16.3 9.57 25.7 20.0 ± 10.2

LO
E 1

u 13.8 2.71 16.5 7.12 0.97 8.09 8.8 ± 1.8
E 2

u 24.3 8.43 32.7 11.7 2.33 14.0 18.4 ± 2.2
E 3

u 33.0 8.39 41.4 22.6 3.88 26.5 43.9 ± 5.6
A2u 22.8 7.58 30.4 12.6 3.62 16.2 46.4 ± 5.3

T = 0 is 169, which is only 70% of the experimental value.
In fact, the frequency of the A2u mode at T = 0 is 167 cm−1

in the SCPH+B calculation, compared to 140 cm−1 for the
experimental value [12], which indicates that the zero-point
vibration is very large. This could be improved by using more
accurate functionals like hybrid functionals.

C. Phonon linewidth

We calculated the frequency-independent linewidths of the
four phonon modes involved in the dielectric function in two
ways as

γ SCPH+B = 2 Im�[GSCPH+B](ω = �SCPH+B), (19)

γ non-SC = 2 Im�[Gharm](ω = ωharm ). (20)

As mentioned in Sec. II B, while the latter (non-SC) is a usual
perturbative calculation, the former uses the SCPH+B phonon
frequencies. Table IV shows that the non-SC linewidths
are overestimated significantly, whereas the SCPH+B cal-
culations agree better with the FPSQ data [10], which is
determined by fitting experimental reflectivity data to the
FPSQ model. It indicates that the calculation of linewidth
requires accurate determination of phonon frequencies, in-
cluding anharmonicity, as pointed out by Fu et al. [23].
Discrepancies are observed in the E1

u and A2u TO modes
with relatively high frequencies, which could be improved
by incorporating higher-order diagrams. We also found that
self-energies from the four-phonon scattering give a non-
negligible contribution in the A2u and E1

u modes. Such
phenomena have been observed in other materials [30].

D. Dielectric function

Figure 6(a) shows the calculated imaginary part of dielec-
tric function together with experimental data. The blue line

(a)

(b)

FIG. 6. (a) Calculated imaginary part of dielectric functions εxx (left) and εzz (right) from SCPH+B (solid blue lines) and harmonic
approximation (dashed cyan lines) with experimental data at room temperature [11] (orange open circles). The TO phonons corresponding to
the peaks are marked. (b) Calculated reflectivity from SCPH+B (solid blue lines) with experimental data at room temperature [4].
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FIG. 7. Calculated imaginary part of dielectric functions with experimental data from Schoche [10] in a logarithm scale. Both εxx and εzz

have a peak at about 600 cm−1, which does not belong to any IR-active phonon frequency, and these peaks are indicated by the gray arrows.

represents the SCPH+B calculation, while the cyan dashed
line represents the non-SC calculation, where harmonic
phonon frequencies are used, and the frequency-dependent
self-energy is calculated as

�non-SC(ω) = Im�B[Gharm] + �4ph[Gharm]. (21)

The maximum values of the imaginary part of εxx and εzz

reach 785 and 932, respectively, which are due to the E1
u and

A2u phonons with large mode-oscillator strength of S(E1
u ) =

1.87e2/u and S(A2u) = 6.12e2/u, respectively. It is because
the positively charged Ti ions and negatively charged O ions
move in opposite directions in the A2u and E1

u phonons, as
shown in Fig. 1. On the other hand, in the E2

u and E3
u phonons,

the two Ti atoms move in opposite directions, so the mode
oscillator strength is much smaller. The renormalization of
phonon eigenvectors by SCPH is negligible, and it is the
phonon frequencies and self-energies that affect the calcula-
tion results of dielectric properties. The SCPH+B calculations
agree remarkably well with experimental values, whereas the
non-SC calculations failed to reproduce experimental data,
especially in the A2u and E1

u peaks.
Figure 6(b) shows the reflectivity R in x and z directions

calculated using Eq. (5). For the x direction, the dip due to
the E2

u phonon (380 cm−1) is shallower than the experimental
data, whereas the dip due to the E1

u and E3
u phonons (be-

low 200 cm−1 and 450 cm−1) are in good agreement with
experiment. The SCPH+B calculations are overall in better
agreement with experiment than the non-SC calculations.

To examine the importance of the frequency dependence
of the self-energy, dielectric functions in the logarithm scale
are shown in Fig. 7, together with the experimental data from
Schoche [10]. The dielectric functions εxx and εzz have one
peak each at about 600 cm−1, which is not the position of
any IR-active phonon frequency at the � point. Several ex-
periments [7,10] reported that adding these additional peaks
to the FPSQ model improved agreement with experimental
data. The peak positions are listed in Table V together with
these experimental data. Possible origins of these peaks, such
as lattice defects, have been argued, but the causes are still
unclear [10]. The imaginary part of frequency-dependent self-
energies can explain these peaks. The frequency dependence
of the 4ph self-energy is not so strong, whereas the bubble
self-energy has strong frequency dependence in rutile TiO2.

Figure 8 shows the bubble self-energies of the E3
u and A2u

phonons, which contribute to εxx and εzz, respectively, with
vertical dotted lines corresponding to the positions of addi-
tional peaks. The bubble self-energies also have peaks at the
positions of the additional peaks. We ascribe, therefore, the
bubble self-energy to the additional peaks. When the bubble
diagram is taken into account, the dielectric function, and thus
the Green’s function, has peaks at a certain frequency ω when
the two phonons with frequencies (ω1, ω2) satisfy the relation
ω = ω1 ± ω2 and q1 ± q2 = 0. The positive sign corresponds
to phonon emission and the negative sign to phonon absorp-
tion. Such phonon pairs can be specified by the two-phonon
density of states (TDOS), which is defined as follows:

TDOS±(ω, q) = 1

Nq

∑
(q1, j1 )
(q2, j2 )

δ(ω ± ωq1 j1 − ωq2 j2 )δq±q1,q2+G.

(22)
Here G is a reciprocal lattice vector and Nq is the number
of q points in the summation. Figure 9 presents the calcu-
lated TDOS(ω, q = 0) with a 15 × 15 × 15 q points grid,
in which TDOS for the emission process has a consider-
able value at around 600 cm−1. Furthermore, from Fig. 3,
phonon DOS peaks at around 115, 210, 300, 398, and 455
cm−1, of which the 115 cm−1 one is due to acoustic phonons
and the others are due to optical phonons. Therefore, it
is concluded that the 600 cm−1 additional peak is created
by the emission process of the pairs (115 cm−1, 455 cm−1),
(210 cm−1, 398 cm−1), and (300 cm−1, 300 cm−1). Notably,
the first pair emission process, involving the acoustic modes,
is contributed by phonons with nonzero wave numbers, which
cannot be detected via single phonon processes by optical
probes that are sensitive to � point phonons.

TABLE V. Positions of additional peaks (cm−1). εx,1 is for εxx

and εz,1 is for εzz.

Mode r2SCAN FPSQ [8] FPSQ [10]

εx,1 563 585 556 ± 5
εz,1 598 592 587 ± 12
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FIG. 8. Calculated imaginary part of frequency dependent bub-
ble self-energy of A2u (blue) and E 3

u (red) modes. Blue and
red vertical lines represent the additional peaks for εzz and εxx ,
respectively.

E. Functional dependence

We have seen that the combination of r2SCAN and
SCPH+B gives generally good results for phonon frequen-
cies and dielectric properties; meanwhile, the lowest phonon
branch (B1

1u) in Fig. 3(a) and the temperature-dependent di-
electric constant εz

0 in Fig. 5 are not in good agreement with
experiment. To investigate the causes of these discrepancies,
we also performed SCPH+B calculations using the PBEsol
functional [52]. The results are summarized in Appendix B.
Although the PBEsol functional predicts the lattice constants
well in Table VI, it underestimates the overall phonon fre-
quencies, which are well known for the GGA family in the
rutile TiO2 [14,53]. However, its description of the B1

1u branch
is superior to that of LDA and r2SCAN as in Fig. 11. This

FIG. 9. Calculated TDOS±(ω, q = 0) for absorption (red) ω =
ω1 − ω2 and emission (blue) ω = ω1 + ω2. Red vertical lines repre-
sent the positions of additional peaks.

TABLE VI. Calculated lattice constants with PBEsol.

a (Å) c (Å) u c/a v0 (Å3)

PBEsol 4.595 2.942 0.3044 0.640 62.12
Expt. 300 K [46] 4.593 2.959 0.3048 0.644 62.42
Expt. 15 K [46] 4.587 2.954 0.3047 0.644 62.15

result implies that the B1
1u phonon also highly depends on

functionals like the A2u phonon.
The calculated behavior of εz

0 with PBEsol at low tempera-
tures in Fig. 12 shows better agreement with experiment than
r2SCAN. The r2SCAN calculation gives a frequency of A2u of
167 cm−1 at T = 0, whereas PBEsol yields 143 cm−1, close to
the experimental value (140 cm−1 [12]). This is why the large
εz

0 value at low temperature is well reproduced in the PBEsol
calculation.

We have seen here that some physical quantities are
strongly dependent on functionals. These problems could be
cured by further functional improvements.

IV. CONCLUSIONS

We studied the infrared spectra of rutile TiO2 using
first-principles (DFT) calculations and lattice dynamics calcu-
lations. The calculation of phonon frequencies was performed
using the SCPH+B theory—a self-consistent anharmonic
phonon theory. The SCPH+B calculation very well described
the E1

u and A2u phonon frequencies, which were greatly under-
estimated in the harmonic approximation. We showed that the
anharmonicity in these modes is too strong to treat in a per-
turbative approach and self-consistent treatment is essential
for accurately describing phonon frequencies. We also com-
pared the LDA and r2SCAN results, finding that the r2SCAN
functional is more predictive, especially in describing the A2u

mode.
Phonon linewidths were calculated using both the per-

turbation theory (non-SC) and the SCPH+B theory. They
were significantly overestimated in the non-SC calculation, as
suggested by Fu et al. [23]. We also found that the contri-
bution from the 4ph self-energy is non-negligible at 300 K.
The SCPH+B dielectric function showed good agreement
with experimental values. Furthermore, the additional peaks
at around 600 cm−1 pointed out in the previous experiments
can be attributed to the two phonon emission process included
in the frequency-dependent bubble diagram, which shows
the importance of the frequency dependence of phonon self-
energies in accurately calculating the dielectric function. We
expect the presented approach to be useful in predicting the
dielectric properties of other materials.

MM11
αα MM11

ββ

((00, j, j))

FIG. 10. Lowest order of the dielectric function. The double line
represents the full-phonon Green’s function.
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FIG. 11. SCPH+B band structure with r2SCAN (blue) and
PBEsol (red) functional. The green arrow indicates the B1u mode,
which is overestimated in the r2SCAN functional.
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FIG. 12. Temperature dependence of the static dielectric con-
stant. The triangular dots show the experimental values and the
circular dots show the results from the SCPH+B calculations.

APPENDIX A: DERIVATION OF THE COWLEY EQUATION

We review the derivation of the Cowley equation (3). Con-
sider a supercell with L unit lattices and impose a periodic
boundary condition. The coordinates of the atoms are denoted
by R. If the atomic displacements from the equilibrium po-
sitions R0 are small compared with the interatomic distance,
the dipole moment of the interacting atomic system can be
expanded in a power series of the displacements u(lκ ) =
R(lκ ) − R0(lκ ) as

δM = M1 + M2 + M3 + · · · , (A1)

where the α component of Mn is

Mn,α = 1

n!

∑
l1κ1μ1

· · ·
∑

lnκnμn

Ml1κ1,l2κ2,...,lnκn
α,μ1···μn

× uμ1 (l1κ1)uμ2 (l2κ2) · · · uμn (lnκn). (A2)

Here, μ and α are the indices of Cartesian coordinates and
uμ(lκ ) is the displacement of the atom κ in the lth cell. The
coefficient Ml1κ1,l2κ2,...,lnκn

α,μ1···μn
is the nth-order derivative of M with

respect to atomic coordinates as

Ml1κ1,...,lnκn
α,μ1···μn

= ∂Mα

∂uμ1 (l1κ1) · · · ∂uμn (lnκn)
. (A3)

Thus the first-order coefficient is the Born effective charge as
Mα,β (lκ ) = Z∗

κ,αβ . From the periodic boundary condition, the
value of the quantity does not change when the same number
is added to the indices of all cells as

Ml1κ1,...,lnκn
α,μ1···μn

= M0κ1,l2−l1κ2,...,ln−l1κn
α,μ1···μn

. (A4)

Next, we introduce the complex normal coordinate Qq,
with which the atomic displacement is expressed as

uμ(lκ ) = 1√
Lmκ

∑
q

Qqeμκ (q)eiq·rl . (A5)

By substituting Eq. (A5) for Eq. (A2) and using Eq. (A4),
we obtain Mn expressed in terms of the normal coordinate as
follows:

Mn = 1

n!

L

Ln/2

∑
q1,...,qn

�(q1 + · · · qn)M(q1, . . . , qn)Qq1 · · · Qqn ,

(A6)

where

M(q1, . . . , qn) =
∑
κ1μ1

· · ·
∑

lnκnμn

M0κ1,l2κ2,...,lnκn
μ1···μn

× 1√
mκ1 · · · mκn

eμ1 (q1, κ1) · · · eμn (qn, κn)

× exp [i(q2 · rl2 + · · · + qn · rln )]. (A7)

�(q) takes the value 1 only when q is the reciprocal lat-
tice vector and 0 otherwise. Therefore, the summation in
first-order expansion is restricted to q1 = 0 and that of the
second-order expansion is restricted to q2 = −q1.
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TABLE VII. Calculated Born effective charge tensors Z of the
Ti atom at (0, 0, 0) and the O atom at (u, u, 0). Zxx = Zyy, Zyz = Zzy,
and Zzz are shown considering the symmetry.

Ti O

Zxx Zxy Zzz Zxx Zxy Zzz

PBEsol 4.26 −1.13 7.64 −3.16 1.80 −3.85

When phonon frequencies of all phonon modes are real in
the entire Brillouin zone, one may further transform Eq. (A7)
into a second quantization representation by using Qq =
(h̄/2ωq)1/2Aq, with Aq = bq + b†

q being the displacement op-
erator:

Mn = L

n!

(
h̄

2L

)n/2 ∑
q1,...,qn

�(q1 + · · · + qn)

× M(q1, . . . , qn)√
ωq1 · · · ωqn

Aq1 · · · Aqn . (A8)

When an external electric field E(t ) = E0e−iωt+δt is ap-
plied to the system, the interaction is represented by the
Hamiltonian as

HI = −M · E(t ). (A9)

According to the linear response theory, the expectation value
of the polarization P = M/v0 of the system is

P̄α (t ) = 1

v0
GR(Mα, M, ω) · E(t ), (A10)

where GR(A, B, ω) is the retarded Green’s function for op-
erators A and B. By using the fact that the polarization and
the electric field are connected by the dielectric susceptibility
χ as Pα = χαβε0Eβ and that the dielectric function ε in the
IR region is the sum of the phonon contribution χ and the
electron contribution ε∞ as εαβ = ε∞

αβ + χαβ , the dielectric
function can be written as

εαβ (ω) = ε∞
αβ + 1

v0
GR(Mα, Mβ, ω). (A11)

Substituting Eq. (A8) into Eq. (A11), the lowest order
contribution of the dielectric function, as shown in Fig. 10,

TABLE VIII. Comparison of the computed mode frequencies (in
cm−1) at the � point with experimental data at room temperature.
The results from the harmonic approximation (harm), SCPH, and
SCPH+B are shown at 300 K.

PBEsol

harm SCPH SCPH+B Neutron [12]

Raman
A1g 590.2 601.3 602.4 610
A2g 415.4 424.1 423.6 NFa

B1g 140.8 119.8 117.0 142
B2g 793.5 802.8 807.9 824
Eg 447.4 444.8 434.5 445

Nonactive
B1

1u 77.9 131.9 115.9 113
B2

1u 374.4 387.4 374.3 406
TO

A2u 71.0 202.7 162.4 172.6
E 1

u 98.8 187.0 169.9 189
E 2

u 367.3 379.2 373.8 374
E 3

u 478.0 493.0 478.4 494
LO

A2u 741.7 765.6 756.0 NF
E 1

u 327.3 334.5 323.5 375
E 2

u 378.0 390.9 383.9 428
E 3

u 695.5 719.4 711.3 842

aNF = not found.

is

εαβ (ω) = ε∞
αβ + 1

v0

∑
j j′

h̄

2

M(0 j)M(0 j′)√
ω0 jω0 j′

GR(A0 j, A0 j′ , ω)

= ε∞
αβ + 1

v0

∑
(0, j)

S j
αβ(

ω0 j
)2 − ω2 − 2ω0 j�0 j (ω)

. (A12)

APPENDIX B: RESULTS OF THE PBEsol FUNCTIONAL

We summarized the calculation results of the PBEsol func-
tional. Table VI shows the optimized lattice constants and
Table VII shows the Born effective charges obtained from
PBEsol. Figure 11 shows the phonon dispersion spectrum
along the high-symmetry points in the first Brillouin zone
at 300 K with nonanalytic term correction, together with in-
elastic neutron scattering results from Traylor [12] (orange
dots), while Table VIII shows the phonon frequencies at the �

point. Figure 12 shows the temperature-dependent dielectric
constants from PBEsol.
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