
PHYSICAL REVIEW B 107, 094205 (2023)

Signatures of spectral crossovers in the short- and long-range spectral correlations
of a disordered spin-chain with Kramers degeneracy
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We investigate several distinct spectral crossovers amongst various integrable (Poissonian) and quantum-
chaotic (Wigner-Dyson) limits of a 1D disordered quantum spin (S = 1/2) model, by tuning the relative
amplitudes of various Hamiltonian parameters to retain or break relevant unitary and antiunitary symmetries.
The spin model consists of an isotropic and deterministic Heisenberg term, a random Ising term, an anisotropic
and antisymmetric, but deterministic Dzyaloshinskii-Moriya (DM) term, and a Zeeman coupling to a random,
inhomogeneous magnetic field. Since we are specially interested in crossovers involving a Gaussian symplectic
ensemble (GSE) limit, we carry out all our calculations with an odd number of lattice sites (spins) that naturally
results in eigenspectra with Kramers degeneracies (KD’s). The various crossovers (viz., the reentrant Poissonian-
to-GSE-to-Poissonian, Poissonian-to-GUE, GSE-to-GUE and the reentrant Poissonian-to-GOE-to-Poissonian
crossovers) are investigated via detailed studies of both short-range (nearest-neighbour-spacings distribution,
NNSD) and long-range [spectral rigidity �3(L) and number variance �2(L) ] spectral correlations, where L is
the spectral interval over which the long-range statistic is examined. The short-range studies show excellent
agreement with RMT predictions. One of the highlights of this study is the systematic investigation of the
consequences of retaining both eigenvalues corresponding to every Kramers doublet, in a crossover involving
the GSE limit, and see how it evolves to a limit where the KD is naturally lifted. This is seen most clearly in
the NNSD study of the GSE-to-GUE (Gaussian unitary ensemble) transition, achieved by gradually lifting the
KD, using the random magnetic field. The NNSD plot in the GSE limit here exhibits a Dirac delta peak at zero
splitting and a renormalized GSE hump at finite splitting, whose general analytical form and its asymptotic limit
are derived. With an increasing symmetry breaking magnetic field the NNSD shows an interesting, dynamic
two-peaked structure that finally converges to the standard GUE lineshape. We explain this trend in terms of
a competition between the splittings amongst distinct Kramers doublets (related to unitary symmetries) and
the Zeeman-like splittings induced by a breaking of the antiunitary time-reversal symmetry (TRS). This is
investigated via the NNSD, the marginal spectral density (MSD) and the densities of states (DOS) for both
spin models and RMT crossover matrix models. The first and the final short-range studies involve reentrant
Poissonian-to-GOE(GSE)-to-Poissonian crossovers, where the final Poissonian is obtained by a many-body
localization of states in the strongly disordered limit, whereas the initial Poissonian regime involve much more
delocalized eigenstates. In the long-range spectral correlation studies, we shed light on the extent of agreement
between our physical spin systems and RMT predictions. We find that the spin systems depart from the ideal
RMT predictions for relatively finite L ∼ 10 − 15 at least, for the spectral rigidity and a much smaller L ∼ 2 − 4
for the number variance. It is further seen that the departure is usually sooner at the uncorrelated (Poissonian)
upper end compared to the correlated (Wigner-Dyson) lower end. We carry out a detailed comparison between
the local and the global crossover points, associated with the short-range and the long-range statistics respec-
tively, and find that in most cases they seem to agree reasonably well, but for a few exceptions. Our studies also
show that the long-range correlations may serve to distinguish between the two Poissonian limits (nonlocalized
and localized) in the reentrant crossovers, which the short-range correlations fail to distinguish.
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I. INTRODUCTION

The microscopic many-body quantum interactions in a
solid are very complex, due to presence of strongly correlated
electrons and ions. It is quite impossible to exactly solve
the dynamics of such complex systems, but one can cer-
tainly gain some insights through some relatively simplified
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models, such as the Hubbard models and its generalizations
[1–5], obtained after several levels of simplifying assump-
tions, starting with the Born-Oppenheimer approximation that
effectively integrates out the lattice degrees of freedom lead-
ing to purely electronic Hamiltonians. In the presence of
large on-site Coulomb and exchange interactions, the intersite
charge fluctuations and the intrasite orbital and spin fluctu-
ations become irrelevant and these fermionic models can be
further reduced to a variety of spin-only Hamiltonians. The
isotropic Heisenberg model, the XX model, the XY model,
the anisotropic XXZ and XYZ models, the Ising model, etc.
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[6–11], are among the most common ones. Even after so
many levels of simplification; most of these interacting spin-
models cannot be solved analytically for exact solutions, in
arbitrary dimensions. The presence of spin-orbit coupling or
magnetic field induced anisotropies further complicate the
situation, by introducing terms like the two-spin anisotropic
Dzyaloshinskii-Moriya (DM) exchange interaction, or the
three-spin scalar-spin-chiral interaction, that leads to even
richer phase diagrams with exotic spin phases [12–18]. So one
resorts to numerical solutions.

The presence of disorder in solids can further increase
the complexity of correlated electron systems. Anderson and
coworkers addressed the physics of real (amorphous) solids
with impurities but in the absence of interactions [19–23]. But
only limited success has been achieved while dealing with
the generic disorder problem in correlated electron systems
[24–27]. Coming back to spin Hamiltonians, it is encouraging
to note that in 1D, several of the above models are integrable
and often lead to exact solutions. However, this integrabil-
ity and related predictability via analytical solutions quickly
fades away as soon as disorder is introduced, either in form
of site or bond disorder, or via coupling to an inhomogeneous
and stochastic external magnetic field [28–30]. Owing to the
complexity of correlated electronic and spin systems and
unavailability of exact solutions, one seeks some statistical
techniques, which can capture some crucial features of the
eigenspectra. In this regard, random matrix theory (RMT)
naturally appears as a powerful formalism. Originally intro-
duced in the context of studying neutron scattering spectra
from heavy nuclei [31–39], it has gradually found its place
in the investigation of spectral properties of large complex
atoms, molecules, quantum chaotic systems, quantum many-
body systems with disorder, quantum dots [39–47], etc. RMT
is used to model the relevant operators in a given problem
exhibiting complexity and, inter alia, can predict universal
features of the associated spectra.

Disorder in physical systems in general, and in quantum
spin models, in particular, results in a transition to a nonin-
tegrable regime, the spectral statistics of the corresponding
Hamiltonians being linked to the three canonical ensembles
(GOE, GUE, and GSE) of RMT via the Bohigas, Giannoni,
and Schmit (BGS) conjecture [48], as summarized succinctly
in the next section. In contrast, the spectral statistics of the for-
mer Integrable Hamiltonians are well described by Poissonian
statistics, a la the Berry-Tabor conjecture [49]. The various
physical symmetries of the Hamiltonians are intimately re-
lated to the RMT (Wigner-Dyson) spectral classes mentioned
above, which is detailed in the next section for ready ref-
erence. Even though most of these nonintegrable quantum
spin Hamiltonians have no classically chaotic counterpart,
the very emergence of Wigner-Dyson spectral statistics is
now well accepted to be the quantum signatures of chaos,
and consequently these are often referred to as the quantum-
chaotic regime. Researchers have examined both short-range
[28–30,47,50–53] and long-range [54–58] spectral fluctuation
behavior of spectra of physical systems using various spectral
measures to assess the extent of agreement with RMT and to
unveil integrability or nonintegrability aspects.

In our previous paper [28], we considered a Heisenberg
spin-1/2 chain in the presence of a Zeeman coupling to a

spatially inhomogeneous and random magnetic field and a
scalar spin-chirality term. Our main focus there was to ex-
plore the short-range (nearest-neighbor-spacing distribution
[NNSD] and ratio distribution [RD]) spectral properties of
the above spin-chain and spectral crossovers amongst the inte-
grable (Poissonian) and two Wigner-Dyson ensembles (GOE
and GUE). In the present paper, we consider a spin-1/2 quan-
tum spin-chain model involving an isotropic nearest-neighbor
Heisenberg coupling, in the simultaneous presence of ran-
dom Ising interactions, antisymmetric DM interactions, and
Zeeman coupled to a random, inhomogeneous magnetic field
(details in Sec. III). By tuning the relative amplitudes of
the various terms in this complex Hamiltonian, we realize
a plethora of RMT spectral crossovers, as detailed later and
summarized in Table III (see below). These crossovers are
examined via the studies of both short-range (NNSD) as well
as long-range [spectral rigidity �3(L) and number variance
�2(L)] spectral correlations. In the process we also carry out
a comparison between the level of correspondence between
the short-range correlation dictated local and the long-range
correlation dictated global crossover points.

A highlight of this paper is a detailed study of some
crossovers involving the GSE regime retaining the inherent
Kramers degeneracy (KD) due to an odd number of lattice
sites hosting an odd number of spin-1/2’s.1 This is in con-
trast to more conventional studies where the KD is artificially
removed before studying the spectral statistics. This gives
rise, for example in the GSE-to-GUE crossover NNSD, to a
dynamic double-peak structure in the crossover regime, which
we analyze in detail in terms of the marginal spectral density
(MSD) as well as the full densities of states (DOS) in the
context of both spin Hamiltonians as well as RMT matrix
models. In the GSE limit, we also present a derivation of an
analytical expression for the NNSD in the presence of KD,
dubbed as the modified or diluted GSE distribution. This will
also be seen to manifest in the long-range studies in terms
of a reduced spectral correlation, not only with respect to the
standard GSE, but also the standard GUE.

Moreover, in the course of our studies, we have ex-
amined two cases of reentrant transitions in the form of
the Poissonian-GSE-Poissonian and the Poissonian-GOE-
Poissonian crossovers, both of which exhibit two distinct
Poissonian regimes. In either case we encounter, in the be-
ginning, a Poissonian regime where several eigenstates are
fairly delocalized and end with a Poissonian regime where
the eigenstates are strongly localized due to a very strong
Ising anisotropy. Although these distinct Poissonian regimes
are not distinguishable via the NNSD studies, we demonstrate
that they may be distinguished via their long-range spectral
fluctuations.

The rest of the paper is organized as follows. In Sec. II,
we discuss various spatiotemporal symmetries of the physical
Hamiltonians that are required for them to belong to a specific
symmetry class. Next, in Sec. III, we describe the spin-chain
Hamiltonian used in this study and its various competing

1An even number of lattice sites hosting an even number of spin-
1/2’s does not give rise to the desired Kramers degenerate situation,
essential for observing the GSE distribution; see e.g., Ref. [28].
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TABLE I. Conditions under which a quantum system (e.g., the spin-chain model in our case) achieves different RMT symmetry classes,
mathematical nature of the corresponding Hamiltonian matrices, along with the information about integrability of the system. Here the
antiunitary operator T represents the generic antiunitary time-reversal symmetry operator (T0 = eiπSy/h̄K , or T = eiπSx/h̄T0), and the unitary
operator Rα represents the general spatial (or parity) symmetry (e.g., Rα = eiπJ α/h̄, α = x or y). KD stands for Kramers degeneracy, Ns is the
number of spin- 1

2 ’s in the system.

Mathematical nature of
the Hamiltonian matrix

Physical symmetry (and other)
requirements Symmetry class Integrability of the system

I. Any diagonalizable
[random or nonrandom
(see second column)]

No specific symmetry requirements Poissonian
(β = 0)

Integrable

1. No disorder or randomness; OR
2. Localized states with large diagonal
disorder (and no or small off-diagonal
correlations)

II. Real-symmetric
(usually random with
finite off-diagonal
correlations)

1. [H,T ] = 0, T 2 = +1 (No KD
present; Ns even) and no specific spatial
symmetry requirements; OR

GOE
(β = 1)

Nonintegrable
(quantum-chaotic)

2. [H,T ] = 0, T 2 = −1 (KD present;
Ns odd), and at least two spatial
symmetries (Rα , α = 1, 2), along with
the conditions:
[H, Rα] = 0 = [T , Rα], R2

α = −1,
{R1, R2} = 0 (anticommutation)

III. Complex-Hermitian
(usually random with
finite off-diagonal
correlations)

1. [H,T ] �= 0 (Ns even or odd) and no
specific spatial symmetry requirements;
OR

GUE
(β = 2)

Nonintegrable
(quantum-chaotic)

2. [H,T ] = 0, T 2 = −1 (KD present;
Ns odd), and one spatial symmetry (Rα),
along with the conditions:
[H, Rα] = 0 = [T , Rα], R2

α = −1

IV. Quaternionic
self-dual (usually
random with finite
off-diagonal
correlations)

[H,T ] = 0, T 2 = −1 (KD present; Ns

odd), no spatial symmetries
GSE

(β = 4)
Nonintegrable

(quantum-chaotic)

terms, and the various unitary or antiunitary symmetries that
they individually preserve or violate, and how their joint ac-
tion classifies the full Hamiltonian into one Wigner-Dyson
class or another. In Sec. IV, we review various RMT key
concepts, like the short-range and long-range spectral corre-
lation properties, and summarize the analytical RMT results
used in our analysis. Next, in Sec. V, we present the details
of our calculations and showcase the results. It also includes
the analysis and discussions of our results. We summarize our
findings in Sec. VI. Details of some of the derivations etc. are
presented in four separate appendices.

II. CLASSIFICATION OF A HAMILTONIAN INTO
INTEGRABLE AND NONINTEGRABLE CLASSES:

SPATIOTEMPORAL SYMMETRY REQUIREMENTS

In this short section, we summarize the various physi-
cal symmetry requirements on a physical Hamiltonian, in
order for its short-range and long-range spectral statis-
tics to be classified as that of an integrable (Poissonian)
or nonintegrable/quantum-chaotic (Wigner-Dyson classes)
system. Physical symmetries are usually classified as the

more common unitary class (e.g., rotations, parity, trans-
lations, time translations, etc.) or the more exotic antiuni-
tary class (time-reversal symmetries, complex conjugation
symmetry, particle-hole or charge conjugation symmetry etc.)
[38,39,41,59,60]. For our purposes in this paper, we will
limit ourselves to various rotation operations as relevant
unitary symmetries and conventional and unconventional
time-reversal operations as relevant antiunitary symmetries,
as shown in Table I. As also seen from Table I, this limits us
to the Integrable (Poissonian) and the three classic Wigner-
Dyson classes (GOE, GUE, GSE). This has been mainly
compiled on the basis of the Refs. [39] and [41].

The spatial symmetries relevant in this context are rep-
resented by the unitary operators Rα = eiπJ α/h̄ (α = x, y),
where J α is the αth component of the relevant angular mo-
mentum of the system under consideration. Rα is seen to be
the rotation operator about the α̂ axis by an angle π , and
for this reason it is referred to as a parity operator in some
references [41]. For a spin- 1

2 system with no other spatial
degrees of freedom, the generator of rotations about the axis
α̂ is the Pauli operator σα = σ · α̂ related to the spin operator
via Sα = h̄

2 σα .
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TABLE II. Invariance of the different Hamiltonian terms under various unitary and antiunitary symmetry operations, and the conserved
S component. Here R(ê, θ ) = eiθJ ·ê/h̄ represents the general rotation operator about an axis ê and by an angle θ , generated by the relevant
angular momentum operator J .

Hamiltonian term T0 T R(ê, θ ) Rotational invariance axis Conserved S component

Hh
√ √ √

Any axis Sz

Hir
√ √ √

z axis and π rotation about any ê in xy plane Sz

Hr × √ √
z axis Sz

HDM
√ × √

D̂ axis S · D̂

The conventional time-reversal symmetry operator is
defined by the usual relation T0 = eiπSy/h̄K , whereas the un-
conventional time-reversal symmetry operator is given by
T = eiπSx/h̄T0 [29,30,41], where Sy(Sx) is the y(x) compo-
nent of the spin operator and K is the complex conjugation
operator, with the property K2 = 1. Acting on a spin S, T0

reverses the sign of all its components, while T reverses the
sign of only the x component. For a system of spin- 1

2 particles,
T 2

0 = +1 for an even number of spins, and T 2
0 = −1 for an

odd number of spins. On the other hand, T 2 = +1 irrespective
of the number of spins involved.

It is reasonably well established by now, based on the
Berry-Tabor conjecture [49], that for integrable systems the
eigenvalue fluctuation statistics follow the Poissonian distri-
bution in the sense that its eigenvalues seem to behave like
a sequence of uncorrelated random variables, with no level
repulsion. This is usually associated with the Dyson index
β = 0. This seems to be true for many physical Hamiltonians
without disorder but also effectively true for Hamiltonians
with large diagonal disorder and relatively negligible off-
diagonal elements correlating them (for example, in Ref. [28],
the purely Heisenberg case or the high magnetic field case,
respectively). On the other hand, the Bohigas, Giannoni,
and Schmit (BGS) conjecture [48] seems to ensure that the
emergence of Wigner-Dyson statistics (with the degree of
level-repulsion, signified by the Dyson index β = 1, 2, and
4 respectively, for the GOE, GUE, and GSE distributions)
for level spacings is a hallmark of nonintegrable or quantum-
chaotic systems, even for many-body quantum Hamiltonians,
which do not have a classically chaotic counterpart. The spin-
chain Hamiltonian used in our study and its various limits,
which give rise to distinct symmetry classes, are described in
the following section.

III. METHODOLOGY: THE SPIN HAMILTONIAN, ITS
SYMMETRIES, AND CHOICE OF BASIS

Our one-dimensional spin Hamiltonian H has N lattice
sites with one spin- 1

2 per site, and is given by

H = Hh + Hir + Hr + HDM

=
N−1∑
j=1

JS j .S j+1 +
N−1∑
j=1

Jε jS
z

jS
z

j+1

+
N∑

j=1

h jS
z

j +
N−1∑
j=1

D · [S j × S j+1]. (1)

This spin-chain Hamiltonian consists of four terms. The first
term Hh is the usual isotropic spin- 1

2 Heisenberg term, where
S j is the spin operator at site j (and Sz

j its z component), with
J as the nearest-neighbor-exchange interaction. The second
term Hir is a random Ising term, where the exchange interac-
tion is randomized by multiplying J with the dimensionless
random parameter ε j , which follows a Gaussian distribu-
tion having zero mean and variance ε2. The third term Hr

couples the spin system to a spatially inhomogeneous and
random magnetic field. The parameters h j characterizing the
random, inhomogeneous site magnetic fields, follow a Gaus-
sian distribution, having zero mean and variance h2 [28–30].
The fourth term HDM is the antisymmetric Dzyaloshinskii-
Moriya (DM) interaction [12–14,61,62]. HDM describes the
anisotropic effective spin-spin coupling between neighboring
spins, induced in second-order perturbation theory via the
on-site spin-orbit coupling terms and the intrasite exchange
interaction between the relevant sites, after integrating out the
orbital degrees of freedom, while retaining spin as an operator.
The vector coupling constant D in HDM carries the orbital
contribution and the intersite exchange interaction, while the
rest is the antisymmetric spin part (S j × S j+1). This often
leads to canted spin arrangements [63] in real materials, while
competing with the Heisenberg term. A detailed expansion of
this term in terms of the site (Sz

j, S+
j , S−

j ) operators is given in
Appendix A, for ready reference.

As already pointed out in the Introduction, the eigenvalue
fluctuation statistics of the quantum systems, are guided by
the preservation or breaking of various unitary and antiunitary
symmetries by the different terms in the Hamiltonian. Note
that for the full Hamiltonian to obey a certain symmetry, all
individual terms must abide by it. On the other hand, if even
one term violates a certain symmetry, the whole Hamiltonian
does not respect that symmetry anymore. With this in mind,
we tabulate in Table II, the invariance/noninvariance of each
term of our Hamiltonian with respect to the two antiunitary
discrete symmetries T and T0, and any possible unitary ro-
tational symmetries, R(ê, θ ) = eiθJ ·ê/h̄, and the last column
summarizes if the total Sz (total z component of spin for the
lattice, Sz = ∑N

j=1Sz
j) is a conserved quantum number.

Any angular momentum operator J is odd under the ac-
tion of the conventional time-reversal symmetry operator, i.e.,
T0J T −1

0 = −J . The spin angular momentum is thus odd
under the time-reversal symmetry and the number of spin
operators involved in a Hamiltonian term, decides its evenness
or oddness under the T0 operation. For this reason, Hh, Hir ,
and HDM are (conventional) time-reversal symmetry invariant
(T0HhT −1

0 = Hh, similarly for Hir and HDM), but Hr is not.
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Now, Hh, Hir , and Hr are even and HDM is odd under the un-
conventional time-reversal symmetry, which is represented by
the antiunitary operator T . Again, all the Hamiltonian terms
other than Hh, break the full rotational invariance (isotropy),
but they may be invariant under certain special rotation oper-
ations, as elaborated in Table II. However, if different terms
of the full Hamiltonian are invariant under rotations about
different axes, then in general the Hamiltonian may lack any
rotational symmetry at all.

To construct the Hamiltonian in a matrix form, we consider
a site-spin direct product basis with a spin- 1

2 at each lattice
site. An up-spin (mz

j = 1
2 ≡↑) or a down-spin (mz

j = − 1
2 ≡↓)

can occupy each of the N lattice sites of the system, where
mz

j is the eigenvalue of Sz
j , so we have 2N number of basis

states {|mz
1mz

2mz
3....m

z
N 〉} [28]. From Table II, we notice that

the Hamiltonian terms Hh, Hir , and Hr commute with Sz but
HDM does not. While for Hh, S± always appear in pairs, Hir

and Hr only involve site Sz operators, and hence these three
terms can never change the total Sz. On the other hand, as
is apparent from Eq. (A4) of Appendix A, which shows the
full decomposition of the DM term, only the z component
conserves total Sz, while the x and y components are com-
binations of terms that change the total Sz by ±1. Thus, in
the absence of the DM term, the different total Sz symmetry
sectors are irreducible blocks of the Hamiltonian and hence
the eigenvalues between the different sectors are uncorrelated,
while only those within a given sector are correlated. On
the other hand, the presence of the DM term introduces off-
diagonal terms between these irreducible blocks causing all
eigenvalues of the full Hamiltonian to become correlated. As
a result, in order to observe Wigner-Dyson distributions, we
must consider a fixed Sz restricted subspace when HDM = 0,
while we are not permitted to do a similar symmetry adapta-
tion when HDM is finite [39,64], and the f ull basis must be
considered. In our calculations with this spin-chain model, we
have considered systems where N is odd, so that T 2 = −1
and Kramers degeneracy is imposed. For simplicity, we keep
the J = 1 (antiferromagnetic) in our calculations. We need the
entire energy spectrum for our spectral correlation studies, so
we use the full exact diagonalization methods to obtain the
energy eigenvalues. As a result, the system sizes we can access
are limited to some extent.

We now explore the conditions under which our spin-chain
system achieves different RMT symmetry classes in light
of the prior discussions surrounding Tables I and II. In the
presence of only the Heisenberg term (Hh) in Eq. (1), the
Hamiltonian is preserved under all unitary and antiunitary
symmetries, discussed above. Also, there is no disorder in the
system, so the fluctuation statistics of the eigenvalues are ex-
pected follow the Poissonian distribution. For H1 = Hh + Hir ,
randomness is introduced in the spin-chain system along z,
without breaking either of the time-reversal symmetries. H1

is also real-symmetric and, as a result of all this, is expected
to belong to the Gaussian orthogonal class. If we consider a
fixed Szsubspace, the fluctuation statistics of the eigenvalues
is then expected to follow the GOE distribution. Now, for the
random Hamiltonian H2 (= Hh + Hr + HDM), both antiuni-
tary symmetries are broken (HDM breaks the T symmetry) and
the matrix representation becomes complex-Hermitian [the

DM term induces the complex nature, as is clearly seen from
Eq. (A4) of Appendix A, where the x and z components of the
DM term are pure imaginary and off-diagonal and add on to
the real terms from the other parts of H2]. The quantum system
represented by H2, thus belongs to the Gaussian unitary class.
For a full basis calculation, the spectral fluctuation statistics
is now expected to follow the GUE distribution. Lastly, the
random Hamiltonian H3 (= Hh + Hir + HDM) preserves the
T0 symmetry (breaks T symmetry due to the HDM term) and
breaks all the unitary spin rotational (or spatial) symmetries,
for the chosen direction of D. For the system represented
by this Hamiltonian, for which conventional time-reversal
symmetry is the only remaining symmetry, and with an odd
number of sites (N) and hence spins, we encounter Kramers
degeneracy in the full basis calculation as the only system-
atic degeneracy left, and the system belongs to the Gaussian
symplectic class. The quantum system can then be represented
by a quaternionic self-dual matrix and the spectral fluctuation
statistics is now expected to follow the GSE distribution. Vari-
ations of the relative amplitudes of the various terms in H lead
to spectral crossovers amongst the Poissonian and the various
Wigner-Dyson distributions. The form of these distributions
are tabulated for ready reference in Table IV (see below).

Table III shows the crossover criteria for various symmetry
classes in the spin-chain systems (H1, H2, H3, and H). We
also list the parameters (in H) that remained fixed during a
crossover and those that need to be tuned on in order to break
a symmetry and undergo a crossover.

As is customary for random systems, we need to consider
the process of configuration averaging by diagonalizing an
ensemble of M matrices. Each configuration is a matrix
representation of the system with parameters generated at ran-
dom from Gaussian distributions with fixed widths (standard
deviations), h and ε [28], respectively, for the two random
terms, as relevant. Similar averaging is then repeated for each
value of h or ε. In Sec. V, we specify the number of config-
urations used in an ensemble, for each lattice size. Usually,
the larger the Hamiltonian matrix dimension, the smaller the
number of configurations over which averaging is required
to be performed, in agreement with the principle of spectral
ergodicity [65–67]. While it is customary to remove one of
the Kramers degenerate partners from the eigenvalues before
studying spectral correlations and obtaining the standard GSE
statistics, we also explore spectral correlations retaining the
Kramers degeneracies in the spectrum.

IV. RANDOM MATRIX THEORY (RMT)

In this section, we describe the measures of the short-range
and long-range spectral correlations in RMT studies used in
this paper, and include the RMT analytical results for them.
Density of states (DOS) of a physical system is nonuniform,
so to compare spectral correlations between different systems,
one needs to remove the system-dependent level density from
the eigenspectrum, and scale it in terms of the mean level
spacing. For this, we need to implement the unfolding proce-
dure before comparing our calculated results with the standard
RMT results. In our calculations, calculated distribution of
states is fitted using polynomials and the fitted polynomial
is used to unfold the eigenspectra [28,29,39,41]. For an
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TABLE III. Crossovers between various symmetry classes and their criteria (as defined in Table I). Various relevant Hamiltonian parameter
values, including the value of the tuning parameter at the NNSD crossover, are also included.

Hamiltonian (N ; basis type)

Crossover from
(symmetry criterion

from Table I)

Crossover to
(symmetry criterion

from Table I) Fixed parameters

Tuning parameter
(value at NNSD

crossover)

H3 (13; full basis) Poissonian (I.1) GSE (IV) J = 1.0; D = 0.2 ε (0.6)
H3 (13; full basis) GSE (IV) Poissonian (I.2) J = 1.0; D = 0.2 ε (20.0)
H2 (13; full basis) Poissonian (I.1) GUE (III.1) J = 1.0; D = 0.2 h (0.15)
H (13; full basis) GSE (IV) GUE (III.1) J = 1.0; ε = 0.6; D = 0.2 h (0.015)
H1 (13; Sz = 1/2 sector) Poissonian (I.1) GOE (II.2) J = 1.0 ε (0.5)
H1 (15; Sz = 1/2 sector) Poissonian (I.1) GOE (II.2) J = 1.0 ε (0.4)
H1 (13; Sz = 1/2 sector) GOE (II.2) Poissonian (I.2) J = 1.0 ε (20.0)
H1 (15; Sz = 1/2 sector) GOE (II.2) Poissonian (I.2) J = 1.0 ε (15.0)

ordered sequence ε1 < · · · < εn, of n energy eigenvalues, the
unfolded eigenvalues are calculated using ε̃ j = ∫ ε j

ε1
ρ(ε′)dε′,

where ρ(ε) = dN (ε)/dε is the fitted DOS, and N (ε) is the
cumulative DOS (or the spectral staircase function).

A. Short-range level correlation statistics

In RMT, it is standard practice to study the short-range
level correlations via the nearest-neighbor-spacing distribu-
tion (NNSD). It quantifies the local fluctuations of energy
eigenvalues of a given system [39,41,44,68]. The nearest-
neighbor-level spacing of the unfolded eigenvalues is defined
as s j = ε̃ j+1 − ε̃ j . The corresponding probability density
function P(s) can be compared with the analytical RMT
results. The Wigner surmise formulas for the three Dyson
symmetry classes along with the Poisson distribution are com-
piled in Table IV for this purpose.

In this paper, one of our interests is to study the
Poissonian-to-GOE, Poissonian-to-GUE, and Poissonian-to-
GSE crossovers in NNSD. It is also compelling to study
the GSE-to-GUE crossover with and without removing the
Kramers degeneracy from the spectra, using the crossover
matrix model and the spin-chain model. Within RMT, these
crossovers can be modeled using the Pandey-Mehta Hamilto-
nian [69–71]

H = (1 − α)H0 + αH1, (2)

where at α = 02, the matrix model is governed by the symme-
try of H0, and the finite α (0 < α < 1) introduces perturbation

2The α in the following expression should not be confused with the
component index in Table I and in Sec. II.

TABLE IV. Probability distributions of nearest-neighbor spac-
ings for unfolded eigenvalues [39,41].

Type of distribution NNSD probability density

Poissonian PPoi(s) = exp(−s)
GOE PGOE(s) = (πs/2) exp(−πs2/4)
GUE PGUE(s) = (32s2/π 2) exp(−4s2/π )
GSE PGSE(s) = (218s4/36π 3) exp(−64s2/9π )

through H1. At α = 1, the other extreme is achieved, where
the matrix model is governed by the symmetry of H1. By
varying α between 0 and 1, we can study the crossover be-
tween two distinct symmetry classes in RMT.

As previously discussed, the Gaussian symplectic class
possesses Kramers degeneracy. After removing one of the
identical eigenvalues from each of the Kramers doublets, the
spectral correlation statistics are usually examined. In this
paper, we want to look at the spectral fluctuation for the GSE
class without eliminating the KD from the eigenspectra. Since,
in the absence of any spatial symmetries, we are only left
with a series of Kramers doublets, one may guess that this
will lead to a GSE-like distribution along with a singular peak
at s = 0. But in view of this, the whole distribution needs to
be renormalized. Below, we present such a modified NNSD
formula for an eigenspectrum of n levels, a detailed derivation
of which is provided in Appendix C,

Pn
GSE(s) =

[
212

36π3

(
n − 2

n − 1

)6

s4

]
exp

[
− 16

9π

(
n − 2

n − 1

)2

s2

]

+
(

n

n − 1

)
δ(s), (3)

where the Dirac delta δ(s) appears because of the presence of
KD in the spectra. Since level spacings cannot be negative by
definition (s � 0), we need to consider along with Eq. (3), the
definition

∫ ∞
0 δ(s)ds := 1

2 . In the large n (number of levels)
limit, the Eq. (3) becomes

PGSE(s) =
(

212

36π3
s4

)
exp

(
− 16

9π
s2

)
+δ(s). (4)

Starting from GSE, it would be interesting to observe how the
initial delta function peak broadens in the NNSD, when one
transitions to an another symmetry class.

B. Long-range level correlation statistics

As discussed earlier in the Introduction, the long-range
eigenvalue fluctuation studies are required to ascertain the
extent of universal RMT behavior in a physical system. The
two most popular RMT measures to study the long-range
spectral properties are the spectral rigidity (�3 statistic) and
the number variance (�2 statistic) [39,41,44,68].
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TABLE V. Spectral rigidity (�3 statistic) expressions for the
Poissonian and the Wigner-Dyson ensembles, approximated for large
L. Here γ is Euler’s constant. The full integral expressions (any L)
of �3(L) for the Poissonian and the Wigner-Dyson ensembles can
be found in the Appendix D, and are the ones used in our analysis
throughout.

Type of
ensemble Spectral rigidity

Poissonian [�3(L)]Poi = L
15

GOE [�3(L)]GOE = 1
π2 (ln(2πL) + γ − 5

4 − π2

8 ) + O(L−1)

GUE [�3(L)]GUE = 1
2π2 (ln(2πL) + γ − 5

4 ) + O(L−1)

GSE [�3(L)]GSE = 1
4π2 (ln(4πL) + γ − 5

4 + π2

8 ) + O(L−1)

For an unfolded eigenspectrum, the spectral staircase
function N (ε̃) denotes the number of levels having energy
between 0 and ε̃. This can be thought of as the cumulative
or integrated DOS, N (ε̃) = ∫ ε̃

0 ρ(ε̃′)d ε̃′. The least-square de-
viation of N (ε̃) from the best fit straight line (aε̃ + b, where
a and b are obtained from the fit), is defined as the spectral
rigidity [�3(L)], for a finite interval L of the eigenspectrum.
It is given by the expression

�3(L) =
〈

1

L
min
a,b

(∫ E+L

E
[N (ε̃) − aε̃ − b]2d ε̃

)〉
, (5)

where E is the starting position and 〈· · · 〉 denotes the average
over several choices of E (spectral average) and also over
several disordered configurations [39,43,54,59]. The latter en-
semble averaging over several disordered configurations is
performed to mainly obtain statistically smooth data for finite
lattice sizes, in our numerical calculations. The analytical
RMT formulas for the Poissonian and the Wigner-Dyson en-
semble statistics are given in the Table V. These analytical
expressions for the Wigner-Dyson ensembles are approximate
results in the large L limit. In our studies, we use the full exact
integral expressions involving the two-level cluster functions
[39,59], discussed in the Appendix D.

For the number variance statistic, given an unfolded eigen-
spectrum, one examines the variation in the number of energy
levels n(E , L) defined as n(E , L) = ∫ E+L

E ρ(ε̃)d ε̃, in an en-
ergy interval of given length L and as a function of the starting
energy E . The number variance statistic is then defined as
[39,43,54,59]

�2(L) = 〈n(E , L)2〉 − 〈n(E , L)〉2

= 〈n(E , L)2〉 − L2, (6)

where the average of n(E , L) becomes L, which is easy to
see because the average spectral density for an unfolded spec-
trum is unity. Here also, as in the case of spectral rigidity,
we perform both spectral and ensemble averages in our rele-
vant numerical calculations. The analytical RMT formulas of
�2(L) statistic, for the Poissonian and Wigner-Dyson ensem-
bles, are given in the Table VI. See the Appendix D for the full
integral expressions involving the two-level cluster functions
[39,59], which are being used in our studies.

In concluding this section, we also note that the �2 statis-
tic exhibits more fluctuations or oscillations, on the average,

TABLE VI. Number variance (�2 statistic) expressions for the
Poissonian and the Wigner-Dyson ensembles, approximated for the
large L. Here γ is Euler’s constant. The full integral expressions (any
L) of �2(L) for the Poissonian and the Wigner-Dyson ensembles can
be found in the Appendix D, and are the ones used in our analysis
throughout.

Type of
ensemble Number variance

Poissonian [�2(L)]Poi = L

GOE [�2(L)]GOE = 2
π2 (ln(2πL) + 1 + γ − π2

8 ) + O(L−1)

GUE [�2(L)]GUE = 1
π2 (ln(2πL) + 1 + γ ) + O(L−1)

GSE [�2(L)]GSE = 1
2π2 (ln(4πL) + 1 + γ + π2

8 ) + O(L−1)

compared to the �3 statistic. This will also be seen in our
studies of the physical spin models. In the context of RMT,
this may be understood from the fact that the �3 statistic
can be represented as an integral transform involving the
�2 statistic [44,68,72], given by the Eq. (D7), leading to
the smoother nature of the spectral rigidity compared to the
number variance.

One of the main objectives of this paper is to investigate
the correlations between far-off eigenvalues of our spin-chain
systems and see how closely they resemble the universal RMT
behavior outlined in this section. We further investigate how
closely the spectral crossovers, characterized via changes in
the short-range and the long-range spectral statistics, corre-
spond with each other.

V. CALCULATIONS AND RESULTS

In this section, we discuss the details of our short- and
long-range level correlation calculations, as well as an anal-
ysis of the densities of states (DOS) associated with our spin
Hamiltonians vis-a-vis RMT matrix models for some of the
relevant symmetry crossovers.

A. Nearest-neighbor-spacing distributions (NNSD)

In this section, we report the results from the study of the
nearest-neighbor spacings of energy eigenvalues computed
from the Hamiltonian H , for an odd number of lattice sites.
Here, we consider the lattice size N = 13, which has a matrix
dimension n = 8192 (2N ). We carry out numerical exact-
diagonalization calculations with an ensemble size of M=15
configurations, while noting that systems with lattice sizes
less than N = 13, do not follow the standard RMT ensemble
results, closely enough. Also, since the DM term connects
the various total Sz sectors (see Appendix A), spin-symmetry
adaptation is not feasible in several of these calculations,
and the full basis must be used. Hence performing exact-
diagonalization calculations for larger lattice sizes having
N = 15 (n = 32 768) or more, is computationally very expen-
sive, in view also of the configuration averaging required in
all calculations, and so we do not attempt it. As discussed in
Sec. III, for odd N , we get Kramers degeneracy, i.e., each
eigenstate is doubly degenerate, in the case when there is
no spatial symmetry left in the system, as in the GSE limit.
Here the standard practice is to systematically remove one
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of the Kramers degenerate partners by hand before studying
the spectral correlation properties of the model. While we
have done this, in this paper we have also done calculations
retaining the Kramers degeneracy (KD) and compared the
results with the standard case where KD has been removed,
as discussed below. This often leads to very interesting multi-
peak distributions that smoothly evolve from the GSE to other
limits where the KD is absent. We consider open boundary
conditions (OBC) throughout our calculations, as extra de-
generacies might occur in the spectra with periodic boundary
conditions (PBC). As mentioned in Sec. IV, we have unfolded
the spectra using polynomial fits to make the average level
spacing equal to unity.

In Ref. [28], we explored the short-range spectral correla-
tions and crossovers amongst the Poissonian, GOE, and GUE
distributions, for an even number of sites using a spin-chain
model. In this paper, the primary motive behind working
with a spin-chain model having an odd number of sites, is to
achieve the Gaussian symplectic class (GSE) distribution, and
study crossovers from/to other distributions in the integrable
(Poissonian) or other quantum-chaotic (Wigner-Dyson) lim-
its. To this end we first take up the Poissonian-to-GSE
crossover. We tune the relative strengths of the various inter-
actions in the Hamiltonian H3 to obtain this crossover (see
Table III). In the presence of the Heisenberg term (with J =
1.0 always, so that all interactions are measured in units of J)
and the DM term, and no disorder (randomness) the Poisso-
nian distribution is obtained. To go over to a GSE distribution
one needs a complete breaking of any spatial (rotational)
symmetry in the system, and this is obtained by the joint
action of the Hir and the HDM terms. The Hir term possesses a
twofold spin-rotational symmetry about any direction ê in the
xy plane, and reduces the spherical symmetry of Hh to cylin-
drical symmetry about the z axis, so that only Sz is conserved.
HDM alone results in a cylindrical symmetry only about the
direction of D̂ so that only S · D̂ is conserved (see Table II and
Appendix B, for further details). Evidently for any direction
of D distinct from the Ising axis and any axis in the xy plane,
there is no rotational symmetry left at all. With this under-
standing, we make the choice D = (Dx, Dy, Dz) = (D, D, D).
HDM also preserves T0 (but breaks the T symmetry), which
seems sufficient to yield a GSE.

It is however found that sufficient breaking of the rota-
tional symmetry of Hh by HDM, to effect a crossover to the
GSE distribution, is obtained only at about D = 0.2. Hence
we fix the magnitude of D at this value at the Poissonian
end, and then gradually turn on Hir (ε = 0 → finite), which
generates diagonal disorder, to finally crossover to the GSE
distribution at ε ∼ 0.6. Here we have followed the standard
practice of removing one Kramers degenerate partner from
each KD. Also the full basis has been retained due to the DM
term, as discussed earlier. The results of these calculations
are shown in Figs. 1(a)–1(d). It compares the results of the
spin-chain model (histograms) with the canonical Poissonian
and GSE distributions. As seen, fixing D = 0.2, we obtain
the Poissonian distribution at ε = 0.0 [see panel (a)] the pure
GSE distribution at ε = 0.6 [see panel (d)] and these show
an exceptional agreement with the ideal distributions (bro-
ken lines). For intermediate values of ε, one obtains hybrid
distributions, which match with neither limiting distribution,

FIG. 1. NNSD for N = 13 (basis size n = 8192 and the number
of configurations M=15) in the reentrant Poissonian-to-GSE-to-
Poissonian crossover with increasing ε, fixed D = 0.2. (a) and
(d) show the two limiting cases, namely the Poissonian and the
GSE respectively, whereas (b) and (c) show two of the interme-
diate cases (see also Table III). A further increase of ε leads to
a reentrant crossover into the Poissonian regime via intermediate
stages, as shown in panels (e) and (f). This new Poissonian regime is
characterized by a strong many-body localization of its eigenstates,
compared to the Poissonian at ε = 0.

examples of which are seen in panels (b) and (c). It is to be
noted in this context, that in the absence of any time-reversal
breaking antiunitary symmetry, the Kramers degeneracy per-
sists throughout this transition. Hence retaining the Kramers
doublets, like we do in the GSE-to-GUE transition where TRS
is progressively broken, is of no interest here, as it leads to a
monotonous singular Dirac delta like peak at s = 0 throughout
the transition, essentially decoupled from the other peaks.
Hence we discard one of the Kramers degenerate eigenvalues
systematically before plotting the NNSD. This is in stark
contrast to the GSE-to-GUE transition where this Dirac delta
like peak moves and merges with the GSE-like peak, also
transferring spectral weight in the process, throughout the
transition, as will be seen presently.

A further increase of ε leads to a reentrant crossover
into the Poissonian regime via intermediate distributions that
are neither Poissonian nor GSE, a representative case be-
ing shown in panel (e) of Fig. 1. In this large ε limit
the model tends to a random-coupling, nearest-neighbor 1D
Ising model (used often to model spin-glasses), where the
quantum fluctuations due to the Heisenberg and the DM
terms are strongly suppressed by a large uniaxial exchange
anisotropy, leading to eigenstates that are many-body local-
ized in this new Poissonian regime. We will again encounter
a somewhat similar situation in the context of the Poissonian-
to-GOE-to-Poissonian crossover, to be discussed later in the
paper.

Next, we study the Poissonian-to-GUE crossover by tuning
the relative strengths of the various terms in the Hamiltonian
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FIG. 2. NNSD for N = 13 (n = 8192 and M=15) in the
Poissonian-to-GUE crossover with increasing h, fixed D = 0.2.
(a) and (d) show the two limiting cases, namely the Poissonian
and the GUE respectively, whereas (b) and (c) show two of the
intermediate cases (see also Table III).

H2 (see Table III). We start again with the nonrandom part of
H2 consisting of Hh and HDM and slowly turn on the random
magnetic field (Hr) to crossover into the GUE regime. The
details of the parameter values, and criteria used, etc., are
summarized in Table III, and the results of our calculations
are shown in Fig. 2. When h = 0, the level-spacing statistics
of the ordered model follows the Poissonian distribution, as
shown in Fig. 2(a). Considering the spin-chain model H2,
at h = 0.15 and D = 0.2, both conventional and unconven-
tional time-reversal symmetries are now significantly broken
(in turn, the KD is lifted), and the NNSD follows the GUE
distribution [Fig. 2(d)]. The model H2 exhibits the Poissonian-
to-GUE crossover by varying the random magnetic field h
between 0 and 0.15, with D kept fixed at 0.2 (see Table III).
While the calculated end members for the spin-chain model
(histograms) exhibit excellent agreement with the canonical
Poissonian and GUE distributions (broken lines), as seen from
Figs. 2(a) and 2(d), the intermediate range hybrid distributions
are shown in Figs. 2(b) and 2(c). In the Poissonian limit,
one of Kramers degenerate partners is discarded from each
Kramers doublet present, as the calculations were carried out
using the full basis.

Next, without removing the Kramers degeneracy from
the spectrum, we present an interesting study of the NNSD
crossover between the GSE and the GUE distributions, while
also comparing the results with the standard case where the
KD was removed. As already discussed above, unlike in the
Poissonian-to-GSE crossover where the TRS is never broken
(and the KD’s never lifted), the retaining of the Kramers
doublets here, in the GSE-to-GUE crossover, is expected to
show an interesting and dynamical evolution of the spectral
shape across the crossover. We discuss this in detail now. The
information about the parameter values and the basis used
are summarized in Table III again. In Figs. 3(a)–3(f), we
show the NNSD crossover between the GSE and the GUE
distributions for the spin-chain model H (see Table III), by
varying the magnetic field h (D = 0.2 and ε = 0.6 are fixed),
which breaks the T0 symmetry of the system, in the absence
of any spatial (rotational) symmetry throughout. In Fig. 3(a),

FIG. 3. NNSD for N = 13 (n = 8192 and M=15). GSE-to-
GUE crossover with increasing h, fixed D = 0.2 and ε = 0.6 (see
also Table III). KD is present at h = 0. (a) shows the NNSD
after removing KD, and it follows PGSE(s), as expected. In (b), the
NNSD is plotted without removing KD, which follows the analytical
distribution Pn

GSE(s), derived in Appendix C and as predicted by
RMT. The agreement is excellent. KD is lifted for finite h, and
the NNSD is plotted in (c)–(f). Pn

GSE(s) to PGUE(s) crossover with
increasing h is observed. (f) shows the limiting case, which coincides
with the NNSD of GUE, at a relatively modest value of h = 0.015.
An interesting double-peaked structure is observed in the crossover
regime, as seen in (c) and (d).

we show the results for the spin-chain model calculations
(histogram) and observe that it faithfully follows the standard
GSE NNSD [PGSE(s)] at h = 0.0, where the calculation is
carried out after discarding the Kramers degeneracy from the
spectrum. However, when KD is not removed from the spec-
trum [Fig. 3(b)], the NNSD from the spin-chain model follows
the derived analytical result Pn

GSE(s) [Eq. (3)]. We can observe
the Dirac delta peak of Pn

GSE(s) at s = 0, which originates
from the zero spacings between the various Kramers doublets.
The nondegenerate eigenvalues generate the broad hump of
the modified GSE-like distribution part of Pn

GSE(s), at finite s
[∼(3/2)

√
π/2], between the distinct Kramers doublets. The

width of this hump at h = 0 is contributed partly by the mul-
titude of distinct splittings between various Kramers doublets
and also largely by the width of the distribution of the random
Ising term (ε = 0.6). A detailed derivation of this modified
GSE distribution [Pn

GSE(s) ] retaining the Kramers doublets
and for a general n, is presented in Appendix C, and its large
n limit is also discussed. As seen, it consists of a Dirac delta
peak at s = 0 and a broad hump at finite s, which, as we
will see, is a variant of the original GSE distribution. As we
increase h, the Kramers degeneracy is lifted, and the Dirac
delta peak broadens and moves away from s = 0. But, the
nonzero spacings are now reduced and overall hump at finite s
now moves towards a lower value of s. This trend, and related
spectral weight transfer, begins to show up in Fig. 3(c) and the
two peaks continue to move towards each other in Fig. 3(d),
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FIG. 4. Evolution of the marginal spectral densities (MSD) and
level spacings with increasing h. Panel (a) represents the case for
h = 0, where the Kramers doublets are truly degenerate, and one has
only two distinct level spacings, s = 0 and s = �KD. The width due
to the already present random distribution of the Ising ε is ignored
here to focus on the dynamics due to h alone. The presence of ε

will only contribute further to all broadenings, in addition to also
broadening the discrete levels in panel (a). In panel (b), h is small
but finite and the Kramers doublets split, and the MSD now gain a
narrow width, centered about the slightly split Kramers doublets. In
panel (c), a larger finite value of h further splits each of the Kramers
doublets, but in general by different amounts, δ1

h and δ2
h . The MSD

evolves from a two-peak structure in (b) to a four-peak structure in
(c), leading also to three finite nearest-neighbor-level spacings.

before finally merging into a single peak in the GUE limit (at
s ∼ √

π/2), as from Figs. 3(e) and 3(f). It is also observed that
a very small symmetry breaking field, h = 0.015, is enough to
lead the spin system (H) into the GUE regime, and the NNSD
finally achieves the PGUE(s) [Fig. 3(f)].

The understanding of this is especially intuitive within the
physical spin model. With the introduction of a finite h, the
degeneracy of all the Kramers doublets are simultaneously
lifted, due to the breaking of time-reversal symmetry. This
Zeeman splitting between the various Kramers doublets now
constitute the new peak at a small but finite s that replaces
the Dirac delta peak at s = 0. It also gains a finite width due
to the fact that the Zeeman splitting of the different Kramers
doublets are, in general, different depending on the value
of Sz that appears in the Kramers doublet (as states with
±Sz, the splitting is proportional to Sz). A second important
contribution to the broadening comes from the width of the
distribution for the h j’s themselves, represented by the value
of h. Since the center of gravity of the individual Kramers dou-
blets remain intact when the magnetic field splits the Kramers
doublets, it is evident that as the Zeeman splittings of the
Kramers doublets increase, the nearest-neighbor separation
between the lower Zeeman-split partner of a certain Kramers
doublet and the upper Zeeman-split partner of its immediately
lower Kramers doublet will reduce. This causes the higher-s
hump to move towards a lower-s value in Fig. 3(c), along
with a concurrent movement of the Dirac delta derived small-s
peak towards higher energies, due to an overall increase in
the Zeeman splittings of all Kramers doublets. With a further
increase in the magnetic field, the Zeeman splittings between
the Kramers doublets further increase, which concurrently
reduces the splittings between distinct Kramers doublet split
states, and the aforesaid movements of the peaks continue, as
seen from Fig. 3(d).

This is also schematically depicted in Fig. 4 for a simplified
model with two Kramers doublets, and ignoring the effect of

the finite ε for now, remembering that it also contributes to the
widths of the various peaks seen in our actual calculations. For
h = 0, as shown in panel (a), the Kramers doublets are truly
degenerate, so that one has two distinct level spacings only,
s = 0 within the two Kramers doublets and a finite s = �KD

between the pair of Kramers doublets. With the introduction
of a small but finite h the Kramers doublets split, but now also
gain a width due to the spread in h. This is shown in panel
(b) by the narrow and slightly displaced distributions centered
about the original discrete levels. With a further increase in h
to a larger finite value, each of the Kramers doublets split even
more, but in general by different amounts given by the values
δ1

h and δ2
h here, as shown in panel (c). The corresponding

widths of the marginal spectral densities (MSD), centered
about these states, are also seen to increase as h increases.
Now one has four peaks in the MSD, and three different level
spacings (s), in general, as seen from Fig. 4. The bare discrete
level energies are marked in the figure that yields the values
s = δ1

h, δ2
h , and [�KD − 1

2 (δ1
h + δ2

h )] for the three bare level
spacings. So even this simple model shows how the MSD
may evolve from a two-peak to a four-peak structure, and the
NNSD may evolve from a two-peak to a three-peak structure,
for example, as h is increased. This further clarifies the origin
of the trends seen in our physical spin model, as depicted in
Fig. 3 above.

Although the above discussion on the origin of the double-
peak structure within the spin-chain model is enlightening, it
should not give the reader the impression that the qualitative
nature of this behavior is specific to spin models alone. In
fact we will show below that this behavior is generic of any
GSE-to-GUE crossover, whenever the Kramers degeneracy
is retained, rather than weeded out. Although this is already
borne out by the analytical calculation for Pn

GSE(s) in the GSE
limit, an analytical calculation for the intermediate regime
may be a daunting task. The best way to then demonstrate
the robustness of this behavior, across the entire crossover,
would be to repeat the calculation for a crossover matrix model
numerically within the Pandey-Mehta approach, which has no
direct connection with any specific physical model. To facili-
tate a reasonably detailed comparison with our calculation, in
terms of the shape of the spectral distribution etc., we do this
for the exact same matrix dimension as the spin-chain model,
viz., n = 8192. For the GSE-to-GUE crossover, the crossover
matrix model of Eq. (2) becomes

H = (1 − α)HGSE + αHGUE. (7)

We also keep the ensemble size for configuration averag-
ing same as that of the spin model (M = 15). At α = 0,
the NNSD of the matrix model yields PGSE(s) as expected
[Fig. 5(a)], when KD is removed from the spectrum. In the
Figs. 5(b)–5(f), the NNSDs are plotted without removing
the KD. Similar to the spin-chain model, we again observe the
Dirac delta peak of Pn

GSE(s) at s = 0. The Figs. 5(b)–5(f), rep-
resent the NNSD crossover between Pn

GSE(s) to PGUE(s), with
increasing α. The intermediate distributions [Figs. 5(c) and
5(d)] also show a similar two-peaked structure as observed for
the physical system [Figs. 3(c) and 3(d)]. We observe that the
NNSD converges to the GUE distribution at α = 0.07, which
is rather small compared to the analytical RMT requirement
(α = 1.0), and seems to track the time-reversal symmetry
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FIG. 5. NNSD of unfolded eigenvalues of the matrix model
[Eq. (7)] with n = 8192, considering an ensemble of M = 15 ma-
trices, for the GSE-to-GUE crossover. KD is present at α = 0.
(a) shows NNSD after removing the KD, and it follows PGSE(s), as
expected. In (b), the NNSD is plotted without removing the KD,
which follows the analytical RMT distribution Pn

GSE(s), as derived
in Appendix C. KD is lifted for finite α, and the NNSD is plotted in
(c)–(f). Pn

GSE(s) to PGUE(s) crossover with increasing α is observed.
(f) shows the limiting case (α = 0.07) where the NNSD matches the
GUE distribution. This crossover RMT parameter value of 0.07 is
quite small, in agreement with the small value of h required for the
physical crossover in Fig. 3. Just as in the spin model, the unusual
double-peak structure is seen in the crossover regime, as shown in
(c) and (d).

breaking rather faithfully and with minimal lag. It is also
consistent with the extremely small magnetic field required
in Fig. 3(f), to reach the GUE limit. This behavior is expected
from such a large dimensional matrix model, which is consis-
tent with the discussions in Refs. [28,68,69,73,74], regarding
the rate of the crossovers with the matrix-dimensions. We
conclude from this RMT matrix model study that similar qual-
itative NNSD crossover behavior between the GSE and the
GUE limits should be achieved with any relevant many-body
quantum system, provided it satisfies the relevant symmetry
requirements as listed in Table I.

Although the large matrix model is useful in establishing
the robustness of the double-peak structure and its evolution
across the crossover, a smaller matrix model is more transpar-
ent in analyzing this behavior and reinforcing our conjecture
regarding the origin of this behavior, made in the context of
the spin model. Hence, in addition to the NNSD, we also look
at the evolution of the MSD across the crossover, in such a
model, to see how the states themselves evolve with α. To
this end, we consider the crossover matrix model [Eq. (7)]
with dimension n = 4 and plot (Fig. 6) the MSD of the in-
dividual four eigenvalues (ε1, ε2, ε3, and ε4), considering an
ensemble of M =20 000 matrices. It clearly shows how the
Kramers degeneracy is lifted for the GSE-to-GUE crossover
with increasing α. In Fig. 6(a), we show MSD of the ma-

FIG. 6. Marginal spectral density (MSD) of the four individual
eigenvalues (ε1, ε2, ε3, and ε4) of the matrix model [Eq. (7)] with
n = 4 and a configuration of M =20 000 matrices. It shows how KD
is lifted for the GSE-to-GUE crossover with increasing α. (a) rep-
resents the MSD for the GSE matrix model (α = 0), which exhibits
KD, due to which the MSD of ε1 and ε2 (ε3 and ε4) are superimposed
on one another. At finite α, the splitting between (ε1, ε2) and (ε3, ε4)
increases, which can be seen in (b) and (c). (c) shows the limiting
case (α = 1.0) where the matrix model represents the GUE class,
and the splitting is maximum for the eigenvalues. The two insets
in (a) and (c) represent the combined DOS of the four eigenvalues,
which exhibit interesting two-peak and four-peak structures. (d)–(f)
show the corresponding NNSD plots.

trix model in the pure GSE limit (α = 0), which exhibits
the KD, as a result the distribution of ε1 and ε2 (ε3 and
ε4) are superimposed on one another. With the increase of
α the splittings between (ε1, ε2) and (ε3, ε4) increase, which
can be seen from the displacements of their MSD peaks, in
Figs. 6(b) and 6(c). In Fig. 6(b), the two peaks in Fig. 6(a)
have each split into two Kramers partners. The violet peak
has separated into a red and a blue one, while the yellowish-
green peak splits into a pure green and a pure yellow one.
These splittings keep increasing with increasing α. Figure 6(c)
shows the limiting case (α = 1.0), where the matrix model
represents pure GUE, and the separations between the MSD
peaks are maximum. The two insets in the Figs. 6(a) and
6(c), represent the combined DOS of the four eigenvalues,
and show how the original two-peak structure in inset of the
Fig. 6(a) evolves into a interesting four-peak structure in inset
of the Fig. 6(c). The above description is well in line with our
proposed conjecture above. The corresponding NNSD plots
are represented in the Figs. 6(d)–6(f), which are consistent
with the higher dimensional behavior as seen both for the spin
system [Figs. 3(b)–3(f)] as also for the larger matrix model
[Figs. 5(b)–5(f)].

Finally, we consider four individual eigenvalues from a
spin-chain calculation and look at the evolution of their
MSD with increasing h, to demonstrate explicitly that similar
physics is operative as in the n = 4 matrix model above. In
Figs. 7(a) and 7(b), we present the MSD of the spin-chain
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FIG. 7. Marginal spectral density (MSD) of the four individual
eigenvalues (ε1, ε2, ε3, and ε4) (selected from the central peak region
of the spectra), of the spin-chain model H with N = 9 and a con-
figuration of M =20 000 matrices. It shows how the KD is lifted
in a physical system for the GSE-to-GUE crossover with increasing
symmetry breaking field h (fixed ε = 0.6, D = 0.2). (a) represents
the case of GSE (h = 0), which exhibits the KD, due to which the
MSD of ε1 and ε2 (ε3 and ε4) are superimposed on one another. With
an increase of h, the splittings between (ε1, ε2) and (ε3, ε4) increase,
and (b) shows the splitting between MSD of the eigenspectrum, in
the GUE limit (h = 0.02).

model H , with lattice size N = 9. We examine two sets of
the Kramers degenerate eigenvalues (keeping a separation of
10 eigenvalues) from the middle of the spectra, considering
an ensemble of M =20 000 configurations, to obtain smooth
MSD plots.3 A small magnetic field, h = 0.02 (fixed ε = 0.6,
D = 0.2), is enough to lift the KD and drive the system from
the GSE class to the GUE class. Here, in Fig. 7(b), the two
peaks in Fig. 7(a) have each split into two Kramers partners
and four distinct peaks are observed, similar to what we ob-
serve for the matrix model in Figs. 6(a)–6(c).

Now, we are interested to study the Poissonian-GOE-
Poissonian (nonchaotic→ chaotic → localized transition)
reentrant crossover, in the spin-chain model H1. We previ-
ously discussed in Sec. III, how the spin-chain model H1

preserves both (the T0 and the T ) time-reversal symmetries
and has a diagonal disorder (random Ising interaction along
the z axis). In addition, H1 possesses full rotational symmetry
about the z axis and also has the discrete rotational symmetries
(rotation by π ) about the x or the y axes (or for any axis
in the x−y plane, for that matter), which is in consonance
with condition II.2 of Table I. As H1 commutes with Sz, we
need to restrict any calculation for H1, to a fixed Sz sub-
space (see Table III for full details). Here, for an odd N ,
we consider the Sz = 1

2 subspace (n = 1716 for N = 13 and
n = 6435 for N = 15 systems), which is the lowest Sz sub-
space and hence has representations from all possible total S
sectors. At ε = 0.0, there is no disorder in the system, and we
achieve the Poissonian limit for the NNSD studies [Fig. 8(a)
for the N = 13 and Fig. 8(d) for the N = 15 lattice sizes].
Due to the self-averaging or the spectral ergodicity property
of RMT [28,41,75], we observe much smoother Histogram
plots for the N = 15 system, compared to the N = 13 system.
The GOE distribution is achieved at ε = 0.5 [Fig. 8(b)] and
ε = 0.4 [Fig. 8(e)], for the N = 13 and the N = 15 systems,
respectively. Further increase of diagonal disorder, results in

3To obtain a smooth MSD of only four individual eigenvalues, we
need to consider a large number of configurations, and hence a N =
13 calculation is computationally very expensive for this purpose.

FIG. 8. NNSD for the Poissonian-to-GOE-to-Poissonian reen-
trant crossovers with increasing ε, within the spin-chain model H1,
for the lattice sizes N = 13 (M = 25) [(a)–(c)] and N = 15 (M =
15) [(d)–(f)]. (a) shows that the NNSD follows the Poissonian dis-
tribution when ε is zero, (b) shows that the NNSD follows the GOE
distribution for ε = 0.5, and (c) shows how Poisson distribution is
recovered due to eigenvector localization for a typical large disorder
(ε = 20.0). Similarly, for N = 15, NNSD is plotted in (d)–(f) for
Poissonian-to-GOE-to-Poissonian crossover. One observes that the
GOE and the Poissonian in the localized limit are obtained for lower
values of ε in the N = 15 lattice, compared to the N = 13 lattice.
Here the localized Poissonian limit is already achieved for ε = 15.

the onset of localization in the eigenstates. This recovers the
Poissonian distribution in the strongly disordered limit, viz.,
ε = 20.0 and ε = 15.0 for the N = 13 [Fig. 8(c)] and the N =
15 [Fig. 8(f)] systems, respectively. At this stage we should
take note of the similarities in the trends and the associated
physics, with the reentrant Poissonian-to-GSE-to-Poissonian
crossover, discussed at the beginning of this section. This is
also strongly reminiscent of a similar Poissonian → GOE
→ Poissonian reentrant crossover encountered in our earlier
paper [28], where a random inhomogeneous magnetic field
term competes with the Heisenberg term to bring about the
many-body localization, in the large diagonal disorder limit.

B. Spectral rigidity and number variance

Till now our studies seem to indicate that the short-range
eigenvalue correlation statistics of the spin-chain models fol-
low RMT predictions quite accurately. This is also borne
out by earlier studies of short-range spectral correlations
in other 1D spin models [28–30,61,64]. We now want to
study the long-range eigenvalue correlation properties and
related spectral crossovers, in our above spin model, in the
presence of tunable symmetry-breaking physical parameters.
We also compare the values of the symmetry-breaking phys-
ical crossover parameters between the short-range (NNSD)
and long-range (spectral rigidity and number variance) spec-
tral fluctuation studies. As already mentioned, in Table III,
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FIG. 9. Spectral rigidity (�3 statistic) for the N = 13 spin chain
(M = 15) across the Poissonian-to-GSE crossover, with increasing
ε, and fixed D = 0.2 (symbols). For the extremal cases, where one
expects the physical system to follow either of the pure statistics
(Poissonian or GSE), we have also plotted the RMT exact analytical
predictions (broken lines), for comparison. It also shows the �3

statistic for the many-body localized phase, brought about by the
large disorder (ε = 20.0) (black asterisks), which is again expected
to follow the Poissonian result approximately (red broken line).

we have listed the physical crossover parameter values for the
NNSD.

Using Eq. (5), we calculate the �3(L) statistic for the
lattice size N = 13, in the various possible spectral crossovers
listed in Table III, as described below. In Fig. 9, we
show the �3(L) for Poissonian-to-GSE-to-Poissonian reen-
trant crossover plots with increasing ε. This simply introduces
randomness without breaking any time-reversal symmetry.
Here, we study the long-range correlations amongst eigen-
values with interval length ranging from L = 2 to L = 30, in
steps of 2. In this calculation, one of the Kramers degener-
ate partners is discarded from each doublet. We observe that
�3(L) follows the analytical Poissonian result [�3(L)]Poi up
to L ∼ 14 and then deviates from it. With increasing value
of the random parameter ε, Poissonian-to-GSE crossover is
achieved at ε = 0.6 and �3(L) follows the analytical GSE
result [�3(L)]GSE quite well, up to large eigenvalue interval
lengths. We have earlier achieved the GSE crossover in NNSD
at same same value of the random parameter ε. Even an in-
creased value of ε = 0.7 does not reflect any better agreement,
as is evident from the figure. This shows that, at ε = 0.6,
the eigenvalue fluctuation properties of the spin-chain system
(H3), follow GSE statistics at both the local (or short-range)
and the global (or long-range) scales.

Now, using Eq. (6), we calculate the number variance
�2(L) for the spin-chain systems with lattice size N = 13,
considering the eigenvalue interval length starting from L =
0.5 to L = 10, in steps of 0.5. In Fig. 10, we show the
Poissonian-to-GSE-to-Poissonian crossover in �2(L) statistic
for the spin-chain model H3. We observe that, in the absence
of the random Ising interaction, �2(L) follows the Poissonian
analytical prediction [�2(L)]Poi only up to an eigenvalue inter-
val length L ∼ 2, beyond that it deviates from the ideal result.
In the GSE regime (ε = 0.6), the �2(L) statistic of the spin-

FIG. 10. Number variance (�2 statistic) for the N = 13 spin
chain (M = 15) across the Poissonian-to-GSE crossover with in-
creasing ε, and fixed D = 0.2 (symbols). For the extremal cases,
where one expects the physical system to follow either of the pure
statistics (Poissonian or GSE), we have also plotted the RMT exact
analytical predictions (broken lines), for comparison. It also shows
the �2 statistic for the many-body localized phase, brought about
by the large disorder (ε = 20.0) (black asterisks), which is again
expected to follow the Poissonian result approximately (red broken
line).

chain model almost perfectly overlaps with the oscillatory
statistical function [�2(L)]GSE (the oscillatory nature comes
from the full integral expressions discussed in the Appendix
D), up to an eigenvalue interval length L ∼ 4, beyond that
it deviates. As the figure shows, even an increased value of
ε = 0.7 does not result in better agreement.

The two Poissonian limits, ε = 0.0 and ε = 20.0, coin-
cide with the ideal Poissonian result [�3(L)]Poi ([�2(L)]Poi)
(broken red line), till up to L ∼ 14 and 8 (L ∼ 2 and 1), re-
spectively. Although both the ordered (ε = 0.0) and the highly
disordered (ε = 20.0) limits tend to agree with the ideal
Poissonian prediction till a finite L value, it seems that the
disordered/localized Poissonian limit starts to deviate sooner
(for a lower L) than the ordered Poissonian limit from the
ideal Poissonian result, for both the �3 and the �2 statistics.
This seems unlike the short-range correlations [see Fig. 1,
especially panels (a) and (f)] where both these limits seem
to follow the Poissonian distribution equally faithfully (for
similar behavior in a different spin model, see Ref. [28]). This
property of long-range correlations may serve to distinguish
between the two different Poissonian regimes, which NNSD is
not able to distinguish.

Now, we study the spectral rigidity of the spin-chain sys-
tem in model H2 with N = 13. The system undergoes a
Poissonian-to-GUE crossover (see Table III) with increas-
ing h, keeping D fixed at 0.2. Figure 11 shows the �3(L)
statistic with interval length starting from L = 2 to L = 30.
We observe that at h = 0.0 (KD is present, one of Kramers
degenerate partners is discarded from each doublet), �3(L)
statistic coincides with the [�3(L)]Poi for L values up to
14, just like for the Poissonian-to-GSE transition, discussed
above. At the local (or short-range) GUE limit (h = 0.15), we
notice that �3(L) statistic follows the standard GUE result

094205-13



KUNDU, KUMAR, AND SEN GUPTA PHYSICAL REVIEW B 107, 094205 (2023)

FIG. 11. Spectral rigidity (�3 statistic) for the N = 13 spin chain
(M = 15) across the Poissonian-to-GUE crossover with increasing
h, and fixed D = 0.2 (symbols). For the extremal cases, where one
expects the physical system to follow either of the pure statistics
(Poissonian or GUE), we have also plotted the RMT exact analytical
predictions (broken lines), for comparison.

[�3(L)]GUE till L ∼ 14. If we further increase h to 0.2, we
do notice some improvement in agreement with [�3(L)]GUE,
up to L ∼ 20. So, for this case, h = 0.2 serves as a better
crossover point for the global GUE crossover, and h = 0.15
can be regarded as a more of a local crossover point. We have
also plotted the �3(L) statistic for the intermediate cases in
Fig. 11.

In Fig. 12, we plot the level number variance �2(L) of the
spin-chain model H2, having N = 13 sites, for the eigenvalue
interval length starting from L = 0.5 to L = 10, in steps of
0.5. We observe that �2(L) follows the analytical Poisso-
nian result (at h = 0.0) only up to L ∼ 2, beyond that it
deviates from this ideal value, just like in the Poissonian-to-
GSE crossover. The Poissonian-to-GUE crossover is achieved

FIG. 12. Number variance (�2 statistic) for the N = 13 spin
chain (M = 15) across the Poissonian-to-GUE crossover with in-
creasing h, and fixed D = 0.2 (symbols). For the extremal cases,
where one expects the physical system to follow either of the pure
statistics (Poissonian or GUE), we have also plotted the RMT exact
analytical predictions (broken lines), for comparison.

FIG. 13. Calculated spectral rigidity (�3 statistic) of the consec-
utive eigenvalues (keeping all eigenvalues, including the Kramers
degenerate ones) for the N = 13 spin chain (M = 15) across the
GSE-to-GUE crossover with increasing h, and fixed D = 0.2 and
ε = 0.6 (symbols). To compare their extent of agreement with RMT
predictions, the analytical expression for the �3 statistic of the non-
standard GSE using the consecutive eigenvalues is plotted (cyan line)
for a very small value of the crossover parameter (see Appendix D).
For comparison, here we also plot the �3 statistic of the RMT matrix
model HGSE (n = 8192 and M = 10) (broken lines). One should
note that the nonstandard diluted GSE plot (red broken line) lies
above the standard GUE plot (black broken line), indicating lower
correlation or level repulsion on the average. The standard GSE
result (blue broken line) is also plotted for comparison, and indeed
lies below the standard GUE, confirming a stronger correlation, as
expected.

at h = 0.2, but coincides with the [�2(L)]GUE only till the
interval length L ∼ 4. Comparing this with the lower value
of the NNSD crossover point, h = 0.15, we conclude that a
relatively higher symmetry-breaking field is required, in this
case, to achieve the crossover in the long-range eigenvalue
correlation studies.

In Sec. V A, we have studied the short-range GSE-to-GUE
(see Table III) crossovers for both the cases where the KD
was removed and retained in the eigenvalue spectrum. Here,
we study the �3 statistic and the number variance of the
spin-chain model H for the GSE-to-GUE crossover, in the
Figs. 13 and 14, respectively, by considering the consecu-
tive eigenvalues (i.e., retaining all eigenvalues including the
Kramers degenerate ones). The analytical form of the �3

statistic as well as that of �2 statistic can be obtained from
the two-level cluster function for the GSE-to-GUE crossover
[70]; see Appendix D. The GSE limit of this crossover is of
special interest due to the consideration of Kramers degener-
ate eigenvalues. For this limit, we also show the results using
the RMT matrix model HGSE having a dimension n = 8192
(similar to our physical N = 13 spin-chain model), and cal-
culate the long-range statistics of this model for comparing
with that of the physical spin model. In Fig. 13, we observe
that �3(L) plot based on the analytical result for a very small
value of the crossover parameter (see Appendix D) agrees
very well with the numerical �3(L) plot for HGSE, in the
GSE limit. Furthermore, for h = 0.0, the �3 statistic of H
follows the RMT �3(L) till a large L ∼ 20. We notice that this
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FIG. 14. Number variance (�2 statistic) of the consecutive
eigenvalues for the N = 13 spin-chain system (M = 15), it shows
the GSE-to-GUE crossover with increasing h, and fixed D = 0.2
and ε = 0.6 (symbols). To compare their extent of agreement with
RMT predictions, the analytical expression for the �2 statistic of
the nonstandard GSE using the consecutive eigenvalues is plotted
(cyan line) for a very small value of the crossover parameter (see
Appendix D). For comparison, here we plot the �2(L) statistic from
the RMT matrix model HGSE (n = 8192 and M = 15) (broken
lines). One should note that the nonstandard diluted GSE plot (red
broken line) lies above the standard GUE plot (black broken line),
indicating lower correlation or level repulsion on the average. The
standard GSE result (blue broken line) is also plotted for comparison,
and indeed lies below the standard GUE, confirming a stronger
correlation, as expected.

�3 statistic of the nonstandard GSE, obtained by retaining
all Kramers degeneracies, is always higher in value than the
standard GUE class statistics ([�3(L)]GUE), implying that it is
less correlated than the GUE on the average. This is contrary
to the standard GSE result (after removing the KD by hand),
[�3(L)]GSE, plotted for reference, which is more correlated
than the standard GUE class (always lower in value). This is
a rather interesting result, and may be understood along the
lines that retaining all Kramers doublets (no level repulsion
between Kramers doublets) amounts to reducing the average
correlation or level repulsion compared to the standard GSE
case. So it may be looked upon as a diluted GSE limit. At
the GUE (NNSD) limit, obtained at about h = 0.015, the cal-
culated spectral rigidity from the physical model follows the
analytical result [�3(L)]GUE till about L ∼ 12 and any further
increase in h (= 0.02) does not display a better agreement. So,
in this study, the limiting case h = 0.015 can be designated
as a global crossover point. In Fig. 14, we observe that, at
GSE limit, the calculated �2(L) of the spin-chain model,
follows the oscillating numerical plot of the RMT analytical
as well as the matrix model HGSE up to L ∼ 4. This again
corresponds to the diluted GSE limit, as discussed above, and
is less correlated compared to the standard GUE limit. On the
other hand, just as in the �3 case, the plot for the standard
GSE (blue broken lines) is more correlated and lies below
the standard GUE plot. Beyond h = 0.005, the oscillations
in the �2(L) statistic reduce significantly as we increase h.
The calculated �2(L) for the physical system at the GUE
limit (h = 0.015 and 0.02) follows the analytical form of the

FIG. 15. Spectral rigidity (�3 statistic) for the N = 15 spin chain
(M = 15) across the Poissonian-to-GOE crossover with increasing
ε, and fixed D = 0.2 (symbols). It also shows the �3 statistic in
the many-body localized limit, brought about by the large disorder
(ε = 15.0) (black asterisks), which is again expected to follow the
Poissonian result approximately (red broken line). The GOE limit
exact result is also plotted (black broken line) to show the extent of
agreement with the physical spin system.

GUE class [�2(L)]GUE only till L ∼ 2. The standard GSE
result (after removing the KD by hand) for the �2(L) statistic
[�2(L)]GSE is also plotted in Fig. 14, and is consistent with its
more correlated nature compared to [�2(L)]GUE. Both studies
(�3 and �2 statistics) show that all the intermediate cases
of the GSE-to-GUE crossovers tend to follow trends that lie
between the two limiting cases, resulting in a smooth and
continuous transition between the two limits.

Next, we investigate the long-range correlation studies
of the reentrant Poissonian-GOE-Poissonian crossover (see
Table III) for the spin-chain model H1 with N = 15 lattice
sites. While the ordered limit for ε = 0.0 is the integrable
1D Heisenberg model, the highly disordered (ε = 15.0) limit
includes a very large Ising anisotropy that completely sup-
presses the quantum fluctuations from the Heisenberg term
and results in a many-body localized state that spans only
a few relevant basis states. This again is expected to follow
the Poissonian distribution [28]. Due to a low dimension of
the Sz = 1/2 subspace in this case, where the total Sz is
conserved, we discarded the N = 13 system in favor of the
N = 15 system, for the long-range correlation calculations of
the Poissonian-to-GOE crossover. The corresponding �3(L)
statistic is plotted in Fig. 15 and the �2(L) statistic is plotted
in Fig. 16. Just as we encountered in the Poissonian-to-GSE-
to-Poissonian reentrant crossover (Fig. 1), the two Poisso-
nian limits, ε = 0.0 and ε = 15.0, coincide with the ideal
Poissonian result [�3(L)]Poi ([�2(L)]Poi) (broken red line) till
up to L ∼ 24 and 8 (L ∼ 2 and 1), respectively. Again both the
ordered (ε = 0) and the highly disordered (ε = 15.0) limits
tend to agree with the ideal Poissonian prediction till a finite
L value, but it seems that the disordered/localized Poissonian
limit starts to deviate sooner (for a lower L) than the ordered
Poissonian limit from the ideal Poissonian result for both the
�3 and the �2 statistics. The long-range spectral correlations
again seem to capture the subtle differences between the two
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FIG. 16. Number variance (�2 statistic) for the N = 15 spin
chain (M = 15) across the Poissonian-to-GOE crossover with in-
creasing ε, and fixed D = 0.2 (symbols). It also shows the �2

statistic for the many-body localized phase, brought about by the
large disorder (ε = 15.0) (black asterisks), which is again expected
to follow the Poissonian result approximately (red broken line). The
GOE limit exact result is also plotted (black broken line) to show the
extent of agreement with the physical spin system.

Poissonian regimes, that the short-range correlations fail to
capture [see Figs. 8(d)–8(f)].

At GOE limit, �3(L) statistic obeys [�3(L)]GOE till L ∼ 16
for ε = 0.4, at which we observed NNSD. If we increase ε

to 0.45, we do notice improvement in agreement with the
standard GOE result, up to till L ∼ 28. At ε = 0.45, the �2(L)
statistic follow the [�2(L)]GOE, only up to an eigenvalue in-
terval L ∼ 5, and even an increased ε does not perform any
better.

So, in some cases, we encountered that relatively strong
symmetry-breaking interactions are required to achieve a
global RMT crossover compared to the corresponding local
crossover. However, in the majority of cases, the long-range
fluctuations of physical systems deviate from the standard
RMT results after a certain L value, despite perfectly fol-
lowing the short-range NNSD results. We conclude that
our physical system is “sufficiently random” for correlations
amongst neighboring eigenvalues, but in many cases fail to
fully follow the RMT results for correlations amongst distant
eigenvalues. Large L deviations in long-range studies suggest
a possible breakdown of universality in the level fluctuations
of a physical system, implying that spin models are not as
correlated as random matrices. Furthermore, for the spin-
chain system, while quantifying the same level of long-range
correlation, the �2 statistic deviates from the standard RMT
results at a much faster rate than the �3 statistic. This could be
due to the fact that the �3 statistic is an integral transform of
the number variance [see Eq. (D7) of Appendix D] resulting
in an agreement with the spin-system results till a much larger
value of L [44,72].

VI. CONCLUSIONS

In this paper, we have studied the spectral correlation
properties of an interacting quantum spin-chain system with
various competing terms, including a coupling to an external

stochastic magnetic field. By tuning the relative amplitudes
of these terms, we can alter the unitary and antiunitary
symmetries associated with the Hamiltonian. This, in turn,
enables us to realize spectral crossovers amongst various
Poissonian and Wigner-Dyson classes (GOE, GUE, GSE) of
random matrix theory. To quantify these spectral crossovers,
we have employed both short-range and long-range random
matrix observables, viz., the nearest-neighbor-spacing distri-
bution for the former case, and spectral rigidity and number
variance for the latter. The key findings from our extensive
study are listed below for both short-range and long-range
statistics.

Short-range statistics:
(i) The short-range statistic, NNSD, in all the crossovers,

viz., Poissonian-to-GSE, Poissonian-to-GUE, GSE-to-GUE,
and Poissonian-to-GOE, exhibit extremely good agreement
with the RMT predictions in the two extremes of the
crossovers and hence establishes the universality of local
spectral fluctuations for our spin-chain system. Moreover, in
the intermediate regime, it nicely captures the gradual change
in the level-repulsion behavior.

(ii) A crucial aspect of our exploration pertaining to the
GSE-to-GUE crossover is retention of the Kramers doubly de-
generate eigenvalues in the GSE limit, which is typically not
done while studying the spectral correlation properties of the
GSE class. In this limit, the NNSD exhibits a Dirac-delta peak
at the origin along with a broad Wigner-Dyson like hump at a
finite spacing value of s. For this case, we have also presented
an analytical expression for the NNSD of the renormalized
GSE class, which matches well with the observations from
the RMT matrix model and the spin-chain system.

(iii) Within the GSE-to-GUE crossover, as the Kramers
degeneracy is lifted via the breaking of an appropriate an-
tiunitary symmetry, an interesting double-peak structure is
observed in the NNSD, which eventually turns into a single-
peak Wigner-Dyson curve of the standard GUE NNSD. The
evolution of the eigenspectra undergoing the GSE-to-GUE
transition is presented through the study of the marginal spec-
tral densities (MSD) and the densities of states (DOS) for both
the spin model as well as the relevant RMT crossover matrix
model.

(iv) The reentrant Poissonian-to-GOE-to-Poissonian
nonrandom(→chaotic→localized) crossover is observed
by gradually increasing the disorder in the system via an
increase in the random Ising coupling ε. The appearance of
the Poissonian statistics in the two extreme limits around the
Wigner-Dyson distribution, one delocalized and the other
localized in the many-body Slater basis, is successfully
demonstrated in this study.

Long-range statistics:
(i) The long-range correlation statistics match with RMT

predictions in the extreme limits up to a certain spectral length
interval L and deviate for larger L values, which indicates
that the spectral correlations for the physical spin system are
indeed different from RMT long-range correlations as one
examines intervals of larger lengths. This may, in turn, be
related to the relatively short spatial range of the physical
interactions in our spin models.

(ii) In the GSE limit of the GSE-to-GUE crossover, the
consequence of keeping all the eigenvalues (including the
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Kramers doublets) is that a less correlated behavior, viz.,
higher values of �3(L) and �2(L) compared to the stan-
dard GSE, and also the standard GUE, is observed for our
spin system. This seems to nicely agree with similar trends
shown by the analytical RMT results for the standard GUE
and GSE extremes as well as the GSE limit with Kramers
degeneracy (referred to as the diluted GSE limit) as derived in
Appendix D, in that the diluted GSE plots lie not only above
the standard GSE, but also above the plots for the standard
GUE, for both �3 and �2, indicating lower correlation.

(iii) Another key finding of our study is that the inte-
grable Poissonian limit, which is realized in the two extreme
regimes, one in the absence and the other in the presence
of many-body localization, while not being distinguishable
at the level of the NNSD, does show a discernible behavior
with respect to the long-range correlations. The latter, there-
fore, can serve as indicators to distinguish between these two
regimes.

From the above, it is evident that by tuning the various
competing terms in the spin-chain Hamiltonian, which control
various unitary and antiunitary symmetries, a rich variety of
crossovers is observed in the short-range as well as in the long-
range statistics of the eigenvalues. One particularly interesting
aspect of our study has been examining the consequences
of retaining the Kramers degenerate eigenvalues in the GSE
limit. It would be of interest to explore this facet in other
many-body physical systems as well. One would also like
to go beyond the eigenvalues and quantify the behavior of
eigenvectors in such symmetry crossovers in physical systems
using statistics such as inverse participation ratio, generalized
information entropies and multifractal dimensions. Some of
these investigations are already under way.
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APPENDIX A: SIMPLIFICATION OF THE DM TERM

This Appendix presents a simplification of the DM inter-
action term (HDM) mentioned in Eq. (1). We have

HDM =
N−1∑
j=1

D · [S j × S j+1]. (A1)

After expanding the term D · [S j × S j+1] in terms of the
spin components (Sx, Sy, Sz) we get

D · [S j × S j+1]

= Dx
(
Sy

jS
z
j+1 − Sz

jS
y
j+1

)
+ Dy

( − Sx
j S

z
j+1 + Sz

jS
x
j+1

) + Dz
(
Sx

j S
y
j+1 − Sy

jS
x
j+1

)
.

(A2)

Now, in terms of the site spin raising (S+
j ) and lowering

(S−
j ) (or spin ladder) operators

Sx
j = 1

2
(S+

j + S−
j ), Sy

j = 1

2i
(S+

j − S−
j ), (A3)

we have after simplification

D · [S j × S j+1]

= iDx

2

( − S+
j Sz

j+1 + S−
j Sz

j+1 + Sz
jS

+
j+1 − Sz

jS
−
j+1

)
+ Dy

2

( − S+
j Sz

j+1 − S−
j Sz

j+1 + Sz
jS

+
j+1 + Sz

jS
−
j+1

)
+ iDz

2

(
S+

j S−
j+1 − S−

j S+
j+1

)
. (A4)

The terms, which involve a single spin ladder operator, like
S+

j Sz
j+1 (S−

j Sz
j+1), increase (decrease) the total Sz of the sys-

tem by 1. On the other hand, the two-site terms like S+
j S−

j+1

and S−
j S+

j+1, conserve total Sz. The terms with two similar
spin ladder operators (like S+

j S+
j+1 and S−

j S−
j+1) cancel out

during the simplification. From Eq. (A4), we observe that the
spin operators associated with the Dx and Dy terms, connect
nearest-neighbor Sz sectors, but the spin operators associated
with the Dz term do not connect different Sz sectors. Thus,
for nonzero Dx and/or Dy, we cannot carry out calculations
within a fixed Sz sector.

APPENDIX B: CONSERVATION OF THE SPIN
COMPONENT ALONG THE DIRECTION

OF THE VECTOR COUPLING UNDER THE DM
INTERACTION TERM

In this Appendix, we show that HDM commutes with S · D̂,
resulting in HDM having cylindrical symmetry only about the
direction of D̂. We consider two spins, S1 and S2, for which
HDM = D · [S1 × S2] and S = S1 + S2. Using a tensorial no-
tation along with the summation convention, we write the
vector D = Dα êα , where êα is the unit vector along the three
Cartesian axes (α = 1, 2, 3 corresponds to the x, y, z axes,
respectively). The unit vector along D is D̂ = dα êα , where
dα = Dα/D (dαdα = 1).

Now, we have

[HDM, S · D̂] = HDM(S · D̂) − (S · D̂)HDM. (B1)

The first term in the right-hand side can be written as

HDM(S · D̂)

= (εαβγ DαS1βS2γ )(S1μ + S2μ)dμ

= dμ(εαβγ DαS1βS2γ S1μ + εαβγ DαS1βS2γ S2μ)

= dμ(εαβγ DαS1βS1μS2γ + iεαβγ εγμηDαS1βS2η

+ εαβγ DαS1βS2μS2γ ), (B2)

where in the last step we have used the fact that, spin operators
from different sites commute and the commutation relation for
the same-site spin operators is [S2γ , S2μ] = iεγμηS2η, which
may be combined into [Spγ , Sqμ] = iδpqεγμηSpη. Similarly,
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we get the further simplified form as

HDM(S · D̂)

= dμ(iεαβγ εβμηDαS1ηS2γ + S1μεαβγ DαS1βS2γ

+ iεαβγ εγμηDαS1βS2η + S2μεαβγ DαS1βS2γ ). (B3)

Now, we use the identity εi jkεimn = δ jmδkn − δ jnδkm, and
the antisymmetry of the Levi-Civita tensor, whence the first
term of Eq. (B3) becomes

iεαβγ εβμηDαS1ηS2γ dμ

= −iεβαγ εβμηDαS1ηS2γ dμ

= −i(Dμdμ)(S1γ S2γ ) + i(DαS1α )(S2μdμ)

= −i(D̂ · D)(S1 · S2) + i(S1 · D)(S2 · D̂)

= −iD[S1 · S2 − (S1 · D̂)(S2 · D̂)]. (B4)

Similarly, the third term of Eq. (B3) becomes

iεαβγ εγμηDαS1βS2ηdμ = iD[S1 · S2 − (S1 · D̂)(S2 · D̂)].

(B5)

From the Eqs. (B4) and (B5), we see that the first and the third
terms of Eq. (B3) cancel out each other. From the second and
the fourth terms of Eq. (B3) we get

HDM(S · D̂) = (S1μdμ)(εαβγ DαS1βS2γ )

+ (S2μdμ)(εαβγ DαS1βS2γ )

= (S1μ + S2μ)dμ(εαβγ DαS1βS2γ )

= (S · D̂)HDM. (B6)

So we get [HDM, S · D̂] = 0 that establishes the said conserva-
tion law and resultant cylindrical symmetry about the D axis.

APPENDIX C: CALCULATION OF THE NNSD OF THE
GSE CLASS WITH KD

Consider the ordered spectrum with Kramers degeneracy
having n levels ε1 = ε2 < ε3 = ε4 < · · · < εn−1 = εn, where
n is even. In finding the nearest-neighbor spacings, we have
(n − 1) level-spacings in all. The degenerate pairs will lead
to n

2 zero-level spacings, while the nondegenerate ones will
lead to ( n

2 − 1) nonzero (positive) level spacings. Denoting
the unnormalized level spacings by the variable x, the zero
spacings give rise to a Dirac delta [δ(x) ] peak at x = 0,
and the distribution of nonzero part is expected to follow the
standard NNSD of GSE PGSE(x). Including both these contri-
butions, the NNSD in the case where the Kramers degeneracy
is retained, should be given by a function of the form

f n(x) = f n
GSE(x) + f n

0 (x) = μPGSE(x) + νδ(x), (C1)

where μ and ν are determined by making use of the fractional
contributions from the two types of spacings (zeroand finite)
to the overall normalized distribution f n(x), also using the
individual normalization properties of PGSE(x) and δ(x), as
discussed below. The normalization condition demands that
the integrated weight of f n(x) should be 1. So, the fractional

weight of the nonzero spacings becomes

∫ ∞

0
f n
GSE(x)dx = ( n

2 − 1)

(n − 1)
= 1

2

(
n − 2

n − 1

)
, (C2)

and of the zero spacings becomes

∫ ∞

0
f n
0 (x)dx =

n
2

(n − 1)
= 1

2

(
n

n − 1

)
. (C3)

From Eq. (C1) and Eq. (C2) we get

μ

∫ ∞

0
PGSE(x)dx = 1

2

(
n − 2

n − 1

)
, (C4)

and using the normalization condition
∫ ∞

0 PGSE(x)dx = 1, we
find μ = 1

2 ( n−2
n−1 ). Again, from Eq. (C1) and Eq. (C3) we have

ν

∫ ∞

0
δ(x)dx = 1

2

(
n

n − 1

)
. (C5)

Using the definition of the Dirac delta function
∫ ∞

0 δ(x)dx :=
1
2 , we have ν = n

n−1 , and f n(x) now becomes

f n(x) = 1

2

(
n − 2

n − 1

)
PGSE(x) +

(
n

n − 1

)
δ(x). (C6)

We need to now calculate the average spacings for the
distribution f n(x). We consider

D =
∫ ∞

0
f n(x)dx

= 1

2

(
n − 2

n − 1

)∫ ∞

0
xPGSE(x) +

(
n

n − 1

) ∫ ∞

0
xδ(x)

= 1

2

(
n − 2

n − 1

)
, (C7)

here we have used the unfolding condition
∫ ∞

0 xPGSE(x) = 1
and the relation for the Dirac delta function

∫ ∞
0 xδ(x) := 0. In

order to again make the average spacing equal to 1, we define
the normalized variable s = x/D, and rewrite the distribution
in terms of this new variable. Considering the Jacobian of
transformation |dx/ds| = 1

2 ( n−2
n−1 ), we get the rescaled distri-

bution as

Pn
GSE(s) = 1

2

[
n − 2

n − 1

]{
f n

(
1

2

[
n − 2

n − 1

]
s

)}

= 1

2

[
n − 2

n − 1

]{
1

2

[
n − 2

n − 1

]
PGSE

(
1

2

[
n − 2

n − 1

]
s

)}

+ 1

2

[
n − 2

n − 1

]{[
n

n − 1

]
δ

(
1

2

[
n − 2

n − 1

]
s

)}
. (C8)

Using the standard analytical expression for PGSE(s), based on
the Wigner surmise, and the scaling property of the Dirac delta
function δ(ks) = δ(s)/|k|, we simplify the Eq. (C8) and get
the modified analytical form of the NNSD, for the GSE class
[Pn

GSE(s) ], where the Kramers degeneracy is not removed
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from the eigenspectrum. For dimension n, it is presented as

Pn
GSE(s) =

[
212

36π3

(
n − 2

n − 1

)6

s4

]
exp

[
− 16

9π

(
n − 2

n − 1

)2

s2

]

+
(

n

n − 1

)
δ(s). (C9)

For a large n (like for our n = 8192 calculation, but not the
n = 4 calculation), Eq. (C9) assumes the asymptotic form

PGSE(s) =
(

212

36π3
s4

)
exp

(
− 16

9π
s2

)
+ δ(s). (C10)

APPENDIX D: FULL INTEGRAL EXPRESSIONS
FOR �3(L) AND �2(L)

In this Appendix, we present the full integral expressions
of the �3(L) and �2(L) statistics in terms of the two-level
cluster functions [39]. The correlation characteristics of a
single cluster of n levels are described by the cluster function,
which is separate from the lower order correlations [39]. It
vanishes when any one (or more) of the level separations
(|ε̃i − ε̃ j |) increases relative to the local mean level spacing
(which is unity for our case). The two-level cluster functions
for various cases are listed below [39],

YPoi(r) = 0, (D1)

YGOE(r) =
(

sin(πr)

πr

)2

+
(

cos(πr)

r
− sin(πr)

πr2

)(
1

2
− Si(πr)

π

)
, (D2)

YGUE(r) =
(

sin(πr)

πr

)2

, (D3)

YGSE(r) =
(

sin(2πr)

2πr

)2

−
(

cos(2πr)

r
− sin(2πr)

2πr2

)(
Si(2πr)

2π

)
, (D4)

where r = |ε̃1 − ε̃2| and Si(z) = ∫ z
0 sin(t )/t dt is the standard

sine integral.
The full integral expressions of the averaged �3 statistic

and �2 statistic are given by [39]

�3(L) = L

15
− 1

15L4

∫ L

0
(L − r)3(2L2 − 9Lr − 3r2)Y (r)dr,

(D5)

and

�2(L) = L − 2
∫ L

0
(L − r)Y (r)dr. (D6)

It is also known that �3(L) is an integral transform of �2(L)
[44,68,72],

�3(L) = 2

L4

∫ L

0
(L3 − 2L2r + r3)�2(r)dr. (D7)

The above integrals for �3(L) and �2(L) for the Wigner-
Dyson ensembles can be performed in terms of the sine and
cosine integrals, but are lengthy. In Sec. V B, we used numeri-
cal evaluations of the aforementioned integral formulas for the
specific ranges of L, and presented the results in the relevant
Figs. 9–16.

For the GSE-to-GUE crossover, the exact as well as
asymptotic expressions for correlation functions and cluster
functions are known [69]. The evaluation of spectral rigidity
and number variance requires the two-level cluster function
for the unfolded eigenvalues, which is given as [69,76]

YGSE−GUE(λ, r) =
(

sin(πr)

πr

)2

− I (λ, r)K (λ, r), (D8)

where

I (λ, r) = − 1

π

∫ π

0

sin(kr)

k
e2λ2k2

dk, (D9)

K (λ, r) = − 1

π

∫ ∞

π

k sin(kr)e−2λ2k2
dk. (D10)

The parameter λ ∼ √
n α in the above expressions is the

rescaled-crossover parameter. We use the above λ-dependent
cluster function expression in Eqs. (D5) and (D6) to obtain
the spectral rigidity and number variance. The GSE limit is
obtained for λ → 0, whereas the GUE limit is achieved for
λ → ∞, for which the product I (λ, r)K (λ, r) goes to zero.
It should be noted that the crossover is almost complete for
λ ∼ 1, i.e., α ∼ 1/

√
n.

The above integrals need to be numerically evaluated
to obtain the number variance and spectral rigidity in the
GSE-to-GUE crossover. The limit λ → 0 poses difficulty
in numerical evaluation as I (λ, r) and K (λ, r) approach
−sgn(r)/2 and δ(r)/r, respectively; the latter signifying the
Kramers degeneracy. Therefore, we perform the evaluation of
the above integrals for nonzero, but small λ values using very
high precision. For instance, for the GSE curves in Figs. 12
and 13, we have used λ = 1/600.
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