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We study numerically the impact of many-body interactions on the quantum boomerang effect. We consider
various cases: weakly interacting bosons, the Tonks-Girardeau gas, and strongly interacting bosons (which may
be mapped onto weakly interacting fermions). Numerical simulations are performed using the time-evolving
block decimation algorithm, a quasiexact method based on matrix product states. In the case of weakly
interacting bosons, we find a partial destruction of the quantum boomerang effect, in agreement with the earlier
mean-field study [J. Janarek et al., Phys. Rev. A 102, 013303 (2020)]. For the Tonks-Girardeau gas, we show the
presence of the full quantum boomerang effect. For strongly interacting bosons, we observe a partial boomerang
effect. We show that the destruction of the quantum boomerang effect is universal and does not depend on the
details of the interaction between particles.
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I. INTRODUCTION

Anderson localization (AL), i.e., inhibition of transport, is
one of the most famous phenomena in disordered systems [1].
It was successfully observed in many experiments, including
quantum systems [2–8], light [9,10], and sound waves [11]
among many others. Despite the many years since the first
work on AL, a new phenomenon has recently been discovered
that is a direct manifestation of localization: the quantum
boomerang effect (QBE) [12]. The new phenomenon involves
the dynamics of wave packets with nonzero initial velocity
evolving in Anderson-localized systems. Being related to An-
derson localization, the boomerang effect should exist for any
type of wave exhibiting Anderson localization. In the follow-
ing, for concreteness, we study the QBE for the Schrödinger
equation.

In an Anderson-localized system, as shown in [12], the
center of mass (CM) of a quantum wave packet with an
initial velocity, on average, returns to its initial position. This
behavior is very different from that observed for the classical
counterpart: a classical particle will randomize its velocity
and, on average, localize after traveling a finite distance
(a transport mean free path). The QBE is a genuine quan-
tum phenomenon occurring in one- and higher-dimensional
Anderson-localized systems [12], as well as generalized
systems including the kicked rotor [13], systems without time-
reversal symmetry [14], see also [15], and non-Hermitian
systems [16]. Recently, the QBE was observed in a quantum
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kicked rotor experiment [17], where the U turn of the average
momentum was reported.

Consider an Anderson-localized one-dimensional system
with the Hamiltonian H = p2/2m + V (x), where V (x) is a
disordered potential [12]. We define the average CM as

〈x(t )〉 =
∫

x|ψ (x, t )|2dx =
∫

x|ψ (x, t )|2dx , (1)

where (. . .) denotes averaging over disorder realizations.
The full quantum boomerang effect occurs iff the CM of a
wave packet with a nonzero initial velocity [e.g., ψ0(x) =
N exp(−x2/2σ 2 + ik0x)] returns to its initial position, 〈x(t =
∞)〉 = 0 for large times t → ∞.

When interactions are present in the system, this behavior
changes as interactions tend to weaken localization phe-
nomena. In effect a full localization may be replaced by a
subdiffusive evolution at long times in the presence of inter-
actions [18–21]. In a previous study [22] we have shown that
the interactions treated within the mean-field approach using
the Gross-Pitaevskii equation (GPE) [23] lead to a partial de-
struction of the QBE. After the initial evolution, typical for the
full QBE, the CM performs a U turn but does not fully return
to its origin, saturating at some finite value. This final CM
position depends on the interaction strength via the interaction
energy. Moreover, it was shown that the destruction of the
QBE may be described using a single characteristic timescale,
dubbed the break time, beyond which the QBE is destroyed by
interactions [22].

In the present work, we investigate many-body interactions
between particles using quasiexact numerical methods. In the
first part, we analyze weakly interacting bosons with contact
interaction and compare their dynamics to the mean-field
approximation results. The many-body interactions lead to a
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stronger destruction of the QBE. However, it is shown that the
effective break time analysis is still valid in the many-body
system. In the second part, we show the full QBE for the
Tonks-Girardeau gas where we also present a full localization
of the final particle density. In the last part, we study strongly
interacting bosons, which map to weakly interacting fermions
with momentum-dependent interactions. Similarly to weakly
interacting bosons, we observe a partial QBE only. We show
that, also in this case, the destruction of the QBE can be
captured using similar methods. The results presented reveal
that the destruction of the full QBE does not depend on the
details of the interaction between the particles.

The paper is organized as follows. Section II introduces
the model and explains the method used for numerical sim-
ulations of the system. It also presents the main parameters
of the system. In Sec. III, we study the case of weakly in-
teracting bosons, where we also present a comparison with
the mean-field model. Section IV presents the observation of
the QBE for the Tonks-Girardeau gas, while in Sec. V we
study strongly interacting bosons and analyze results from
the perspective of weakly interacting fermions. Finally, we
conclude the paper in Sec. VI.

II. THE MODEL

We study a one-dimensional many-body bosonic
Hamiltonian:

Ĥ =
∫

�̂†(x)

(
− h̄2

2m
� + V (x) + U

2
�̂†(x)�̂(x)

)
�̂(x)dx ,

(2)
where m is the particle mass, V (x) represents the disordered
potential, and U is the strength of the two-body contact po-
tential. In our work, we adopt the method introduced in [24]
and map the continuous Hamiltonian (2) to a discrete model
on an equidistant grid with L lattice sites, where the position
is given by x j = j�x, j ∈ Z, and �x is the grid spacing. We
start by expanding the field operators in the basis of bosonic
annihilation operators â j and single-particle wave functions
ψ j (x): step functions localized at position x j . The field opera-
tors’ decomposition is given by

�̂(x) =
L∑

j=1

ψ j (x)â j . (3)

The derivative in Hamiltonian (2) is expressed as the
three-point stencil, ∂2

x �̂(x j ) → [�̂(x j−1) − 2�̂(x j ) +
�̂(x j+1)]/�x2. The resulting Hamiltonian has the form
of a disordered Bose-Hubbard Hamiltonian:

Ĥ = −J0

L∑
j=1

(â†
j â j + c.c.) +

L∑
j=1

Vjn̂ j + U0

2

L∑
j=1

n̂ j (n̂ j − 1),

(4)
where the parameters are directly connected with the lattice
spacing �x and the parameters of Hamiltonian (2): J0 =
h̄2/(2m�x2), U0 = U/�x, and Vj = V (x j ). Thanks to this
discretization technique, we are able to study the many-body
QBE in a continuous space with techniques developed for
lattice models.

In our work, we are almost exclusively interested in the
temporal dynamics of the system. To compute the time evo-
lution under the Bose-Hubbard Hamiltonian (4), we use a
homemade implementation of the time-evolving block dec-
imation (TEBD) algorithm [25,26] based on matrix product
states (MPS). At each time step, the many-body state is ex-
pressed in terms of matrices �il and vectors λ[l]:

|�〉 =
∑

α1,...,αL
i1,...,iL

�
i1
1,α1

λ[1]
α1

�i2
α1,α2

λ[2]
α2

. . . �
iL
αL,1 |i1, i2, . . . , iL〉 , (5)

where matrices �il describe the lth site and vectors λ[l] de-
scribe bonds between l and l + 1 sites. The indices il run from
0 to maximal occupation imax; the indices αl run from 1 to χ

(the so called bond dimension).
The QBE is a phenomenon displayed by wave packets

having nonzero initial velocities. For a single-particle wave
function, a nonzero initial velocity translates into a nonzero
phase factor eik0x for the wave function, where k0 is related
to the velocity by v0 = h̄k0/m. This means that it is possible
to kick a wave packet by multiplying its wave function by a
proper phase factor.

When the state is in the MPS form, the procedure is quite
different: the kick acts on the state in configuration space,
whereas the MPS is represented in a space which is a mixture
of configuration space and Fock basis. Additionally, we want
all of the particles to have the same initial velocity. The total
phase imprinting the initial velocity should include factors
for all particles:

∏N
n=1 exp(ik0xn) = exp(ik0

∑
n xn), where n

numbers the particles and N is the total number of particles.
The sum inside the exponent may be rewritten using particle
occupations at each site, i.e.,

∑
n xn = ∑

l il xl . This allows us
to use the MPS representation: to kick the MPS, we modify
the matrices �il : �il → �il eik0il l�x. The vectors λ[l] are not
changed because the kick does not change the properties of
the MPS links. The kick preserves the MPS standard form (4)
of the many-body state.

The discretization method was successfully used in a study
of a disordered many-body system, where Anderson localiza-
tion of solitons was observed [27]. To observe the QBE, the
system has to be Anderson localized [12]. In our work, we use
Gaussian uncorrelated disorder:

V (x) = 0, V (x)V (x′) = γ δ(x − x′), (6)

where (. . .) denotes averaging over disorder realizations and
γ is the disorder strength. As explained below, the kicked
wave packet has an energy close to h̄2k2

0/2m. Using the Born
approximation, it is easy to compute the values of the mean
free time and mean free path at this energy:

τ0 = h̄3k0

2mγ
, �0 = h̄4k2

0

2m2γ
. (7)

Finally, to observe the QBE, we study the center of mass
time evolution: it is evaluated using the average particle den-
sity n(x, t ):

〈x(t )〉 =
∑

l

xl n(xl , t ). (8)

The particle density can be fairly easily computed from the
MPS representation: the occupation n(xl ) on the lth site
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depends only on λ[l−1], λ[l], and �il that are known at each
time step.

III. WEAKLY INTERACTING BOSONS

Let us commence our study with the weakly interacting
bosons case. This will allow us to compare our “quasiexact”
simulations with results obtained within the mean-field ap-
proximation that revealed an only partial QBE in the presence
of interactions.

The initial state of the system in the mean-field study was a
Gaussian wave packet. To mimic this scenario, we prepare the
initial state as the ground state of N noninteracting particles in
a harmonic trap. Application of an imaginary-time evolution
using the TEBD algorithm allows us to prepare the initial
state in the MPS form. The frequency of the trap is chosen
to match the desired particle density width σ . Then, the kick
with initial momentum k0 is applied to the initial MPS as
explained above. The initial particle density is a Gaussian with
width σ : n0(x) = N/

√
σ 2πe−x2/σ 2

. In numerical simulations,
we use σ = 10/k0 = 2�0. Because k0σ 	 1, the wave packet
is quasimonochromatic with an energy distribution sharply
peaked near the energy h̄2k2

0/2m.

In the numerical simulations, we use 1/k0 as the unit of
length. The system size is Lsize = 400/k0 divided into L =
2000 lattice sites meaning that �x = 0.2/k0. We use N = 5
particles in our simulations. Unfortunately, higher numbers
of particles would demand too large computer resources. The
disorder strength is chosen to be γ = 0.1h̄4k3

0/m2 meaning
k0�0 = 5, so we can assume a weak-disorder case. The max-
imal time of simulations was chosen to be tmax = 60τ0. For
each interaction strength we used 500 disorder realizations
(otherwise stated in figures’ captions).

For comparison we present simultaneously the full many-
body results together with results obtained within the mean-
field approach, using the Gross-Pitaevskii equation [23,28]:

ih̄∂tψ (x, t )

=
(

− h̄2

2m
� + V (x) + U (N − 1)|ψ (x, t )|2

)
ψ (x, t ).

(9)

Since we consider a very small number of particles, the usual
factor g multiplying the density part is taken in its exact form
g = U (N − 1).

In Fig. 1, we show comparisons of the results for
many-body and mean-field systems for different interaction
strengths. To account for differences between exact scattering
mean free time τ (scattering mean free path �) and mean free
time τ0 (mean free path �0), Eq. (7), we fit the theoretical
prediction for CM time dependence [12] to results obtained
for noninteracting particles. This yields τ = 0.94τ0 and � =
1.07�0, which is in a full agreement with expected corrections
to the Born approximation, which are of order 1/k0�0 [29].

Unsurprisingly, we observe that, for nonzero interactions,
the boomerang effect is only partial. After the initial ballistic-
like motion and the U turn, typical for the boomerang effect,
the CM does not return to the origin but saturates at some
finite, interaction strength dependent, position. This closely
resembles the behavior observed in the mean-field study [22].
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FIG. 1. Comparison of results obtained in the many-body sim-
ulations (solid lines with error bars), the mean-field simulations
(orange dashed lines with tiny error bars, not shown), and the single-
particle theoretical prediction (green dotted line). Panels correspond
to (a) U = 0.1, (b) U = 0.15, and (c) U = 0.2. While for the lowest
interaction between particles the curves seem to agree [panel (a)],
with the increase of the interactions the many-body result saturates
at a significantly higher value. Mean-field simulations are averaged
over 105 disorder realizations.

On the one side, for the lowest presented value of inter-
action strength U = 0.1, the many-body and the mean-field
solutions are in agreement (within error bars). On the other
side, when the interaction strength is higher, for example, in
panels (b) and (c) of Fig. 1, the curves seem to separate and
the many-body CM 〈x(t )〉 saturates significantly higher than
the mean-field one.

The interactions present in the system may be understood
as a source of dephasing mechanism which destroys Anderson
localization, hence the boomerang. From this perspective, it
should be natural that, when we treat the interactions without
approximation, their impact should be larger, destroying the
QBE more efficiently. However, the simulations include only
a few particles; we expect on the general grounds that in the
limit of a large number of particles, the difference between
full quantum and mean-field results vanishes.

To further study this difference, we also analyze the one-
body reduced density matrix ρ(x, x′) = 〈�̂†(x′)�̂(x)〉, which
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may be used to analyze correlations in many-body systems;
see [28]. For this study, we use interaction strength U = 0.2
with increased disorder strength, so that k0�0 = 2.5. The max-
imal time of simulation is set to tmax = 120τ0, which should
reflect better the long-time limit.

To quantitatively check the amount of the condensate frac-
tion in the final density matrix ρ f (x, x′), we compute its
eigenvalues. The largest eigenvalue represents the condensate
fraction [30,31]. For a noninteracting fully condensed system,
there is only one eigenvalue λ0 = N . When nonzero inter-
actions are present in the system it is no longer true. This
approach may be generalized: the interactions decrease the
value of λ0; however, the sum of all eigenvalues is given by
the total number of particles, i.e.,

∑
j λ j = N . The state may

be considered a condensate as long as λ0 ∼ N .
In our study, we compute the four largest eigenvalues of the

final one-body density matrix. We find the averages of them to
be λ0/N = 0.147 ± 0.028, λ1/N = 0.110 ± 0.016, λ2/N =
0.083 ± 0.011, λ3/N = 0.064 ± 0.007. The values for single
realizations do not differ much from the averages; the distri-
butions of λ j are narrow. This clearly indicates that the final
state of the system is very far from a true condensate. The GPE
describes only the condensate part of the system, while our
state consists mainly of particles outside the condensate. Thus,
the full dynamics of the system cannot be described with the
GPE. This fact reinforces the conclusion that the difference
between many-body and the mean-field results comes from
truly many-body effects.

Break time analysis

The destruction of the QBE in the mean-field approxi-
mation was successfully described using the so-called break
time [22]. It is the time tb for which the CM position in the
interaction-free case reaches the long-time limit obtained in
the presence of interactions,

〈x(tb)〉U=0 = 〈x〉∞. (10)

To examine the break time, it is necessary to compute
the infinite-time CM position: 〈x〉∞ = 〈x(t → ∞)〉. For the
mean-field approximation, the infinite-time CM position was
approximated with the long-time average:

〈x〉∞ = 1

t2 − t1

∫ t2

t1

〈x(t )〉dx . (11)

This was reasonable for large maximal times of numerical
simulations, extending up to 2500τ0. In the present study
where tmax ≈ 64τ, such a long-time average is not available.
To overcome this problem, we fit an algebraic decay to the
data:

〈x(t )〉 = 〈x〉∞ + β

tα
, (12)

where 〈x〉∞ and β are fitting parameters. The fit is per-
formed in the time interval [30τ, tmax ≈64τ ]. Knowing that,
in the noninteracting case, the long-time time dependence is
〈x(t )〉 ≈ 64� ln(t/4τ )τ 2/t2 [12], for the noninteracting case
we expect that α = 2 will return 〈x〉∞ = 0, which is confirmed
using our numerical data. For the interacting cases, we find a
slightly faster decay; thus we use α = 3 as the exponent in
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FIG. 2. Time evolution of the center of mass (solid lines) in the
interval [30τ, 64τ ] where a fitting of the algebraic decay (dashed
lines), Eq. (12), is performed. When the exponent α = 3 is used, the
resulting fits yield very good results. The U values increase from the
bottom to the top as indicated in the legend.

Eq. (12). Figure 2 shows a comparison of the numerical data
with fitted functions. The fits show very good agreement with
the data. It also turns out that the overall fitting results, i.e., the
values of 〈x〉∞, only slightly depend on the exponent value α

in Eq. (12) and the time fitting interval.
Having the estimate for 〈x〉∞, we can find the break time

with the help of Eq. (10). Fitting errors on the infinite-time
CM position 〈x〉∞ allows us to calculate the error bars on the
break times for various interaction strengths, U . In analogy
with the mean-field study [22], we expect the inverse of tb to
be proportional to U , a measure of the interaction energy in
the system.

The dependence of 1/tb versus U is shown in Fig. 3, where
we present results for the many-body and the mean-field sim-
ulations [where 〈x〉∞ is computed from the long-time average,
Eq. (11)]. While for the mean-field results the dependence is
obviously linear, the many-body result also suggests a linear
behavior, with a small deviation of the point with U = 0.05.
This point, the lowest value of the interaction strength, re-
quires the longest time of evolution to saturate around the
true 〈x〉∞ value. The corresponding infinite-time CM posi-
tion value may be overestimated, in turn underestimating the
break time. On the opposite side, for stronger interactions,
the linearity is better. This is also related to the fact that the
final infinite-time CM position values are higher; hence, to
compute the break time, a shorter time evolution is sufficient.

The fact that the break time is much shorter for the full
many-body calculation than in the mean-field approximation
emphasizes the importance of quantum fluctuations. This is
also supported by the analysis of the average one-body density
matrix presented above.

Before moving to the next part of our study, we should
make a comment on the many-body localization phenomenon
(MBL), which may be present in many-body interacting dis-
ordered systems (for reviews see [32,33]). Although we study
a disordered many-body system, we are not in the MBL
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FIG. 3. Inverse of the break time tb computed for the many-body
simulations [blue points with error bars, computed from the fits of
the algebraic decay, Eq. (12)] and the mean-field simulations [orange
triangles, calculated using long-time averaging, Eq. (11)] versus
the interaction strength U . Dashed lines present the best linear fits
τ/tb = aU , with slope coefficients amany-body = 0.22 and amean-field =
0.076. The mean-field data are clearly linear, as expected. For the
many-body results, with a small deviation of the point for U = 0.05,
the points strongly suggest linear dependence. The error bars repre-
sent the uncertainty on the break time based on the error bars for the
final center of mass position value.

regime. Typically, MBL is studied in systems with much
higher interaction strengths (for example of bosonic systems;
see [34,35]) than considered in our work, where U0/J0 � 1
(translating �x and U to Bose-Hubbard model parameters).
The other important factor is that the density of particles—the
average filling in our system, taking into account only the sites
occupied by the initial density profile—is very low, n ≈ 0.1.
Together with the small number of particles considered, this
does not allow for a comparison with other studies of in-
teracting bosons on a lattice. Finally, the disorder strength
used in our study corresponds to Anderson localization in
the weak-disorder regime, which should not be sufficient to
induce many-body localization effects.

IV. STRONGLY INTERACTING BOSONS:
THE TONKS-GIRARDEAU LIMIT

Let us now consider a second entirely different situation—
the case of very strong interactions. A one-dimensional
system of bosons with repulsive contact interactions may be
described by the Lieb-Liniger model [36]:

H =
N∑

j=1

(
− h̄2

2m

∂2

∂x2
j

+ V (x j )

)
+ U

∑
1� j<k�N

δ(x j − xk ),

(13)
where U > 0 is the coupling constant and m denotes the atom
mass. The model is frequently characterized by a dimension-
less parameter ζ = mU/h̄2n, where n = N/L is the average
density of bosons, and L is the system length. When ζ = 0,
the model corresponds to free bosons while ζ → ∞ is called
the Tonks-Girardeau limit.

The Tonks-Girardeau (TG) gas describes impenetrable (or
hard-core) bosons, which can be mapped to noninteracting
spinless (spin-polarized) fermions [37,38]. The model can be
solved exactly in the free case V = 0 (for details see [39]).
Reference [40] showed that the Tonks-Girardeau gas can be
obtained in cold-atom experiments, and the experimental ob-
servations of hard-core rubidium bosons were reported shortly
after in [41,42].

Even though the TG gas is highly correlated, Anderson
localization is not destroyed by the interactions. TG particles
map to noninteracting fermions; hence Anderson localization
is present in the system: noninteracting fermions are fully
localized in a one-dimensional system. Anderson localization
of the TG gas was discussed in [43].

In an Anderson-localized system, we expect to observe
the full quantum boomerang effect for particles with nonzero
initial velocity. We perform numerical simulations to study the
center of mass temporal evolution, using the same methods as
in the case of weakly interacting bosons. In order to simulate
the TG gas, we use a trick: the MPS representation has a
parameter imax, the maximum number of bosons on a given
site (the local Hilbert space thus has dimension imax + 1). For
N bosons, it is natural that imax ≈ N , which allows the MPS to
represent faithfully states with many particles at one site. This
parameter can be used in the other way: we restrict the number
of particles occupying one site by setting imax = 1, effectively
realizing the concept of impenetrability of the Tonks particles.
Note that the local Hilbert space has dimension 2, explaining
why it can be mapped on spinless fermions, where the local
Hilbert space is spanned by states with 0 or 1 fermion.

On the numerical side, our results have been simulated in
a similar way to the weakly interacting bosons. The main
difference is that, in the Tonks-Girardeau gas, we enlarged
the discretization constant, so that �x = 1/k0. By using larger
�x, we can decrease the number of lattice sites in the simu-
lations to L = 500 and scale down the CPU time. The main
effect of larger �x is its influence on the dispersion relation.
As we show in the next sections, apart from the change of
velocity due to not ideal discretization, the quantum return to
the origin still can be analyzed.

As opposed to the above studies of QBE, here we cannot
use a Gaussian wave packet as the initial state of the system.
It is very different from the ground state of TG particles in a
harmonic trap. Nevertheless, the ground state of TG particles
in a trap can be computed. Due to the mapping to fermions, it
can be easily found in the absence of the disordered potential.
Fermions cannot occupy the same eigenstate of the system;
hence the state with the lowest energy has the following
structure in the Fock basis (ordered by increasing energy):
|GS〉 = |11 . . . 10 . . .〉, with N particles occupying the N sin-
gle particle states with the lowest energy. Then, the particle
density can be calculated in a straightforward way:

nTG(x) =
N−1∑
n=0

|ψn(x)|2, (14)

where ψn(x) denotes a single-particle eigenstate of the trap.
The density is much broader than the harmonic oscillator’s
ground state for a single particle. On the numerical side, the
initial state is prepared using the imaginary-time evolution
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FIG. 4. Time evolution of the center of mass 〈x〉 for the Tonks-
Girardeau gas (solid blue line with error bars) compared with the
single-particle theoretical prediction (orange dashed line) [12]. The
result is fitted using the theoretical boomerang prediction to adjust
the mean scattering time τ and length �. The numerical data perfectly
agree with the theoretical curve. The results have been averaged over
10 000 disorder realizations. Error bars represent statistical average
uncertainties.

in presence of interactions, but in the absence of disorder
followed by a velocity kick, similarly to the weakly interacting
bosons case.

Figure 4 presents the time evolution of the CM 〈x(t )〉 for
the TG gas. It faithfully follows the single-particle QBE. To
show the agreement between the numerical data and the the-
oretical prediction [12], we perform a fitting procedure which
accounts for the difference between the exact mean free time
τ (mean free path �) and the mean free time τ0 (mean free path
�0) computed using the Born approximation, Eq. (7).

After such a fit, the agreement between the TG gas and
the theoretical prediction is excellent. The disorder strength
used should result in k0�0 = 5. The fitted exact values of mean
free time and path are τ = 0.97τ0 and � = 0.9�0, being thus
consistent with the Born approximation.

There is, however, a slight caveat. The particles of the TG
gas have slightly different energies, because they correspond
to different eigenstates of the harmonic potential. This should
mean that each particle has a different mean free time; hence
〈x(t )〉 should be a superposition of the boomerang curves
with different τ . The energy of the nth eigenstate of the
harmonic potential is (n + 1

2 )h̄ω, where ω is the frequency of
the harmonic oscillator. In our analysis we use kicked states,
and the kick adds h̄2k2

0/2m to the total energy. If h̄2k2
0/2m 	

(n + 1
2 )h̄ω, we may assume that all states have roughly the

same scattering mean free time and path. This is the case
in our simulations, where ω = 0.01. The small dispersion of
energies does not influence the final 〈x(t )〉, and we observe
the universal boomerang curve.

We also study the final particle density. It is symmetric and
has exponentially decaying tails. Although [43] used a slightly
different initial state (ground state of the trap including the dis-
order), a similar behavior of the tails in their simulations was
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x/�fit
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� fi
t
n
(x
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1
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−

3
1
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−

1

n(x, t = 0)

n(x, t = tmax)

n(x, t = 0)

nTG-G(x)

FIG. 5. Initial (green solid line) and final density profile for
kicked hard core bosons (blue solid line with error bars), compared
with the theoretical initial particle density (red dotted line), Eq. (14),
and the Tonks-Girardeau-Gogolin profile (orange dashed line),
Eq. (16). The numerical data for the initial and final times agree fully
with the initial density and with the theoretical Tonks-Girardeau-
Gogolin profile, respectively. The inset shows the theoretical and
numerical final profiles to show agreement even in the exponentially
decaying tails.

reported. After our observation that the boomerang effect is
described by a single-particle theoretical result, we construct
an infinite-time density profile based on the (single-particle)
Gogolin profile [44]:

|ψGogolin
� (x, t = ∞)|2

=
∫ ∞

0

dη π2

32�

η(1 + η2)2 sinh(πη)e−(1+η2 )|x|/8�

[1 + cosh(πη)]2
,

(15)

which depends on the mean free path �. As explained in [44],
this density profile is the theoretical prediction at infinite time
for a single particle initially located at x = 0 and evolving in
the presence of a disordered potential. In our case, the final
density should be given by the convolution of the Gogolin
profile with the initial particle density nTG(x), Eq. (14):

nTG-G(x) =
∫ +∞

−∞
dx′ nTG(x − x′)|ψGogolin

� (x′)|2. (16)

In the analysis of the final density profile, we also fit
nTG-G(x) to numerical data. The numerical calculation of the
Tonks-Girardeau-Gogolin profile for x/� 	 1 is laborious;
thus we fit the profile only around x = 0 for several points.
The value of the fitted mean free path is �fit ≈ 4.025/k0. The
mean free path extracted from the center of mass time evolu-
tion is � = 4.5/k0. Taking into account the fact that �0k0 = 5,
so that corrections to the Born approximation may be visible,
the agreement between �fit and � is good.

Figure 5 shows both the numerical and fitted final den-
sities as well as the initial density profile. Our crude fitting
method gives nevertheless very good results: the numerical
and theoretical infinite-time densities agree perfectly. The
inset presenting the densities in a logarithmic scale shows
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almost no difference also in the wings, far from the region
of the fit.

V. STRONGLY INTERACTING BOSONS: MAPPING
TO WEAKLY INTERACTING FERMIONS

For an arbitrary interaction strength in Hamiltonian (13),
the bosonic model can be mapped to interacting fermions
[45–47]. The interaction is much more complicated; it is
mapped to a momentum-dependent attractive interaction [48].
Fermions are governed by the following Hamiltonian:

HF =
N∑

j=1

(
− h̄2

2m

∂

∂x j
+ Vext(x j )

)
+ VF , (17)

where VF denotes the fermionic interaction term:

VF = h̄4

m2U

∑
1� j<k�N

(
∂x j − ∂xk

)
δ(x j − xk )

(
∂x j − ∂xk

)
. (18)

The eigenfunctions of the Lieb-Liniger Hamiltonian (13) co-
incide with the eigenstates of Hamiltonian (17) when particle
coordinates x j are ordered and their sign is changed upon ex-
change of the particle coordinates. The models have the same
eigenspectra. The fermionic interaction strength is propor-
tional to U −1; see Eq. (18). In order to simplify the notation,
in the following sections we use UF = U −1 to represent the
interaction strength between the fermions.

The mapping can be used to study systems in different
potentials including disordered ones; e.g., the fluid-insulator
transition for strongly interacting bosons was studied in [49].

Above, we argued that the simulations of disordered
many-body systems require large amounts of computational
resources. To compute simulations of strongly interacting
bosons, we allow at most two particles at one site, imax = 2. In
the case of weak interactions, such constraint would change
the results and simulations would not be faithful. On the
other hand, when the interactions are strong, the probabil-
ity of having more than two particles at one site is small
being energetically very costly [50]. Additionally, we keep
�x = 1/k0 as in the TG gas case. Altogether that allows us
to save computational resources and calculate the temporal
evolution for longer times than for weakly interacting bosons.
Let us stress that here we cannot be guided by the mean-field
analysis. At the qualitative level, the effect of interactions
on the QBE is likely to not depend on their details. For
strongly interacting bosons (weakly interacting fermions), we
also expect that interactions will weaken Anderson localiza-
tion. Any interaction has a characteristic energy scale which
should translate into some break time, beyond which the QBE
should be broken. The interactions, which are considered as
an effective dephasing mechanism, lead to the destruction of
coherence between scattering paths, and finally to destruction
of the full QBE.

Figure 6 presents the result of the CM time evolution.
Similarly to the noninteracting case, after the initial ballistic
evolution, the CM is reflected toward the origin. Analogously
to the mean-field and weakly interacting bosonic cases, the
destruction of the boomerang effect is visible in the long-time
regime. For all situations with finite U (nonzero effective
interaction between fermions UF ), we observe that the return

0 20 40 60 80 100 120

t/τ

0.0

0.2

0.4

0.6

0.8

〈x
〉/

�

U = ∞
U = 50

U = 25

U = 20

U = 15

FIG. 6. Temporal evolution of the center of mass position for
different values of interaction strength U , decreasing from the bottom
to the top, in the strong interaction limit. Similarly to the mean-field
case and weakly interacting bosons, the short time evolution is al-
most unaffected by interactions. At longer times, the center of mass
saturates at finite values. Error bars indicate statistical errors and are
shown only for one curve to indicate their magnitude. Orange dashed
curve shows the theoretical center of mass temporal evolution (cf.
Fig. 4).

is not complete: the infinite-time CM position saturates at
some nonzero value. The figure shows also the statistical error
bars. Because the number of disorder realizations is small, the
errors are relatively large. Nonetheless, the effect of interac-
tions is clearly visible and can be analyzed taking into account
the uncertainties. The limited maximal time of evolution does
not allow us to study in detail the mean-squared displacement
of the particle density.

The main observation is that the boomerang effect is
only partial, even though the effective interactions between
fermions are attractive and fairly complicated. There is no
qualitative difference between the results of the mean-field
approximation, weakly interacting bosons, and weakly inter-
acting fermions. Interactions weaken the QBE.

As for weakly interacting bosons, we analyze the final CM
position. We use, as before, the algebraic fit, Eq. (12), to
extract the infinite-time CM position from data in the time
interval [60τ, 120τ ]. As for weakly interacting bosons we
assume α = 3 for the fits. Figure 7 shows a comparison of
the numerical data with fitted functions. The data show high
correlation between different interaction strengths because we
use the same disorder realizations. Also in this case, we have
checked that the overall fitting result is almost independent
of the exponent value α in Eq. (12). In Fig. 8, we present
the dependence of 〈x〉∞ on the effective interaction strength
UF between fermions. As in the case of the mean-field ap-
proximation [22], for the smallest values of the interaction
strength, the dependence seems to be quadratic. This confirms
that the observed breakdown of the QBE does not depend on
the details of the interactions present in the system. Given
the results presented in the previous section, we may ask
whether the destruction of the boomerang effect for strongly
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FIG. 7. Temporal evolution of the center of mass position for
strongly interacting bosons (solid lines) and fits of the algebraic
decay, Eq. (12) (dashed lines). As indicated in the figure the values
of U decrease from bottom to top curves. Similarly to Fig. 2, with
the exponent α = 3, the resulting fits yield satisfactory results.

interacting bosons can be effectively described using the break
time, a universal parameter used to capture the influence of the
interactions.

A. Break time—boomerang effect

For the weakly interacting bosons, the use of break time
was a natural extension of the mean-field approximation. In
the case of strongly interacting bosons (mapping to weakly
interacting fermions), this has to be analyzed anew. Figure 8
shows the approximately quadratic dependence of the 〈x〉∞ on
the effective interaction strength between fermions UF .

0.00 0.02 0.04 0.06

UF = U−1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

〈x
〉 ∞

/
�

FIG. 8. Final center of mass position 〈x〉∞ versus UF = U −1. The
errors for the points result from the fitting of the decay Eq. (12).
Like in the mean-field study, the dependence of the final center of
mass position on the effective interaction strength between fermions
UF = U −1 is quadratic.

0.02 0.04 0.06 0.08

UF = U−1

0.005

0.010

0.015

0.020

τ
/t

b

FIG. 9. Inverse of the break time tb versus UF = U −1 calculated
for the final center of mass position 〈x〉∞ by fitting an algebraic
decay, Eq. (12). The error bars are calculated using the uncertainty
on 〈x〉∞. The data strongly suggest a linear dependence. The dashed
line presents the best linear fit τ/tb = 0.28UF = 0.28/U .

Figure 9 shows the dependence of the inverse of the break
time, 1/tb, on the effective interaction UF = U −1 suggesting
a linear behavior. Similarly to the weakly interacting bosons
case, the point for the weakest interactions slightly deviates
from the linear dependence. When the QBE is only moder-
ately affected by the interactions, the time evolution has to be
very long to extract the exact value of the infinite-time CM
position. When 〈x〉∞ is overestimated, the corresponding tb is
smaller than the exact value.

The results are very similar to those obtained for the
weakly interacting bosons; see Fig. 3. This means that the
underlying mechanism of the destruction of the QBE is in-
dependent of the type of interactions. The destruction of the
QBE may be fully characterized by a single parameter, the
break time tb, proportional to the interaction strength between
the particles.

It is possible to understand semiquantitatively the 1/U
dependence of the break time. At infinite U, the dynamics
of the system takes entirely place in the subspace spanned
by occupation numbers i = 0 and i = 1 on each site of the
Bose-Hubbard Hamiltonian, Eq. (4), and one observes full
QBE. When U is large, but finite, the state with occupation
number i = 2 also comes into the game. However, due to
interaction, its energy is larger by U, while the coupling with
i = 0, 1 states is typically of the order of J . An example is
the coupling between states |0, 2〉 and |1, 1〉 on two neigh-
boring sites. The perturbation brought by i = 2 states is thus
expected, at lowest order, to shift the energy levels in the
i = 0, 1 subspace proportionally to J2

0 /U0. In the absence of
this shift, the QBE is full. It is thus reasonable to expect that,
for finite U0 = U/�x, it will take a time h̄/(J2

0 /U0) before the
QBE is affected. In other words, we expect the break time to
be roughly U0/J2

0 .
It turns out that the boomerang break times (expressed in

units of the scattering mean free time) agree within several
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FIG. 10. Temporal evolution of the entropy of entanglement (av-
eraged over all possible bipartitions) for different values of the
interaction strength U , decreasing from the bottom to the top. S∞

0

denotes the final value of the entropy in the Tonks-Girardeau gas.

percent with the rough estimate:

U0 = 50,
U0

J2
0

= 200, tb = 133.2τ ;

U0 = 25,
U0

J2
0

= 100, tb = 95.6τ ;

U0 = 20,
U0

J2
0

= 80, tb = 77.2τ ;

U0 = 15,
U0

J2
0

= 60, tb = 52.1τ.

(19)

As explained above, the break time for the highest interaction
strength U0 is, most probably, underestimated.

B. Break time for the entropy of entanglement

In the simulations, we can also observe another interaction-
driven phenomenon, which can be characterized by its own
timescale. Due to the interactions, we observe a growth of the
entropy of entanglement in the system. Does it increase on the
same timescale as tb?

Figure 10 shows the time evolution of the entropy of entan-
glement computed as an average over all possible bipartitions:

S = − 1

L − 1

L−1∑
i=1

∑
α

(
λ[i]

α

)2
ln

(
λ[i]

α

)2
(20)

—cf. Eq. (5)—where different i’s in the sum correspond to
different bonds of the chain of length L. For the Tonks-
Girardeau gas case, apart from the initial growth, the entropy
saturates, which is also confirmed by the analysis of the supre-
mum of the entropy over possible bipartitions (not shown). We
denote the final value of the entropy for the Tonks-Girardeau
gas by S∞

0 . When the interactions are finite (UF = U −1 
= 0),
the entropy grows further. We can define a characteristic
timescale called entropy break time, denoted by t S

b , for which
the entropy between the interacting particles exceeds the final

60 80 100 120
tb/τ

35

40

45

50

55

60

tS b
/τ

FIG. 11. Entropy-based break time t S
b plotted versus the

boomerang break time tb. The values of break times are comparable
within a factor 2. The dependence is more or less linear; the slight
deviation for the point around tb ≈ 130τ originates probably in the
overestimation of 〈x〉∞ due to too short time evolution.

value of the Tonks-Girardeau gas entropy S∞
0 . We calculate its

value from the following relation:

S
(
t S
b

)
(U ) = S∞

0 , (21)

where for the left-hand side, we use the data for nonzero in-
teractions. Figure 11 presents a comparison of the boomerang
break time and entropy break time. The relation between the
break times is approximately linear: t S

b /tb ≈ 0.5.

VI. CONCLUSIONS

In this work, we have discussed the effect of interactions on
the quantum boomerang effect using a quasiexact many-body
approach. On the numerical side, the simulations have been
performed using the time-evolving block decimation algo-
rithm based on matrix product states. This has allowed us
to study the weakly interacting bosons, the Tonks-Girardeau
gas, and strongly interacting bosons which can be mapped to
weakly interacting fermions.

The first part of our study has shown that the effect of weak
interactions between bosons is qualitatively similar to the
behavior in the mean-field approximation [22]. However, in
the present work, the interactions are not approximated, which
strengthens their effect on the destruction of the boomerang
effect: the final center of mass positions are higher than in the
mean-field approximation. This translates into shorter break
times for the many-body system. In the simulations, the to-
tal number of particles is not very high, so, to support this
conclusion, we have also analyzed the features of the average
one-body density matrix which have clearly shown that the
condensate fraction in our system is very low. Hence, the
observed phenomena are necessarily beyond the mean-field
analysis.

In the second part, we have shown that the particles of the
Tonks-Girardeau gas undergo the full boomerang effect. Apart
from agreement between the numerical and theoretical results
for the center of mass evolution, we have shown that the final
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particle density is given by the convolution of the Gogolin
profile and the initial particle density.

Finally, we have presented that, in the case of finite strong
interactions between bosons (that is, effective weak interac-
tions between fermions), the boomerang effect is only partial.
To study the destruction of the QBE in detail, we have cal-
culated the break time and shown that it is proportional to
the interaction strength between bosons, i.e., inversely pro-
portional to the effective interaction strength between the
fermions. Moreover, from the analysis of the entropy of en-
tanglement, we have computed another characteristic time and
shown that this time is comparable and proportional to the
break time.

Altogether, our results strongly suggest that the breaking
of the QBE by interactions is a rather simple and universal
phenomenon, which can be described by a single parameter,
the break time, independently of the details of the interaction
and whether a full many-body or a mean-field description is
used.

Possible future studies of the many-body quantum
boomerang could include analysis of the phenomenon for a
composite particle, i.e., a soliton. In [27], many-body An-
derson localization of a bright soliton was shown using very

similar numerical tools. It would be very interesting to check
whether such a composite object undergoes the quantum
boomerang effect. While the present work was restricted
to rather weak disorder—where analytical predictions for
〈x(t )〉 are possible—the regime of both strong disorder and
strong interactions would be very interesting, especially in the
regime of many-body localization.
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