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Molecular-orbital representation with random U(1) variables
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We propose random tight-binding models that host macroscopically degenerate zero-energy modes and belong
to the unitary class. Specifically, we employ the molecular-orbital representation, where a Hamiltonian is
constructed by a set of nonorthogonal orbitals composed of linear combinations of atomic orbitals. By setting the
coefficients appearing in molecular orbitals to be random U(1) variables, we can make the models belong to the
unitary class. We find two characteristic behaviors that are distinct from the random real-valued molecular-orbital
model. Firstly, a finite-energy gap opens on top of the degenerate zero-energy modes. Secondly, besides the
zero-energy modes, we also argue that the band center of the finite-energy modes is critical, which is inherited
from the dual counterpart, namely, the random-phase model on a bipartite lattice. Furthermore, as a by-product
of this model-construction scheme, we also construct the random tight-binding model on a composite lattice,
where we also find a realization of critical states.
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I. INTRODUCTION

The effects of disorders on electronic systems have been
a central issue in condensed matter physics. Metal-insulator
transition induced by disorders, i.e., the Anderson local-
ization, is one of the most striking phenomena caused by
disorders [1,2], and there have been tremendous amounts of
research activities since its proposal. More recently, the effects
of disorders on systems with exotic electronic structures have
been studied extensively. For instance, Dirac fermions, char-
acterized by vanishing density of states at the Dirac points,
exhibit rich physics in the presence of disorders [3–8]. An-
other example of exotic electronic structures is flat bands,
i.e., the completely dispersionless bands in the entire Bril-
louin zone. In flat-band systems, macroscopic degeneracy of
the single-particle spectrum allows us to construct localized
eigenstates even without disorders [9–11]. Then, they are
expected to be highly sensitive to disorders. Indeed, various
characteristic phenomena due to the interplay between flat
bands and disorders have been reported [12–19].

Besides the electronic structures, the symmetry and dimen-
sionality also play a crucial role in determining the nature of
the Anderson localization [20]. In theoretical analysis of tight-
binding models, the type of disorders (e.g., random potentials,
random hoppings, random flux, etc.) and the lattice structures
are two key ingredients for determination of the symmetry
class. In this respect, the previous works on disordered flat-
band systems mainly focus on the case where random on-site
potentials are introduced to a flat-band model, and a Hamil-
tonian matrix is consequently a real matrix [12–14,19]. In
contrast to those works, we have developed yet another di-
rection of studying random flat-band models, that is, tailoring
the models such that macroscopic degeneracy can be exactly
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retained even in the presence of disorders. To be more specific,
we have studied tight-binding Hamiltonians that are written
down by a set of nonorthogonal and unnormalized orbitals
constructed by a linear combination of atomic orbitals (AOs)
and whose total number is smaller than that of the AOs [21].
We name such construction the “molecular-orbital” (MO) rep-
resentation [22–29]. Along this line, in the previous works,
we consider the MO models where the coefficients appearing
in MOs are random real values [30]. We refer to this type of
models as the real-valued random MO models henceforth. We
have found that the probability density of zero-energy modes
is seemingly characteristic and resembles that of the critical
state, but its scaling behavior upon changing the system size
obeys that of the extended state [27,29].

With this as the background, in this paper, we consider the
random MO models with different type of randomness from
that in the previous works. Specifically, we construct the MOs
such that the coefficients are random U(1) variables, which
breaks the time-reversal symmetry and thus the universality
class becomes unitary. We refer to the models constructed in
this way as the random-phase MO models.

We first study the checkerboard model to illustrate the idea
of model construction. A key feature is that this model is
a dual of the random-phase (also referred to as the random
vector potential or the random flux) square lattice model,
which has been studied intensively as a prime example of the
random lattice fermion models in the unitary class [31–40].

By the numerical calculations, we elucidate the similarities
and differences between the random-phase MO models and
the real-valued random MO models. On the energy spec-
trum, a finite-energy gap opens on top of the degenerate
zero-energy modes, which is in contrast to the real-valued
random MO model. Meanwhile, the probability density dis-
tribution of the zero-energy modes has similar behavior to
that of the real-valued random MO model in that its finite-size
scaling behavior of the inverse participation ratio (IPR) obeys
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that of extended states. Besides the zero-energy modes, we
also find a characteristic feature in the finite-energy modes,
namely, the band center of the finite-energy modes is a crit-
ical state, which is inherited from the random-phase square
lattice model. Notably, the random-phase MO model itself
is not chiral symmetric, although the chiral symmetry plays
an important role in the emergence of the critical state in the
random-phase square-lattice model.

We additionally show that the random-phase MOs used to
describe the checkerboard model can be used to construct
a model defined on a composite lattice of the square and
checkerboard lattices, i.e., the Lieb lattice. In fact, the authors
have applied a similar model construction scheme to a kind
of topological insulators, called the square-root topological
insulators [41,42]. We show that, in the Lieb lattice model, the
critical states inherited from the square-lattice random-phase
model appear at the center of the positive- and negative-energy
sectors in a pairwise manner.

Subsequently to the checkerboard and Lieb-lattice models,
we also apply this construction method to the kagome model,
where we find that the results are qualitatively the same as
those of the checkerboard model. In addition, we also argue
the composite-lattice model of this series; the correspond-
ing composite-lattice model is a decorated honeycomb lattice
model, where we again find the qualitatively same results as
those of the Lieb-lattice model. These results indicate the
ubiquity of the present model construction by the random-
phase MO representation.

The rest of this paper is organized as follows. In Sec. II,
we introduce the random-phase MO model on a checkerboard
lattice, and elucidate its basic properties, including the dual
relation to the random-phase square-lattice model. Then, in
Sec. III, we present our numerical results on the spectrum
and wave functions. We focus on two aspects, namely, the
gap opening between the degenerate zero-energy modes and
the lowest finite-energy modes, and the critical nature of the
center of the finite-energy modes. In Sec. IV, we argue that the
random-phase MO introduced to describe the checkerboard
model can be used to construct the composite-lattice model,
namely, the Lieb-lattice model. In Sec. V, we apply the same
construction to the kagome lattice, and we show the paral-
lel numerical results to the checkerboard model. The results
for the composite lattice, namely, the decorated honeycomb
model, are also shown. The summary of this paper is presented
in Sec. VI.

II. MODEL CONSTRUCTION SCHEME:
CHECKERBOARD LATTICE

In this section, we introduce a random-phase MO model
on a checkerboard lattice [Fig. 1(a)]. The system consists of
L × L(= Nu.c.) unit cells and the periodic boundary condition
is imposed. At each site i of the checkerboard lattice, we
define the AO whose annihilation operator is written as ci. The
site i is specified by the unit-cell position R = R1a1 + R2a2

and the sublattice index A/B.
On this lattice, we consider a tight-binding Hamiltonian:

H =
∑

R

Ĉ†
RĈR, (1)

FIG. 1. (a) Checkerboard lattice. Two lattice vectors are
a1=(1, 1) and a2 = (−1, 1). (b) Schematic figure of ĈR. (c) The
dispersion relation for the clean limit [i.e., θA/B(R) = 0].

where

ĈR = eiθA (R)/2cR,A + eiθB(R)/2cR,B

+ e−iθA (R+a1 )/2cR+a1,A + e−i/θB(R+a2 )/2cR+a2,B. (2)

See Fig. 1(b) for the schematic figure of ĈR. It is worth noting
that the MOs are defined on lattice sites of a square lattice
which are placed at the center of the crossed squares of a
checkerboard lattice. In Eq. (2), the phase θA/B(R) ∈ [−π, π ]
is a random variable obeying the uniform distribution. The
choice of MOs in Eq. (2) might look fine-tuned because the
phase factors appearing in neighboring MOs are not indepen-
dent. For instance, the variable θA(R) appears both in ĈR and
in ĈR−a1 . In Appendix A, we elucidate the relation between
this model and the model where all phase factors are random

FIG. 2. Schematic figure of the square-lattice tight-binding
model with random-phase factor, corresponding to ϒ .
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FIG. 3. (a) Energy spectrum for the system with L = 36. Orange (green) dots correspond to the random (clean) system. (b) The gap �

as a function of L. (c) The gap as a function of β for L = 60. For (b) and (c), the average and the standard deviation are calculated for ten
independent configurations of θ ’s.

variables. We call ĈR the MO since it consists of a local linear
combination of AOs.

We align all the AOs in a column vector form, which we
write as ĉ; similarly, we align the MO in a column vector
form, which we write as Ĉ. Using these, we can rewrite the
Hamiltonian of Eq. (1) as

H = ĉ†Hĉ, H = ��†, (3)

where � is a 2Nu.c. × Nu.c. matrix defined such that it satisfies
Ĉ

† = ĉ†�. Then, the single-particle eigenenergies and eigen-
states are obtained by solving the eigenvalue equation of the
matrix H.

In fact, Eq. (3) indicates that there are at least Nu.c.

zero-energy eigenstates of H. To be specific, as �† is the
nonsquare matrix where the number of rows is lesser than
that of columns, the dimension of the kernel of the linear
map expressed by �† is equal to or greater than Nu.c.. In
other words, there exist vectors φZM

� (� = 1, . . . , Nu.c.) such
that φZM

� satisfies �†φZM
� = 0. Then, such vectors also satisfy

HφZM
� = �(�†φZM

� ) = 0. In the following, we assume that
φZM

� is normalized, namely, (φZM
� )†φZM

� = 1 holds.

A. Review of clean-limit properties

Without phase factors, i.e., θA(R) = θB(R) = 0, the model
is the conventional checkerboard lattice model with the
nearest-neighbor hoppings being 1 and the on-site potential
being 2. In this case, the eigenenergy of the dispersive band
as a function of a crystal momentum is easily obtained as
Ek = 4 + 2(cos k · a1 + cos k · a2); the other band is the flat
band with the eigenenergy being 0. The band structure is

depicted in Fig. 1(c), where we see the quadratic band touch-
ing at k = b1+b2

2 = (0, π ) [b1 = (π, π ) and b2 = (−π, π ) are
the reciprocal lattice vectors]. Recently, several theoretical
understandings of this type of band touching were proposed
[10,18,43–46]. From the viewpoint of the MO representation,
the origin of the quadratic band touching is the linear de-
pendence of the MOs. To be specific, in the clean limit, the
following relation holds:

∑
R

(−1)R1+R2ĈR = 0. (4)

This means that the number of linearly independent MOs (or
the rank of �†) is Nu.c. − 1, rather than Nu.c.. Recalling the fact
that the zero modes belong to the kernel of �†, the degeneracy
of zero modes is Nu.c. + 1, which leads to band touching of the
bottom of the dispersive band to the flat band.

B. Semipositivity of H
We now turn to the disordered case. Firstly, it is important

to point out that, from Eq. (3), H is positive semidefinite
for generic random phases. A straightforward proof of this
is as follows: let φ be an arbitrary 2Nu.c.-component column
vector. Then, we have φ†Hφ = |�†φ|2 � 0, which indicates
the semipositivity of H. This is enough, but here we present
an alternative proof, which gives a useful insight on � and �†

(see Sec. II C for details). We introduce a Hermitian matrix

H̄ =
(
ONu.c.,Nu.c. �†

� O2Nu.c.,2Nu.c.

)
, (5)

FIG. 4. The probability density for (a) the zero modes, (b) the lowest finite-energy mode, and (c) the center of the finite-energy modes. We
set L = 36.
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FIG. 5. IPR for (a) the degenerate zero modes and (b) the center
of the finite-energy modes. The line represents the fitting function,
IPR=AL−B, with (a) A=0.50, B = 1.99 and (b) A = 0.60, B=1.76.
The average and the standard deviation are calculated for ten
independent configurations of θ ’s.

where On,m denotes a n × m zero matrix. Then, the square of
the matrix H̄ is block-diagonalized as

H̄2 =
(

ϒ ONu.c.,2Nu.c.

O2Nu.c.,Nu.c. H

)
, (6)

where ϒ = �†�. The matrix H̄2 is obviously positive
semidefinite, and so are ϒ and H, since they are top-left and
bottom-right blocks of H̄2, respectively.

C. Relation to the square-lattice model and its implication

In the following discussions, ϒ of Eq. (6) plays a crucial
role in understanding the properties of H. In fact, the eigen-
values of ϒ are in common with those of H. This is simply

understood by the following relation [47–49]:

H� = �ϒ. (7)

Using this relation, we find the following: Let u� be a normal-
ized eigenvector of ϒ with the eigenvalue ε�. Then, we have

H(�u�) = �(ϒu�) = ε�(�u�), (8)

meaning that �u� is an eigenvector of H with the eigen-
value ε�, up to the normalization constant. Further, noting that
|�u�|2 = u†

��
†�u� = u†

�ϒu� = ε�, we find that the normal-
ized eigenvector of H with the eigenenergy ε� is

φNZM
� = 1√

ε�

�u�. (9)

Importantly, in the present model, ϒ is given as

ϒ = 4ÎNu.c. + H̃sq, (10)

where În represents the n × n identity matrix and H̃sq cor-
responds to the square-lattice tight-binding model with the
random-phase factor (Fig. 2):

[H̃sq]R,R′ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e−iθA (R+a1 ), R′ = R + a1

eiθA (R), R′ = R − a1

e−iθB(R+a2 ), R′ = R + a2

eiθB(R), R′ = R − a2

0, otherwise.

(11)

This model of the square-lattice random-phase (or the
random-flux) model, has been intensively studied in the liter-
ature [31–40]. Note that H̃sq is chiral symmetric, that is, H̃sq

satisfies {H̃sq, 
} = 0 with [
]R,R′ = (−1)R1+R2δR,R′ [50].
We show that the semipositivity of ϒ we addressed in the

previous section leads to an important consequence. To be
specific, as ϒ is positive semidefinite, the smallest eigenvalue
of H̃sq, ε

sq
min, satisfies ε

sq
min � −4. In addition, as H̃sq is chiral

symmetric, its largest eigenvalue ε
sq
max is −ε

sq
min, so it satisfies

ε
sq
max � 4. As −4 and 4 are the minimum and maximum of the

eigenvalues for the square-lattice tight-binding model without
the phase factor, the above facts provide a proof that the
expansion of the band width by the introduction of the phase
factor is prohibited.

III. NUMERICAL RESULTS FOR THE
CHECKERBOARD MODEL

In this section, we present our numerical results for the
random-phase MO model on a checkerboard lattice of Eq. (3).

FIG. 6. Multifractal analysis for the center of the finite-energy modes. (a) X [Eq. (18)] and (b) Y [Eq. (19)] as functions of ln l for several
values of q. (c) f −α spectrum. The error bars in panel (c) are the fitting errors for X and Y .
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FIG. 7. (a) Schematic figure of the Lieb-lattice model of H̄. (b) The energy spectrum for the system with L = 36. Orange (green) dots
correspond to the random (clean) system. (c) IPR for the center of the positive-energy sector. The average and standard deviations are calculated
for ten samples of the configurations of θ ’s. The line represents the fitting function, IPR = AL−B, with A = 0.36, B = 1.65. (d)–(f) Multifractal
analysis for the center of the positive-energy sector. (d) X and (e) Y as functions of ln l for several values of q. (f) f −α spectrum. The error
bars in panel (f) are the fitting errors for X and Y .

A. Energy spectrum

In Fig. 3(a), we show an energy spectrum in ascending
order for L = 36. The orange dots correspond to the random-
phase case, while the green dots correspond to the clean limit.

FIG. 8. (a) Kagome lattice. Two lattice vectors are a1 = ( 1
2 ,

√
3

2 )

and a2 = (− 1
2 ,

√
3

2 ). (b) Schematic figure of Ĉ�
,R and Ĉ�

,R. (c) The
dispersion relation for the clean limit [i.e., θ1/2/3(R) = 0].

We clearly see degenerate zero-energy modes, whose degen-
eracy is Nu.c. = L2. On top of the zero-energy modes, there
exists a finite-energy gap, which is in sharp contrast to the
clean limit, and to the real-valued random MO model [27,29].
In Fig. 3(b), we show the gap as a function of L, which indi-
cates that the energy gap does not vanish when extrapolated
to L → ∞. The gap size is about 0.5. Recalling the relation
between ϒ and H and the relation of Eq. (10), we find that
the gap � corresponds to the “shrinking” of the band width
due to the random phase in the square-lattice tight-binding
model. This shrinking of the band width was observed in the
numerical simulations in the literature [32,34,35,40].

As we have seen in Sec. II A, the gap remains closed in
the clean limit, so one may wonder how the gap evolves
upon increasing the strength of disorders. To see this, we
interpolate the disordered limit and the clean limit, To be
specific, we modify the range of θ as θA/B(R) ∈ [−βπ, βπ ]
with β ∈ [0, 1]. Figure 3(c) represents the β dependence of �

for L = 60. We see that � is smoothly dependent on β, and it
saturates around β ∼ 0.6.

B. Wave functions: Emergent critical state at band center

Next, we reveal the characteristics of the wave functions
for both degenerate zero modes and the finite-energy modes.
Figure 4 shows the probability density, ρ. The definition of the
probability density is as follows. For the finite-energy mode,
it is defined as

ρNZM
� (i) = ∣∣[φNZM

�

]
i

∣∣2
, (12)

where φNZM
� (� = 1, . . . , Nu.c.) is the �th nonzero energy

eigenvector of H [see Eq. (9)]; here we align them such that
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FIG. 9. (a) Energy spectrum for the system of the kagome lattice model with L = 36. Orange (green) dots correspond to the random (clean)
system. (b) The gap � as a function of L. (c) The gap as a function of β for L = 60. The average and the standard deviation are calculated for
ten independent configurations of θ ’s.

they satisfy ε1 � ε2 � · · · � εNu.c. . For the degenerate zero-
energy modes, ρ is defined as

ρZM(i) = 1

Nu.c.

Nu.c.∑
�=1

∣∣[φZM
�

]
i

∣∣2
. (13)

Note that the probability density satisfies
∑

i ρ
NZM
� (i) =∑

i ρ
ZM(i) = 1, since the wave functions are normalized. We

also note that ρNZM
� (i) is related to the correlation matrix

defined for u� (see Appendix B for details).
Figures 4(a), 4(b), and 4(c) represent ρ for the zero modes,

the nonzero mode of � = 1 (which we call the band edge), and
the nonzero mode of � = Nu.c.

2 (which we call the band center),
respectively. For the zero modes, we see that the distribution
is rather uniform despite the existence of the randomness. At
the band edge (� = 1), we see a sharp peak of the probability
density, indicating the localized nature of the wave function.
Interestingly, at the band center (� = Nu.c.

2 ), we see a spiky
distribution of the probability density, indicating the critical
nature of the wave function. In fact, the possibility of the
critical state at the band center is inferred from Eq. (9). To be
more specific, uNu.c./2, which is the wave function of the band
center of H̃sq, is predicted to be critical [31–40]. Therefore,
a naive expectation is that φNZM

Nu.c./2 exhibits the same scaling
behavior as uNu.c./2.

In order to examine the scaling behavior of the wave func-
tions in more detail, we compute the system size dependence
of the IPR. For the nonzero modes, we define the IPR as

IPRNZM
� =

∑
i

[
ρNZM

� (i)
]2

, (14)

and for the degenerate zero modes, we define it as

IPRZM =
∑

i

[
ρZM(i)

]2
. (15)

The results are shown in Fig. 5. Note that we focus on the
zero-energy modes and the band center, as it is rather clear
from Fig. 4(b) that the band edge is a localized state. We see
that the IPR for the zero-energy modes is approximately fitted
as IPRZM ∝ L−2, which is the scaling of the extended state.
In fact, this is the same behavior as the zero modes of the
real-valued random MO model [27,29], and thus is speculated
to be ubiquitous in the zero modes of the random MO models.
In contrast, for the band center, we see that the IPR is fitted
as IPRNZM

�=Nu.c./2 ∝ L−1.76, which is an intermediate behavior

between the localized and the extended states. Hence, this
result supports that the band center is a critical state.

To further shed light on the critical nature of the band
center, we perform the multifractal analysis. Specifically, we
depict the f −α spectrum, by which we capture the multifrac-
tal nature of the wave function [51].

Let us briefly summarize how to obtain the f −α spectrum,
which is based on Refs. [52,53]. First, we cover the system by
the patches containing l × l unit cells. We label each patch by
m. We then define the probability density in the patch m as

P(l; m) =
∑
i∈m

ρNZM(i). (16)

Note that we omit the mode index � for simplicity of writing.
Then, using this, we define

μm(q, l ) = [P(l; m)]q∑
m′ [P(l; m′)]q

. (17)

The key relations to extract the f −α spectrum from μm(q, l )
are as follows:

X (q, l ) :=
∑

m

μm(q, l ) ln μm(q, l ) = f (q) ln l (18)

and

Y (q, l ) :=
∑

m

μm(q, l ) ln lnPm(q, l ) = α(q) ln l. (19)

Using (18) and (19), we find that the f −α spectrum can be
obtained by (i) plotting X (q, l ) and Y (q, l ) as functions of ln l
for several values of q and (ii) estimating f (q) and α(q) from
the slope of the plots of (i).

In Figs. 6(a) and 6(b), we plot X and Y as functions
of ln l , respectively. We set L = 96, l = 2, 4, 8, 12, 16, and
q = −2,−1, 0, 1, 2, 3, 4, 5. We see that the fitting by using
Eqs. (18) and (19) works well for q � 3, whereas the de-
viations of linear fitting for X become relatively large for
q = 4, 5. On the basis of this fitting, we obtain the f −α

spectrum, as shown in Fig. 6(c). We clearly see the character-
istic downward convex behavior of the f −α spectrum. This
indicates the multifractal nature of the wave function, which
is characteristic to the critical state.

Combining the results of the IPR and that of the multi-
fractal analysis, we conclude that the checkerboard model H
hosts the critical state at the center of the finite-energy sector.
Before proceeding further, we remark on a role of symmetry.
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In the square-lattice random-phase model, it has been argued
that the chiral symmetry represented by 
 (see Sec. II C) plays
an essential role in realizing the critical state. Meanwhile the
Hamiltonian H itself does not preserve the chiral symmetry,
although the critical state appearing in this model is inherited
from the chiral symmetric model, H̃sq. In other words, H
serves as an example of the random tight-binding model in
unitary class realizing the critical state without preserving
chiral symmetry.

IV. THE COMPOSITE MODEL CONSTRUCTED FROM
MOLECULAR ORBITALS: A LIEB-LATTICE MODEL

So far, we have investigated the checkerboard model
constructed by the MOs with random U(1) variable whose
Hamiltonian matrix is given as H. There, the existence of
the critical state at the center of the finite-energy states is
inherited from that of the square-lattice random-phase model.
In this section, we point out that the same trick to obtain the
critical state is applicable to the composite of the square and
the checkerboard lattices, that is, the Lieb lattice. In fact, we
have already introduced the Lieb-lattice model, H̄, in Eq. (5)
to account for the semipositivity of H. The schematic figure of
the Lieb-lattice model is shown in Fig. 7(a).

We first remark that the matrix H̄ is chiral symmetric,
namely, H̄ satisfies {H̄, 
̄} = 0 with


̄ =
(

ÎNu.c. ONu.c.,2Nu.c.

O2Nu.c.,Nu.c. −Î2Nu.c.

)
. (20)

From Eq. (20), we find |Tr(
̄)| = Nu.c.. Due to this relation,
there exist Nu.c. zero modes [54–57]. Also, the chiral symme-
try itself implies that the finite-energy states appear at positive
and negative in a pairwise manner. Such behaviors are indeed
seen in Fig. 7(b), where we plot the energy spectrum of the
Lieb-lattice model for L = 36.

Let us now argue the characters of the wave functions.
Importantly, the finite-energy eigenvectors of H̄ are also con-
structed from the eigenvectors of ϒ , u�. More precisely, the
vector ϕ+

� = 1
N�

(
√

ε�u�, �u�)T is the normalized eigenvector

of H̄ with the eigenvector
√

ε�, where N� is the normalization
constant; in fact, noting that |u�|2 = 1 and |�u�|2 = ε�, one
finds N� = √

2ε�. One can easily check this by explicitly
multiplying H̄ to ϕ+

� :

H̄ϕ+
� = 1

N�

(
�†�u�√
ε��u�

)
=

√
ε�

N�

(√
ε�u�

�u�

)
= √

ε�ϕ
+
� . (21)

Its negative-energy counterpart, i.e., the one whose eigenen-
ergy is −√

ε�, is given as ϕ−
� = 
̄ϕ−

� = 1
N�

(
√

ε�u�,−�u�)T.
Obviously, ϕ−

� has the same probability density distribution as
that of ϕ+

� .
Then, considering the fact that u� and �u� are the critical

states for � being the band center, we expect that the corre-
sponding ϕ

+/−
� are critical as well. We examine the above

conjecture by the numerical calculation. In Fig. 7(c), we plot
the IPR for ϕ+

� for � being the band center as a function
of L. It exhibits the system size dependence, IPR ∝ L−1.65,
which indicates that the wave function is neither localized nor
extended. Further, in Figs. 7(d)–7(f), we show the results of
the multifractal analysis. We see that the deviation from the

linear fitting for X for q = 4, 5 becomes larger than that for the
checkerboard model. In fact, for these values of q, X becomes
almost independent of the patch size �. Nevertheless, the char-
acteristic downward convex behavior of the f −α curve is still
observed, which indicates the multifractal nature of the wave
function. From these results, we conclude that the Lieb-lattice
model H̄ also hosts the critical state. Additionally, as the
probability density of ϕ−

� is the same as the corresponding ϕ+
� ,

the critical state also exists in the negative-energy sector. It is
noteworthy that the chiral symmetry of H̄ is not a direct origin
of the emergence of the critical states, because the critical
states have finite energy rather than zero energy.

V. KAGOME LATTICE MODEL AND DECORATED
HONEYCOMB LATTICE MODEL

In this section, we show that the same construction of the
random-phase MO model, discussed in Sec. II, can be applied
to the kagome lattice [Fig. 8(a)].

We consider the tight-binding model:

H =
∑

R

Ĉ†�
,RĈ�

,R + Ĉ†�
,RĈ�

,R, (22)

where

Ĉ�
,R = eiθ1(R)/2cR,1 + eiθ2(R)/2cR,2 + eiθ3(R)/2cR,3 (23)

and

Ĉ�
,R = e−iθ1(R)/2cR,1 + e−iθ2(R+a1 )/2cR,2 + e−iθ3(R+a2 )/2cR,3.

(24)

The phase factors θ1,2,3(R) ∈ [−π, π ] again obey the uniform
distribution. See Fig. 8(b) for the schematics of Ĉ�

/
�

,R. Note
that the dual counterpart of this model, ϒ , corresponds to the
random-phase model on a honeycomb lattice with uniform on-
site potential being 3. In the clean limit, we have three bands;
the flat band has the lowest energy, and the remaining two
bands form Dirac cones at the K and K ′ points [Fig. 8(c)].

In the following, we show the numerical data for this
model. As we will see, all results are qualitatively the same
as that for the checkerboard model.

Figure 9(a) shows the energy spectrum for L = 36. We
again see macroscopically degenerate zero modes even in the
presence of the randomness. Similarly to the checkerboard
model, we see a finite gap between the zero modes and the
bottom of the finite-energy modes. As for the size dependence
of the gap [Fig. 9(b)], we again see that the gap is expected
to be nonvanishing for L → ∞. The gap size is about 0.15,
which is smaller than that for the checkerboard model. Addi-
tionally, the β dependence of the gap [Fig. 9(c)] shows similar
behavior as that for the checkerboard model.

We next analyze the probability density distribution in the
real space. Figures 10(a), 10(b), and 10(c) show the proba-
bility density distributions for the zero modes, the band edge,
and the band center, respectively. We again see qualitatively
similar behaviors to the checkerboard model. In particular, the
probability density for the band center seems to have a spiky
distribution, which implies the multifractal nature.

Figures 11(a) and 11(b) show the system size depen-
dence of the IPR for the zero modes and the band center,
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FIG. 10. The probability density for (a) the zero modes, (b) the lowest finite-energy mode, and (c) the center of the finite-energy modes for
the kagome lattice model. We set L = 36.

respectively. We see that the IRP has a scaling behavior of the
extended state for the zero modes, whereas that for the band
center is of neither the extended state nor the localized state
(IPR ∝ L−1.78).

Figure 12 shows the results of the multifractal analysis for
a band center. We again see that X and Y are linear in ln l ,
and that the f −α curve is downward convex, indicating the
multifractal nature.

Finally, we introduce a model corresponding to H̄, i.e.,
the composite of the honeycomb and kagome lattices. That
model is called the decorated honeycomb lattice model,
whose schematic figure is shown in Fig. 13(a). In the energy
spectrum [Fig. 13(b)], we see degenerate zero modes and

FIG. 11. IPR for (a) the degenerate zero modes and (b) the center
of the finite-energy modes of the kagome lattice model. The average
and standard deviation is calculated for ten samples of the configu-
rations of θ ’s. The line represents the fitting function, IPR = AL−B,
with (a) A = 0.33, B = 2.00 and (b) A = 0.43, B = 1.78.

the finite-energy modes appearing in a pairwise manner in
positive- and negative-energy sectors.

Further, as is the case in the Lieb lattice, the band center
of the finite-energy modes is again expected to be critical.
This is numerically indicated by the scaling behavior of the
IPR [Fig. 13(c)]. As for the results of the multifractal analysis
[Figs. 13(d)–13(f)], we see the same tendency as those of the
Lieb lattice [Figs. 7(d)–7(f)]. Specifically, the results for q =
4, 5 contain large fitting errors, but we believe it reasonable
to judge that the downward convex of the f −α spectrum is
observed from the data of q = −2, . . . , 3.

VI. SUMMARY

We have proposed a class of tight-binding models con-
structed by the representation with random U(1) variables.
The model construction scheme guarantees the existence of
the macroscopically degenerate zero modes. A key insight
is that the models constructed in this way have their dual
counterparts, which are the random-phase hopping models
on bipartite lattices. As such, various important properties of
eigenvalues and wave functions are closely tied with a dual
counterpart.

By the numerical calculations, we show a gap opening
on top of the zero-energy modes, which is in contrast to
the real-value random MO model. The probability density
distribution of the zero-energy modes has a scaling property
of the extended state, similar to that of the real-value random
MO model. Besides the zero modes, we also find that the
band center of the finite-energy sector is the critical state, as
demonstrated by the scaling of IPR and the characteristic f −α

spectrum. Importantly, the critical state is inherited from its
dual counterpart, which is chiral symmetric, but the random-
phase MO models themselves are lattice models hosting the
critical state without preserving the chiral symmetry.

Furthermore, as a by-product of this model-construction
scheme, we introduce yet another random U(1)-valued hop-
ping model defined on a composite lattice such as Lieb and
decorated honeycomb lattices, which host the critical states
appearing in a pairwise manner in positive- and negative-
energy sectors.

Before closing this paper, we address several future prob-
lems which we believe deserve being studied. Firstly, the
models we have studied are two-dimensional models, but
the random U(1) MO models in higher dimensions can
be constructed straightforwardly. Such higher-dimensional
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FIG. 12. Multifractal analysis for the center of the finite-energy modes of the kagome lattice model. (a) X and (b) Y as functions of ln l for
several values of q. (c) f −α spectrum. The error bars in the panel (c) are the fitting errors for X and Y .

models will be a promising target for investigating character-
istic localization phenomena, as is the case of the conventional
random-phase model [58,59]. Secondly, the MO representa-
tion is applicable to other symmetry classes. For instance,
if we adopt random SU(2) matrices as coefficients of MOs,
we obtain random flat-band models in the symplectic class.
Studying localization phenomena in such models, for both
degenerate zero modes and finite-energy modes, will be
an intriguing future problem. Finally, experimental realiza-
tion of the random U(1) MO models and the corresponding
composite-lattice models is an important issue. In fact, the
models considered in this paper contain only the on-site po-
tentials and the nearest-neighbor hoppings, which makes these
models feasible in some artificial systems. In cold atoms
[60], photonic waveguides [61], and electric circuits [62], the
complex hoppings can be implemented, so we expect that
appropriate control of their amplitudes and phases will pro-

vide chances of realizing our models. For instance, in electric
circuits, systematic control of the admittance of the circuit
element can be achieved by using the variable resistors and
capacitors [63], which will open the way to realize the desired
random complex hoppings.
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APPENDIX A: REMARK ON EQ. (2)

At first glance, the choice of MOs in Eq. (2) is fine-
tuned, since the phase factors appearing in neighboring MOs
are not independent. An alternative and more naive way of

FIG. 13. (a) Schematic figure of the decorated honeycomb lattice model. (b) The energy spectrum for the system with L = 36. Orange
(green) dots correspond to the random (clean) system. (c) IPR for the center of the positive-energy sector. The average and standard deviation
is calculated for ten samples of the configurations of θ ’s. The line represents the fitting function, IPR = AL−B, with A = 0.17, B = 1.60. (d)–(f)
Multifractal analysis for the center of the positive-energy sector. (d) X and (e) Y as functions of ln l for several values of q. (f) f −α spectrum.
The error bars in panel (f) are the fitting errors for X and Y .
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introducing the phase is

ˆ̃CR = eiθ̃1(R)cR,A + eiθ̃2(R)cR,B

+ eiθ̃3(R)cR+a1,A + eiθ̃4(R)cR+a2,B, (A1)

where θ̃1,2,3,4(R) are random variables. Note that the numbers
of θ variables are 2Nu.c. for (2) and 4Nu.c. for (A1). Here
we show that (2) and (A1) give the same Hamiltonian un-
der the gauge transformation. Specifically, defining dR,A :=
ei[θ̃1(R)+θ̃3(R−a1 )]/2cR,A and dR,B := ei[θ̃2(R)+θ̃4(R−a2 )]/2cR,B, we
have

ˆ̃CR = ei[θ̃1(R)−θ̃3(R−a1 )]/2dR,A + ei[θ̃2(R)−θ̃4(R−a2 )]/2dR,B

+ e−i[θ̃1(R+a1 )−θ̃3(R)]/2dR+a1,A

+ e−i[θ̃2(R+a2 )−θ̃4(R)]/2dR+a2,B. (A2)

Then, by setting θ̃1(R) − θ̃3(R − a1) = θA(R) and θ̃2(R) −
θ̃4(R − a2) = θB(R), we find that ˆ̃CR of Eq. (A2) is equivalent
to ĈR of Eq. (2).

APPENDIX B: PROBABILITY DENSITY
OF FINITE-ENERGY MODES

In this Appendix, we show that the probability density of
the finite-energy mode in Eq. (12) can be written by using �

and the correlation matrix defined for u�. This is archived by
simply substituting Eq. (9) into Eq. (12):

ρNZM
� (i) = [

φNZM
�

]
i

[(
φNZM

�

)†]
i

= 1

ε�

[�u�]i[(u�)†�†]i

= 1

ε�

[�g��†]ii. (B1)

Here, g� is the Nu.c. × Nu.c. matrix,

[g�]R,R′ = [u�]R[u∗
�]R′ , (B2)

which is referred to as the correlation matrix.
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