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Magnetization can be induced by an electric field in systems without inversion symmetry P and time-reversal
symmetry 7. This phenomenon is called the magnetoelectric (ME) effect. The spin ME effect has been actively
studied in multiferroics. The orbital ME effect also exists and has been mainly discussed in topological insulators
at zero temperature. In this paper, we study the intrinsic orbital ME response in metals at finite temperature using
the Kubo formula. The intrinsic response originates from the Fermi sea and does not depend on the dissipation.
Especially in systems with P7 symmetry, the extrinsic orbital ME effect becomes zero, and the intrinsic ME
effect is dominant. We apply the response tensor obtained in this work to a P77 -symmetric model Hamiltonian
with antiferromagnetic loop current order, demonstrating that the intrinsic ME effect is enhanced around the

Dirac points.
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I. INTRODUCTION

The magnetoelectric (ME) effect is a phenomenon where
magnetization is generated by applying an electric field or,
conversely, an electric polarization is generated by applying a
magnetic field. This effect appears in various systems with-
out inversion symmetry and time-reversal symmetry. Most
research on the ME effect has focused on spin degrees of
freedom, e.g., in multiferroics [1-5], after the first observation
in an antiferromagnet, Cr,O3 [6-8]. However, besides spin
magnetization, orbital magnetization also contributes to the
total magnetization that can be induced by an electric field.
Such an orbital magnetization induced by an electric field is
called the orbital ME effect. The orbital ME effect has been
mainly studied in topological insulators at zero temperature.
In topological insulators, it consists of two terms, a non-
topological term (the Kubo term) and a topological term (the
Chern-Simons term) [9-13].

The theoretical description of the orbital ME effect in
metals at finite temperature is an ongoing problem because
the orbital magnetic dipole moment is based on the position
operator 7. Because the position operator is ill defined in
periodic systems using the Bloch basis, the direct calculation
of the orbital magnetization is complicated. This difficulty
also appears when calculating the orbital magnetization in
equilibrium. This problem can be solved in insulators by a for-
malization based on the Wannier representation [14,15], and
by the semiclassical theory [16]. While these two approaches
assume zero temperature, subsequent researchers derive equa-
tions of the orbital magnetization that are applicable even
in metals at finite temperature using semiclassical theory
[17]. Furthermore, in a full quantum mechanical approach,
in Ref. [18], the orbital magnetization M' is defined in the
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thermodynamic sense by a derivative of the free energy F by
the magnetic field B (M’ = 9F/3dB"). In practice, it is calcu-
lated by the thermodynamic relation dM' /3 = dN/dB!. This
approach avoids the use of the position operator. However,
this method is unique to equilibrium and cannot be applied to
nonequilibrium states, such as quantum states in the presence
of a current when an electric field is applied.

Recently, the orbital ME effect in metals at finite tempera-
tures has been attracting attention. It has been experimentally
observed in monolayer MoS, [19,20] and twisted bilayer
graphene [21,22]. Theoretical research is also steadily pro-
gressing. The orbital ME effect in metals is partially derived
in Refs. [23-27]. This effect is also proposed in superconduc-
tors [28,29]. These researches cover the extrinsic part, which
originates in the change of the Fermi distribution function by
an electric field and is proportional to the relaxation time .
In general, response functions also include an intrinsic part
originating in the change of the wave function by an electric
field, leading to, e.g., the anomalous Hall conductivity, which
is related to the Berry curvature. Thus, we can expect that
there is an intrinsic orbital ME effect even in metals at finite
temperature, and it is, in fact, discussed using semiclassi-
cal theory [30,31]. There are still no works calculating the
intrinsic orbital ME effect using a fully quantum mechanical
approach. However, a fully quantum mechanical approach
deriving the effect going beyond the semiclassical theory is
essential to understand quantum effects and calculating the
effect in interacting systems.

In this work, we derive the intrinsic orbital ME response in
a fully quantum mechanical approach using the Kubo formula.
In Sec. II, we discuss the formalization of the orbital ME ten-
sor from the current-current correlation function. We derive
the intrinsic orbital ME tensor and discuss the physical mean-
ing of this formula, a relationship with the thermodynamical
orbital magnetic quadrupole moment, and the symmetry con-
straints in Sec. III. Finally, we analyze the intrinsic orbital
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ME response in a model with antiferromagnetic loop-current
order with P77 symmetry in Sec. IV and conclude this paper
in Sec. V.

II. FORMALIZATION

In this section, we will discuss the formalization of the
orbital ME effect. To derive it, we use the fact that the orbital
ME response tensor is included in the current-current correla-
tion function CI>’/J(q, ). In the following, we will see how to
extract the orbital ME tensor from the correlation function,
particularly the first-order derivative by the wave number,
following Ref. [12].

In linear response theory, the current-current correla-
tion function ®7,(¢, ») is defined using the current density

J40 and a monochromatlc electromagnetic field A(x,t) =
Aq wefiwt+iq~x

Jyw= =7 (q, w)A] , D)

Let us consider the first-order derivative by the wave number
g of the correlation function, CD” k(a)) =9, CD” /(g =0,w).To
simplify the discussion, we split CI>
odd part @3
and a time-reversal even part (w), which is antisym-
metric in the indices i <> j. We will see that these two parts
include the multipole response tensors, such as the ME tensor,
and we will see how to decompose these parts into multipole
response tensors.

At first, we consider the antisymmetric part. This part has
nine independent components. Therefore, it can be decom-
posed by a rank-2 tensor «;; as

(a)) into a time-reversal

(w), which is symmetrlc in the indices i <> j,
PPk
JJ

Aijik ; .
@51)” () = igiaji(w) — igjuay(w), (2a)

1 i i
= —eml2 20 (w) — @Y (0)]. (2b)

Olij(w)

Substituting Eq. (2a) in Eq. (1) and using <I> (q, w) =

o k(w)qk for small wave numbers, Eq. (2a) can be written as

Too = T30 +ia < MEF (3)
TP = —iwP AP = a;j(w)B] , (3b)
'
AE
M((j "= la)aﬂ(a)) q.0° (SC)

where E, , = iwA,,, is the electric field and By, = ig x
Ay, is the magnetic field. In Ref. [24], o;; is calculated in
the range of nonabsorbing frequencies, @ < Aeg,p. Then, «;;
can be calculated as

d3k af (Enk)
(@)= Z/ ok M @
where 7 is the relaxation time, f(e) = 1/(ePE* = 4+ 1) is
the Fermi distribution function of the nth band energy €y,
and m,,, is the spin and orbital magnetic moment. In the long
wavelength limit ¢ — 0, only Jg‘w contributes to the transport
current induced by a magnetic field. This phenomenon is
called the gyrotropic magnetic effect, and Eq. (3c) is inter-
preted as the ME effect [24]. This ME effect is an extrinsic

part and originates from the change of the Fermi distribution
function. In the following, we will see that there is another
contribution derived from the symmetric part, which is the
main result of this paper.

Thus, let us discuss the symmetric part @) (w). This
part is known to generate the intrinsic nonreciprocal direc-
tional dichroism [32]. In the following, we will see that this
part also includes the ME tensor. The symmetric part has 18
independent components. Therefore, it can be decomposed
using a traceless rank-2 tensor B;; and a totally symmetric
rank-3 tensor y;x [12]. B;; has eight independent components
and y;x has ten independent components. Together, they have
18 independent components in total. Thus, there is a one-to-
one correspondence to the symmetric part as

¢®“%w>=iqM&xwy+mMﬂm@)+wnﬂw» (5a)
Bii(w) = aﬁé“”k() (5b)
Vij(w) = Lbﬂ””()+¢ﬁm%wy+¢ﬁ“%wﬂ
(5¢)

Substituting Eq. (5a) in Eq. (1), we obtain
IS =JSBE 1 ig x MO (62)
Jpot = =i (PR — iq;OF0) (6b)
ﬁﬁ=$mwmw (6¢)
Qm”=—%nﬁw%w (6d)
A&F=%mwﬁw (6e)

In Eq. (6a), B;; corresponds to the ME tensor. Thus, the ME
response tensor is given by «;; and §;;. Furthermore, since y; jx
is totally symmetric, it can only be regarded as the response of
an electric quadrupole moment and cannot be included in the
ME effect. Thus, y;ji is the pure response tensor of the electric

quadrupole moment induced by an electric field Q(S)E”.

The decomposition in Eq. (5a) can also be interpreted as
the expansion of the free energy by the magnetoelectric field
in the path-integral sense [33] as

FIA, Al = A", _ 5" w)qiAl,
; Bij(w) < Bji(w)
_E_"  w B‘jI’”+B_q’_w iw E‘IJ""
+ Q) oY@ g %)

Here, we use X = A, E, B as the external field and X as the
auxiliary field generating the observables such as the current
density. This equation shows that the expression B;;/iw is
identical to the definition 82F / 9B q._waE‘{,w, which is exactly
the ME tensor. We note that in this definition, the electric field
and the magnetic field are interconvertible with each other
due to the Faraday law (V x E + dB/dt = 0). Thus, when
focusing on the response of the magnetization by the electric
field, all components of d;F J, which can be transformed into
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a magnetic field, must be taken into account. Of course, there
are components that cannot be converted into a magnetic field.
These components correspond to y; jk.

First, we comment on some merits of this definition of
the ME tensor. In finite systems, the naively defined polariza-
tion, magnetization, multipoles, and their response functions
depend on the origin of the coordinate system [34]. How-
ever, using the current-current correlation function and the
decomposition of this correlation function into the multipole
response functions, we can appropriately calculate their re-
sponse functions independent of the origin, even well defined
in bulk systems. In addition, the response functions are guar-
anteed to be gauge invariant.

In the above discussion, the vector potential is used
to describe the electric field and the magnetic field. Of
course, the scalar potential also generates an electric field. In
Appendix B, we show that the response tensor induced by the
scalar potential also includes the information on the orbital
magnetic ME tensor and results in the same equations as the
following discussion.

The goal of this paper is the derivation of the orbital ME
effect originating in the B;; in a uniform and static electric
field. Thus, we need to calculate lim,,_,o B;; (@)/iw.

III. DERIVATION OF THE INTRINSIC
ORBITAL ME TENSOR

In this section, we will derive the formula of the intrinsic
orbital ME tensor at finite temperatures in periodic systems.
In this paper, we focus on the response under a uniform and
static electric field. Thus, in the final step, we will take two
limits, ¢ — 0 and w — 0. In general, interchanging these two
limits gives different results. In this paper, we consider the
uniform limit (taking ¢ — 0 before w — 0) to calculate the
dynamical response. However, we will see that the intrinsic
orbital ME response originates from interband effects. There-
fore, there is no need to be cautious about the order of the
two limits, unlike in the extrinsic case, because there is no
singularity.

d’k f(€nkrqr2) = f(€mk—qy2)

A. Setup
The Hamiltonian used in this paper is
=2 v+ (W ®)
= — x)+—|——xp]) -0,
°= m a2\ ox P

where m is the mass of an electron, V(x) =V(x +a) is a
periodic potential, and o is the Pauli matrix representing the
spin degrees of freedom. The third term is the spin-orbital cou-
pling term. In this paper, we use i = 1. The velocity operator
vg = i[Hp, x] is

4 1 aV(x)

=—4+ — . 9
Yo m_‘_4m20>< 0x ©)

Applying a monochromatic electromagnetic field A(x,?) =
Ag e T4% we find that the momentum changes as p —
p + eA(x, t), where —e is the charge of an electron. We here
neglect the Zeeman term because we focus on the orbital
magnetization. Then, the perturbed Hamiltonian in the first
order of the electromagnetic field is

Hy = %[UO'A(XJ)*‘A(X’[)'”O]' (10)

The velocity is also changed by the electromagnetic field as
vy = i[Hy, x] = eA(x, t)/m, which is the diamagnetic term.
The total current operator is given by J(r, 1) = —e{vy, S(r —
x)}/2, where r is just a coordinate and not an operator,
unlike x, and vy = vg + v4. This current operator satisfies
the equation of continuity V, - J(r,t) = —i[Hy + Ha, n(r)],
where n(r) = —ed(r —x) is the electron density. Fourier
transforming this current operator yields

Jpw = [d3rJ(r,t)ei“’”iq"

1 o Ago
— _e(—{v(), e+lwt—1q~X} + 1) (11)
2 m

Using the second quantization and the Kubo linear response
theory, the symmetric part of the current-current correlation

function ®§Sj)ij (g, ) is given by

g0 =—¢ [ S5

n

Here, we use the following notations:

Hy W’nk) = €nk |¢nk> ,

€nkrq/2 — €mk—q/2 — (@ + i8)

_ik-
i) = e [Yuic)

e ((tmk—qy2) Vi |tnicrq/2) (tnk+q/2] Vi 1Umic—q/2))

12)

. . 9H,
Hy = e % Hyek* o = a_kk (13)

The Bloch wave number k lies in the first Brillouin zone (BZ). €, is the eigenenergy of the nth band, |1/,) is a Bloch function,

|unk) is the periodic part of the Bloch function, and vy, is the velocity operator of the Bloch basis. Expanding &
up to the first order and using the relationship in Egs. (5b) and (5¢), we can obtain the uniform and static orbital ME tensor x

(eq)

ﬁsj)ij (g, w) by q
(me)
ij

and the pure electric quadrupole conductivity o, ik which represents the contribution from the electric quadrupole moment to

the current density.
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B. Intrinsic orbital ME tensor

In this subsection, we show the equations of the intrinsic orbital ME tensor and the pure electric quadrupole conductivity
and discuss the physical meaning of these responses. The expressions for the intrinsic orbital ME tensor and the pure electric
quadrupole conductivity are (see Appendix A for a detailed derivation)

me Bij(w) d’k
i )—i‘E%,R[ i ]:_ ', (2n>32f(€"")( e~ 2

U,-(;/?) = (})13}) Reyijp(w) =e
where 0 = 03/0k;,  €unk = €k — €mk and  f'(ex) =
0f(€wx)/0€x. These equations are the main results of
this paper.

In the following, we discuss the physical meaning of each
term in Eqgs. (14) and (15). The first term in Eq. (14) and the
second term in Eq. (15) include g',{k, which is the quantum
metric [35,36],

glnjk = Z Re[‘A;mk‘Amnk] (]6)
m(#n)

where .Ailmk = i (U |Oiye) 1S the Berry connection. The
quantum metric is a metric measuring the distance between
wave functions on a parameter space (e.g., the Bloch wave
number). This metric is an important geometric quantity
characterizing quantum states in the Brillouin zone together
with the Berry curvature. The quantum metric can be inter-
preted as an electric quadrupole moment of a wave packet
[32,37], and it also contributes to the thermodynamical elec-
trical quadrupole moment [38]. This metric is also included
in the pure electric quadrupole conductivity in the second
term of Eq. (15). This term represents the electric quadrupole
moment induced by the change of the distribution function
(see also Eq. (10) in Ref. [38]). On the other hand, the first
term in Eq. (14) comprises the antisymmetric parts between
the indices of the derivative and the index of the metric. This
term can be rewritten using integration by parts to &y, nkgnk
on the Fermi surface. Because the metric behaves as g/ ~ x'x/
having the same symmetry as the electric quadrupole moment,
this term behaves like x(x x v%,)/. Here, x; represents the po-
sition, and we use v = €,/ 0k, which is the group velocity
of the nth band. Thus this term corresponds to a magnetic
quadrupole moment and also appears in the thermodynamical
orbital magnetic quadrupole moment [39,40], moreover, con-
tributing to the orbital ME effect.
The second term in Eq. (14) includes

M,, = Z %(vmlk + v(y:k(sml) X Alnkv (17

[(#n)

where v,,;x = (Umk| Vi |ug) is the matrix element of the ve-
locity operator vg. M,,, has the form of v x r, so it can be
interpreted as an off-diagonal element of the orbital magnetic
moment. The second term in Eq. (14) can be interpreted as
the perturbation of the wave function affecting the orbital
magnetization M created by an electric field. Thus, this term
includes the Berry connection A, which acts like a polariza-
tion conjugate with the electric field. This term also appears
in the orbital magnetic quadrupole moment [39,40].

2 Re [.Al

nm mn -
€nmk

a,jAf;mM,’;nD (14)
mEn)

/B . (Zn)BZ{ - ('E”")w, e @i Bren) + L (0,67 + By, +ag’;k)} (15)

3

(

Finally, we comment on the gauge invariance of the ob-
tained equations. The parts of the equation that depend on
wave functions are in the form of the off-diagonal Berry
connection .A4,,,. The off-diagonal Berry connection is gauge
invariant; therefore, these equations are also gauge invari-
ant. Because this approach is based on the current-current
response function, the gauge invariance should be guaranteed.
In addition, we calculate these tensors using a scalar potential
instead of the vector potential, and we obtain the same result
as Egs. (14) and (15) (see Appendix B). Thus, these tensors do
not depend on the choice of the gauge of the electromagnetic
field.

C. Relation with the orbital magnetic quadrupole moment
and symmetry constraints

The magnetic quadrupole moment is believed to be the
origin of the ME effect. The ME effect needs both inver-
sion symmetry and time-reversal symmetry breaking. These
conditions are the same for the emergence of the odd-
parity magnetic multipole, including the magnetic quadrupole
moment. The ME tensor X;}‘e, in general, can be decom-
posed into three terms: the magnetic monopole moment (the
trace of x,;i°), the magnetic toroidal moment (the antisym-
metric part of x;7), and the magnetic quadrupole moment
(the traceless and symmetric part of x;7°), following their
symmetry [41-44]. This fact implies that the ME response
originates from the multipole. To solidify this statement, we
can show the direct relationship between the orbital magnetic
quadrupole moment and the orbital ME response, known as
the Stfeda formula. The formula is first presented by Stfeda
as the relation between the quantum Hall conductivity and
the orbital magnetization in insulators at zero temperature
[45]. A similar relationship is also valid for the orbital ME
response, as discussed in Refs. [39,40]. Our equation satisfies
this relationship,

(m)
(me) _ —e aQij

x5 T (18)

in insulators at zero temperature, as we can see by com-
paring the orbital magnetic quadrupole moment Q
Refs. [39,40]. In addition, the connection between them is
also discussed in quantum wells [46], and these facts imply
the possibility of the detection of orbital magnetic quadrupole
moments using the orbital ME effect.

We note that our equation does not include the trace of the
orbital ME tensor, which corresponds to the monopole term.

094106-4



QUANTUM THEORY OF THE INTRINSIC ORBITAL ...

PHYSICAL REVIEW B 107, 094106 (2023)

FIG. 1. (Left) The loop current order on the Cu-O, plane. The blue circles are Cu atoms, and the red circles are O atoms. The blue and red
shaded areas represent the local orbital magnetization with opposite signs along the z axis. (Right) The band structure of the used model. This
model has three bands and includes four Dirac points at energies £ = —0.44¢, E = —0.27¢, and E = 0.33¢.

This part is known to be a boundary effect and originates in
the axion coupling described by the Chern-Simons action as
discussed in three-dimensional topological insulators [9-12].
This problem also occurs in an identical approach at zero
temperature [12] and the thermodynamical definition of the
orbital magnetic quadrupole moment, which should include
the Chern-Simons term to fulfill the Stfeda formula [39].
On the other hand, the semiclassical approach in Ref. [30]
successfully derives the Chern-Simons term in non-Chern
insulators. However, the extension of this term in general
metals and insulators including Chern insulators is an ongoing
problem in both the full quantum approach and the semiclas-
sical theory.

Next, let us discuss symmetry constraints. As mentioned
above, the ME effect is nonzero in systems without inversion
and time-reversal symmetry. Time-reversal symmetry break-
ing can be satisfied in a macroscopic sense, such as a system
including dissipation. Thus, the extrinsic ME effect in Eq. (4)
can occur in the DC-limit [lim,_,¢;;j(w)/iw] even if the
system described by the Hamiltonian Hy has time-reversal
symmetry. However, the intrinsic part in Eq. (14) is zero. On
the other hand, if the Hamiltonian Hj satisfies P77 symmetry,
which is the product of the inversion operation P and the
time-reversal operation 7, the orbital magnetic moment m,
is zero, resulting in a vanishing extrinsic ME effect. In this
situation, only the intrinsic orbital ME effect can exist. Thus,
PT-symmetric systems, such as antiferromagnetic order, are
suitable for the experimental observation of the intrinsic or-
bital ME effect. In Sec. IV, we will calculate the intrinsic
orbital ME effect for a model Hamiltonian with P77 symme-
try. In particular, we look at a system with antiferromagnetic
loop current order purely originating from the orbital degrees
of freedom.

Finally, we comment on two previous works [30,31] study-
ing the intrinsic orbital ME effect. They derived equations ap-
plicable to two-dimensional systems, including metals, and
three-dimensional non-Chern insulators, using the semiclas-
sical theory. This dimensional constraint is attributed to the
second Chern form. In our work, we use a fully quantum
mechanical approach, and our equations are applicable to
arbitrary-dimensional systems, including metals. However,
our formula of the intrinsic orbital ME tensor does not include

the Chern-Simons term, as mentioned above. In addition, we
note that there is a difference between our equation and the
equation in Refs. [30,31], i.e., the 1/3 factor in Eq. (14) is
replaced to 1/2 in those papers.

IV. MODEL CALCULATION

In this section, we calculate the intrinsic orbital ME tensor
for a model Hamiltonian. Because the orbital magnetization
does, in principle, not need the spin degrees of freedom, we
consider here a spinless system, focusing on the contribution
of the orbital moment. As discussed above, the intrinsic orbital
ME effect is dominant for P77 -symmetric systems. Thus, we
analyze an example with an antiferromagnetic loop current
order.

Loop current order is a kind of orbital order. Intuitively,
electrons rotate locally across some sites, inducing local or-
bital magnetic moments. Loop current order has been studied
in cuprates [47-52] and recently reported in the Kagome su-
perconductors AV3Sbs (A = K, Rb, Cs) [53], a Mott insulator
Sr,IrOQ4 [54-56] as candidates, and it is also discussed in an
orbital order of the twisted bilayer graphenes [57-60].

In this section, we use a model Hamiltonian for antiferro-
magnetic loop current order in cuprates, shown in Fig. 1. This
loop current order belongs to an orbital magnetic quadrupole
order. This Hamiltonian can be written as [40,50,61]

0 itsy +ircy its, +ircy
Hy = | —its, —ircy 0 188y , (19)
—itsy —ircy 1SSy 0

where s; = sin(k;/2) and ¢; = cos(k;/2), and we set the lat-
tice constant @ = 1. This Hamiltonian includes three orbitals
without spin degrees of freedom. The basis is |d) on the
copper sites, and |p,) and |p,) on the oxygen sites. # and ¢’
are the hopping parameter and r is the order parameter of
the loop current in Fig. 1. The band structure of this model is
shown in Fig. 1. This model has four Dirac points at energies
E = —0.44t, E = —0.27t, and E = 0.33¢r. We rename the
coordinates (ky, k) to (ky, k) for reasons of simplicity in the
following discussion.

Let us discuss the intrinsic orbital ME tensor in this model.
In two-dimensional systems, the diagonal components of
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FIG. 2. The intrinsic orbital ME tensor x}(,m ®) for different chem-
ical potentials and temperatures. We set t = 1.0, r = 1.5¢,¢' = 0.5¢
for the numerical calculation, and we introduce an infinitesimal dis-
sipation i§ = 0.001i because the response function behaves as a delta
function at the Dirac points, as discussed in the main text. We use u

in units of 7 and x)(,,ri‘e) in units of e?a/h.

Xi(;ne) vanish. Because this Hamiltonian has y’-mirror symme-

try, the only nonzero component is XV(,I?E). We show the result
(me) ;

of x,. ~in Fig. 2 and plot the dependence on the tempera-
ture and the chemical potential. We here use the following
parameters t = 1.0, ¢ = 0.5z, and r = 1.5¢ for the numerical
calculations, and we introduce an infinitesimal dissipation ié
as an adiabatic factor. In the result of the orbital ME ef-
fect, we can see peak structures at the energies of the Dirac
points at low temperatures. This behavior is typical for a

system with linear dispersion. When we analyze Q;fg)(u) =
I du/xv(,fe)(u/), which is a part of the orbital magnetic
quadrupole moment, in a Dirac Hamiltonian having the same
symmetry as our model above [40],

H]Pirac — U/kx/ + vxkx/o'x =+ vyky’O.}W (20)

we can see that Q;',‘;)(,u) shows a step function behavior
and jumps from ev’'|vy|/167 |v,| to —e?v'|vy|/167|v,| at the
Dirac points with an additional logarithmic dependence (see

J

Appendix C). Thus, XV(T ®) () behaves at the Dirac point as a
delta function. '

V. CONCLUSION

In summary, we have derived the intrinsic orbital ME effect
within a fully quantum mechanical approach using the Kubo
formula. The obtained formula is based on the current-current
correlation function, so the response tensor is gauge invariant
and does not depend on the origin of the coordinate system.
It is well defined as an observable quantity in bulk systems.
The formula is applicable to insulators and metals at zero and
finite temperatures and is valid in arbitrary dimensions. We
have shown that the intrinsic ME tensor satisfies the Stfeda
formula, which is the direct relationship to the thermody-
namic orbital magnetic quadrupole moment in insulators at
zero temperature. The intrinsic part of the orbital ME tensor
is dominant in P7 -symmetric systems because the extrinsic
part is zero. Thus, we have applied the obtained formula to
an antiferromagnetic loop current order proposed in cuprates.
We have demonstrated that the intrinsic ME tensor is strongly
enhanced at low temperatures, especially around the Dirac
points.

The obtained formula can also apply to other P77 systems
such as antiferromagnets. Because this formula describes the
orbital magnetization induced by an electric field, it will be
helpful in the study of orbital orders, e.g., loop current orders
beyond spin orders. Furthermore, this formula can be used in
first-principle calculations and allows for detailed calculations
in real materials.

Finally, shortly before finishing our work, we noticed a
related work studying the spatially dispersive natural optical
conductivity [62]. In our paper, we focus on the orbital ME
effect.

ACKNOWLEDGMENTS

K.S. acknowledges support as a JSPS research fellow and
is supported by JSPS KAKENHI Grant No. 22J23393. A.K.
acknowledges support by JST, the establishment of univer-
sity fellowships towards the creation of science, technology,
and innovation, Grant No. JPMJFS2123. R.P. is supported by
JSPS KAKENHI Grant No. JP18K03511.

APPENDIX A: DETAILS OF THE DERIVATION OF THE INTRINSIC ORBITAL ME TENSOR

The symmetric part d>§sj)"b(q, w) can be written as

Sf€nkrq2) — f(€mk—g2)

o) (g, 0) =)

mnk

Here, we neglect the diamagnetic term because it does not depend on ¢. Using the identity

we obtain

0" (g, ) = —e

mnk

—Re ((Umk—q/2| Vf [tnkg/2) (i g/2] U |thmk—g/2))- (A1)
€nkrg)2 — Emk—qp2 — (@ + 08) ( q/21 Yk +q/ +4/21 Yk q/ )
S Y ) (A2)
A—w A A—o/l
2 Z Sf(€nkqqr2) — f(€mk—qs2) (1 N ® )
€nk+q/2 — €Emk—q/2 — i8 €nk+q/2 — €Emk—q/2 — (w0 +id)
X Re((”mk*q/2| Uk |”nk+q/2> <”nk+q/2| v |”mqu/2>)' (A3)
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In the following, we will expand the current-current correlation function up to the first order in g. For this purpose, we
distinguish two cases: (i) the intraband case (n = m) and (ii) the interband case (n # m).

In the case of (i), the intraband case, we first derive the imaginary part of d>(s)“b (g, w) and calculate the real part using the
Kramers—Kronig relation. The imaginary part of the first term in Eq. (A3) is proportlonal to

f (€nkrqr2) — f(€mk—q/2)18(€nkrq2 — €mi—gr2) = 0. (A4)
Thus, this term vanishes, and we need to consider only the second term. This term becomes

—ia w(ac€ Kk )qc
im0} "(q, 0) =~} (w 5 iy )(aaenkxabenk)

~ 0(¢°) - ZZI ( 2)(8 €t ) (D€t ) (p€nk e (A5)
(@ + i8)
where f, = 9 f(€u)/d€mk. Using the Kramers-Kronig relation, we obtain
(S—i)ab ~
o (g, ) = 0(¢°) - Z o 8)2(8 k) D) Dt e (A6)

The intraband term is totally symmetric for a, b, and c interchanges. Thus, this term only contributes to the electric quadrupole
response.

Next, we consider the interband case (ii). In this work, we focus on the ME effect in the static limit (lim,—.o 8;;/iw). Thus,
we need to calculate lim,,_, ¢ ReCD;’ZJ”C(O, w)/w. We will calculate this quantity directly in the interband case (ii). In the interband
case, we can take w, § — 0 first because there is an energy gap in the denominator, and singularities do not exist. At first, we
will calculate the contribution from the first term in Eq. (A3), which is proportional to

Z F(€nkrq2) — f(Emp— q/Z)Re((

b
Unk—q)2| Vi [Unkq)2) (Unkrq/2] Vg |tmk—q/2)).- (AT)
€nk+q/2 — €Emk—q/2

m#nk

This equation is even for ¢ — —q. The first-order term in g becomes zero after summing over n and m. Thus, we need to consider
only the first order in g contribution from the second term. The second term is

(€nk+q/2) — f(€mk—qs2)
(€nk+g/2 — €mk—q/2)*

lim Re®® % (g, )/ = —e? Z f

lim, Re ((Unk—q/2| V§ [tnk-+q72) (tnk+q/2] Vp [tnk—q)2)).- (A8)
m¥#nk

Expanding each coefficient in g, we obtain

€n - Emk— nm ac ’;1m nm 8cgnm
S (Enierqr2) = f( kqéz): f, - ( J: 2_f ( 3k)> (A9)
(611k+q/2 - emk—q/2) (Enmk) 2(6nmk) (enmk)
Re ((tk—q/2] Vi tnk1q/2) (unk+q/2| Vg [Uk—q/2) )
(Enmk) Re[Aa Aﬁm] ErzmkRe[((Mmk| U](cl |8cunk) - (acumk| U]? |unk>) <unk|abumk> + (a <~ b)], (AlO)

2

where ﬁlm = f(enk) - f(emk)a f;mz = f(enk) + f(emk), Enmk = €nk — Emk, AN Eypk = €pk + k- Azm = 1 (Upk | Oaltnk) is the Berry
connection. Considering the first-order terms in g in Eq. (A9), we obtain (a) (in the following, we neglect the Oth order of g):

: —ii—a)a acﬂm a fﬂm a
lim Re®® (g, w)/w = —¢* ) (TRe[AmA’;m] — == (@c&umr)Re[ A, A’n’m]>

mz#nk nmk
2 a b zfn a b
= —e Z Z dcfuRe[ AL A | — (Oc&mmi)Re[ AL, A" 1 )q (A11)
nk m(#n) €nmk
Next, considering the first order term in g in Eq. (A10), we obtain (b):
. —ii—b)a fnm
lim Re®;™" " (g, )/0 = Z [({ttel 08 [0cttn) — (et U 116 (et Dyt + (@ <> 5] g
o= nmk
m;ﬁnk
fo . )
= Z c Re[ ((ttmic| v 10cttnk) — (Octtmk| Vi |tnk)) (| Opttic) + (@ <> b)]ge.  (A12)
nmk
m#nk

If we focus on the wave function part in Eq. (A12), we can write

Rape = Re[ ({mk| v 10ctti) — (Octtmk| V ttnke)) (e Opttmic) | + (a <> b)
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= ZRC[(<umk| Vi L) (k| Octtnie) — (Octtmic| k) (i) Vi |ttic)) {1tk | 0pttk) | + (@ <> b)
/

= | QaBumt R (thc | 0cttni) (| Opttmi)) + Y € Rl (tni|Oattie) (k| Octtui) {1t | Ot
1GEm)

- Z €nreRe[(Octtpic | uin) (| Oattnk) (k| Ottt )] | + (a <> b). (A13)
1(#n)

We write €,k as €k = €umk + €k and calculate R, for the case containing €, (p), the case containing €, (q), and the case
containing neither €,,,x nor €, (r). In the case of (p), we obtain

Rc(,l[),)c = 6nmkRe[<umk|aaunk> (unk|acunk> <unk|abumk>] — €nmk Z Re[<acumk|ulk> <Mlk|auunk> (unk|abumk)] +(a < b)
[(#n)

= 6nmk(Re[(umk|a(/z’/‘nk> <unk|acunk) <unklabumk>] - Re[(”mk|ac'unk> <unk|aaunk> <Mnk|abumk>]
- Re[(acumk|aaunk> <unk|abumk>]) + (a <~ b) (A14)
This term contributes to ®;; as

S—ii—b—p)ab f
lim Rey™ " (g o)/ = & 30 Y LR e
nk m(;én) mk

= anRe(— (Ot | Dattnk) (1| Octte) + (Dottt} (2| Bathni) (1| Ot

+ <abunk|acunk) (unklaaunk) - <abunk|unk) <unk|acunk> (unk|auunk>

+ D (Bcttk| dattk) (Bpitnk | tmk) Ve + (@ <> b)
m(F#n)

= 82 anRe(_ (Opttnic| 0O |0attnk) ~+ (Opttnic| 0: O |0altnic) Vg

=0. (A15)

Thus, RE};)C vanishes. Here, we have defined Q,, = 1 — |t ) (U]
In the case of (q),

R =" etmeRe((tynk | dattse) (tik|0ctini) {1tuk|Opttont) — (e |cttn) {1t |dattnk) (ttnk|9ptt)) + (@ <> b)

1(#n)
= > Re(-VAi AL, + Vo AL AL ) + (a < b), (A16)
1(#n)
where V¢, = v, — v%5,,,. Adding R%) to R we find
Rige + Ripe = D Re(=V,iy (AL AL + Vi ALATL) + (a <> D), (A17)
I(#n)

where V¢, = v%, + v%8,,. Finally, by combining (q) and (r), we get
lim ReCD§SJ ==l (0 ) Jw + lim Re®'S P (g w)/w

=)y ) i D [Re(—Vy A AL, + Vi ALAL Y + (a < b)]ge. (A18)

k. min) M ()
Adding (a) to this equation, we obtain

lim Re® V(g ) /w + lim Re®S 0% (g ) e + lim Red S 1% (g ) /w

¢ 21l g EDIDIP

m(zn) 1(£n) '”""
lim @Sy o, (A19)
w—>

b b
ml n ’A ml n Atl ml n ?n'Anm + Vc A ‘AZm) qc

nm
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where g% = > m(ny RE[A; Al 1is the quantum metric.

nm

Finally, we calculate the orbital ME tensor x(me) = —E&peq limy, 0 d>(s)db /3w as

X = —e? zfn(gsbmacgzb -y
nk

m(s#n) Enmk

nm mn nm mn

2
Re [Ad Me — -sdaA” M? ]) (A20)
where M, = Y I(n) Vouin/2 x Ay, behaves as a off-diagonal orbital magnetization.

APPENDIX B: DERIVATION OF THE INTRINSIC ORBITAL ME EFFECT BASED ON A SCALAR POTENTIAL

In the main text, we have derived the orbital ME tensor using the current-current correlation function. In this Appendix, we
will show that the current-density correlation function also contains information on the ME effect.
We introduce a scalar potential ¢(x, t) = ¢y e 4% a5 an external field

Hy = —e¢p(x, t)n(x). (B1)
The scalar potential induces an electric field E; , = —ig¢y .. A current changes linearly when applying an electric field as
Ty o = 09,(q. ©)by.0. (B2)

Expanding the current-density correlation function @' (g, w) by ¢ up to the second order, we focus on the second derivative
of the function CD’J’;k(a)) = Og;qu CDjn(O, ). This function is symmetric for the interchange j <> k, so we can decompose this
function using a traceless rank-2 tensor f; ; and a totally symmetric rank-3 tensor #;x as

D8 (w) = i B (@) + isaBj1(@) + oFijr(w) (B3a)
- 1
Pi(w) = = —ein @) () (B3b)
1
Fie(@) = o[ @ @) + @5 (@) + &5 @)]. (B3c)

Substituting Eq. (B3a) into Eq. (B2), we find
J;, = @}, ”q,qj¢q ®
= [ig x (=2iB"(@)Eq.0)lk + igioFijn()Ey,. (B4)

We need to calculate f; ; to obtain the orbital ME tensor.
According to the linear response theory, the current-density correlation function is
Sf(€nrgr2) — f€mk—g2)

@ (q, w =é° X {Upk—, vl |u u Uppfe— . B5
Jn(q ) r;(enk-kq/z — kg2 — (w+18) ( mk q/2| k| nk+q/2)( nk+q/2| mk q/2) ( )

In the following, we evaluate this function, dividing it into two cases: (A) an intraband case (m = n) and (B) an interband case
(m # n).

In the case of (A), the correlation function becomes

S(€ntrqr2) — f(€nk—gs2)
€nktq/2 — €nk—g/2 — (@ +i8)

d'A

P, (g, w) = X (Unk—gy2| Vi |tnk-vq/2) (Unkctq /2| tnk—g/2) - (B6)

nk
Expanding each coefficient by g up to the second order, we obtain
f(€11k+q/2) - f(enk—q/Z) ~ _fy;(aufn)Qa _ f;;(aaen)(aben)anb

— = - - B7)

€nktq/2 — Enk—g/2 — (0 + i8) w+ 8 (w +i8)?
(unk+q/2|unk—q/2> ~1- qa (unk|8aunk) (B8)

i 9a i i
(unqu/2| Uy |Mnk+q/2) >~ (9i€n) + 7((unk| Uy [0attnk) — {(Dattnk| Uk Iunk))' (B9)

Thus, the second derivative of CIDQn (q, w)is
—f aa n 1 : .
05" M (w)qaqs = qage® Z [% [—(&-en) Ctne| tnke) + 5 ( (k] v 1Bptt) — (Pt i e )}
f/

T LR (04€,)(0p€n)(Di€n) |- (B10)
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The first term is proportional to 1/(w + i§)! and can be transformed to

—(Bi€n) (k| Opttnte) + 3 (Ctic] Vi, 19ptk) — (O] V, |ttnk))

5 (k| v On Bpttnk) — (Ipttukc| Oy k)
= 5 ((Oittuk| €0 — Hi |Opttic) — c.C.).
= —(c.c.). (B11)
Using this relationship, we obtain
05" (@)gugs = qugne® Y [w_fla w€n) (i) — ml) — (_{—/5)2(8 €n) (9p€n) (D; e»] (B12)

n.k
Next, we calculate the case of (B). In this case, the current-density correlation function becomes

S(€nkrgr2) — f(€mk—gy2)
e Enk+a/2  €mk—q/2 (0 +1i6)

q’i(r]?)(‘lﬂ w) = ¢ X (Unmk—g2| Vi [Unkerq/2) (Unk-tq/2|Umk—qy2) - (B13)

In the interband case, the denominator does not have a singularity, so we take the limit @ — 0 and i§ — 0. Expanding each
coefficient by ¢ up to the second order, we get

(a unk|8bumk> (B14)

9aqb
<unk+q/2|umk7q/2> ~ —qa (k| Oattmic) — az

9a i i
_((8aumk| Uk |unk> - (umkl Vg |8aunk>)

<umk—q/2| vll( |unk+q/2> = iemnkA;nn - )

= iemnk-Ainn - q?a _aignmk <umk|8aunk> + Z <3aumk|ulk> ielnkA;n - Z iemlkAin[ (ulk|aaunk>
1(#n) 1(#m)
(B15)
ni - — nm a ~ aamnm nm
f€ntrqr2) — f(€mk—qs2) ~ bi L4 (3a = (0a€nmic) fi > (B16)
€nk+q/2 — €mk—q/2 €nmk 26nmk €nmk
Collecting the second-order terms, we obtain
zub(B) _ _ 2 fnm fnm ~
05" (@ = 0)gagy = € Y { — T2 (ttk|dithuic) (Datte | Opttme) + (1t | Battme) | —0imic (tonk | Do)
metnk 2 26nmk
- Z (OpUmic |tk ) €k Uik | Oittic) + Z Emtk (Ui Oitixc) (M1k|3hunk>>
[(#n) 1(£m)
1 x (8b€nmk)f;1m
- 3 (unk|3aumk> (umklaiunk> (8bfnm - qaqb
2 €nmk
/i _
- 62 Z { - nRe umk|a unk) (aaunklabumk” + u _aienmkRe[(unklaaumk> <umk|abunk>]
metnk €nmk
= > €tRel (1| dattmi) (Dottt} (k| i)
1G#n)
+ ) emuRel (s | dattme) (et |20 <u1k|abunk>])
1(#m)
(abgnmk)fn
— Re[(uk| 0attmic) <umk|3iunk>](8hfn T Gaqb- (B17)

In the following, we separate the calculation into two cases: (i) (€, )° or (ii) (€,ux)" in the denominator. In the case of (i)

@5 (0)gugy = € ) fn{—Re[<umk|a,»unk> (Dt |Bpttya)] Y Rel 1| Battni) Dttt (g1 9itt )]
m##nk 1(#n)

- Re[(”nk|aaumk) (umk|8iunk> <unk|abunk>] + 8hl{e“lftnkmaumk) (umklaiunkﬂ}qaqh- (B18)
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The second term can be rewritten as
the second term of CD’ ab(B— 1)(O)qaqb

=&Y D fuRel(tukldattri) Otk |e) (k| ttk) 1y
nk  m(#n),l(#n)

=&Y D fuRel(tukldattn) (Opttre ) (k| ittk) 1y
nk m(#n),l(#n)

= 62 Z Z fn(Re[<auunk|abumk) (umk|aiunk)] - Re[(“nk|auunk) (abunk|umk) (umk|8iunk>])qaqlr (Blg)
nk m(#n)

This term cancels out with the first and third terms. Thus, the final remaining term is

@5 B 00)gugqy = € fo0sRel (tnk| dattyk) (e |9itta)1Gao

m+#nk
=~ ) fudbRel(Dattuk] Qn 1t 1gadts
nk
— —62 Z fnabgcrlliqaqh. (BZO)
nk
Next, in the case of (ii),
ia ii f;’ z €
cDjnb(B i _ e Z e_ —aifnmkReHunkwaumk) (umk|8bunk)] + 8b€nmkRe[<unk|aaumk> (umk|aiunk>]
nmk
mnk

+ Z Emik (Re[(ur | 0attmic) {Opttic |t} (Uire| 0ittni) ] + Re[{ttge | Onttmic) (k| Oitazic) (MZklabunkﬂ)}qaqb

[(#n)
2 o b b4
=e Z - Z (nlmvr;tl n'AZn] - [ vaml n-AEn]}QaCIb (B21)
ok [ o)
Here, we define V= v}, + v 8.

Finally, using Eq. (B3b), we obtain the orbital ME tensor x{1 = —2iB,q = lim, .0 £aps[ @), (@) + 5.7 (0)1/3

=] 4

nk

nm nm mn

{(a € m’ — ;aya(aﬂen)mf} +f,1{%lsa,%a(S + 3 Re[.AV M — —5 oA MP ]H (B22)

m(zn) €nmk
We use the following relation for the orbital magnetic moment:
m, = 3Im (Vi X (€ — Hi) | Vi) - (B23)

This response tensor includes both the extrinsic and intrinsic parts and gives the same result as obtained by using the vector
potential in the main text.

APPENDIX C: ANALYSIS OF Q;',';)(u) IN THE DIRAC HAMILTONIAN AT ZERO TEMPERATURE
We use the Dirac Hamiltonian [40] (and drop the prime in the following for simplicity)
HP™ = vk, + viko, + v k0, (CD

for the analysis of Q(m)(,u) defined in Sec. IV. In the following, we assume |v’| < |v|, |vy|. This simplifies the discussion because
the band index changes at E = 0. The eigenenergies are € = v'ky £+ /(vcky)? + (vyky)? = v'ky £ hg. At zero temperature,
O™ () is given as

. d*k 1 2
O™ () = & / GrE 2 g(enk)(gek,za/gi’z - Y ——Re[A,M;, ]) €2
n=+

mGam)

where we use the grand potential density G(€,x) = (€4 — )O( — €,1) at zero temperature. In the following, we consider two
cases: (i) contributions from a single band for u < 0, and (ii) contributions from two bands for & > 0. We need the off-diagonal
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Berry connections for the calculation of both cases. The off-diagonal Berry connections are given by

vy Uyky , UV ky
A = By v B 3
oo T ()
Using these off-diagonal Berry connections, we obtain the quantum metric and the second term in Eq. (C2) as
x N 1
gr =Re[AL A", ] = —m(vxvy)zkxky (C4)
k
- 1
g =Re[AL AL, ] = W(vxvykxf (C5)
1
Re[ AL M3, ] = an — v/ (v k) (C6)
At first, we consider the case of (i). Q;’Z")(‘) (1) is given by
o d*k 1 v 2(e_px — /L)
O () = —62/ ) O — ek){_gklzvolg}_k + T e[AZ M7 ]
2/‘ dzk ) 2U2k} (V0 kky L 207k (vevyky)? V' (V0 )2 (Vhy — i — 1)
= —€ _— v — —
(2;1)2 * Y I h 4h
(CT)
We redefine |vy |k, = hcos®, |vy|ky, = hsin6 and |l | = h and rewrite Q™) (1) using these variables as
™ hdhd6 v'v? cos? 6 u
(m(-) — — h(v' cosB/|ve| — DN ———(—-1+3=)}. C8
0 () = —e / / Gy O~V cos0/ ] )]{ (1435 (€8)
Moreover, we redefine 4 as h(v’ cos0/|v,| — 1) = z and rewrite Qﬁ‘;l)(’)(,u) as
2 14,2 2
dzdb v'vscos” 6 m
(m)(=) —e -z y—[—1+3— v'cos@/|v —1]}
0 (1) = / / GO ){ N (0 cos 6/l ~ 1)
e*v "Tuyl ‘ nw ‘
= 1 C9
1677 vy | ( + (C9)

Here, we introduce an energy cutoff A.
Next, we discuss the case of (ii). In this case we need to consider the contribution from the + band. Thus, we will calculate

O™ (). This quantity is

1 2erk — 1) ,
O(u — €+k){§8klzv?|—l fk + %Re[ﬁ —MZ—+]}

d*k
(m)(+) — _ 2
O () = —e / o F

2k Ot — €+k){1|: B 20}k (v,0,)2kek, B <v/ N 2v§kx> (vxvykx)2:|+v (v Uyky)? (Vky + g — u)}

Q) 3L T an? ) 1 an
(C10)
We redefine |v, |k, = hcos 6, [vy|ky, = hsin6, and || = h and rewrite Q™) (u) using these variables as
O () = f /zn hdhd o b cos6)1vi] + 1)) vy cos”0 1-38 (C11)
, v’ cos 0/ vy — _— (-1-3=)1L.
o @il o7 h
Moreover, we redefine 4 as (v’ cos 8 /|v,| + 1) = z and rewrite Q;‘zn)(*)(u) as
2 72,2 2
~ dzdo v'v; cos” 0 m
(m)(+) — = Op—-—2——|—1-3%( cosb/|v, +1]}
O () = /ﬁ/ T ){ = [ (0 cos 6/l + 1)
v'|vy| ‘M‘ Iz
—1+—=). C12
16n|vx| + S (C12)
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Here, we use § = +0. In addition to the contribution from the + band, the one from the — band is

dzdo

v’vy2 cos? 0

B —00  p2m
O () = —€* / /
" - o @Ry

v vyl (1 —A n
= (S log| =+ £ ).
( og y; + —8)

3

Thus, the total contribution in the case of (ii) is

1677 |v,|

2.,/
A(m)(—) A,y - EVInl (1 HA ‘ _
() + O (1) = T6[0.] log ).

B
e |:—1+3;(v c0s9/|vx|—1)“

(C13)

= Cl4
3 52 (C14)

Comparing Egs. (C9) and (C14), we can see that there is a jump at the Dirac point (u = 0) with an additional logarithmic
dependence. This behavior induces a peak structure in the intrinsic orbital ME effect.
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