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Predicting atomic diffusion in concentrated magnetic alloys: The case of paramagnetic Fe-Ni
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Predicting atomic diffusion in concentrated magnetic systems is challenging due to thermal magnetic effects
and complex magnetochemical interplay. We propose an efficient approach via kinetic Monte Carlo using ab
initio parametrized models. We demonstrate its accuracy in the case of Fe-Ni alloys, where we successfully
predict and explain the weak composition dependence of diffusion coefficients due to a compensation of distinct
contributions of their constituents. The diffusion-behavior difference between the paramagnetic and the magnetic
ground states is elucidated, evidencing the role of magnetic disorder.
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I. INTRODUCTION

Thermodynamic and kinetic properties of pure and mul-
ticomponent magnetic systems are known to be strongly
influenced by magnetic ordering, excitation, and transition,
as well as the interplay with other degrees of freedom [1–8].
However, the treatment of finite-temperature magnetism and
magnetochemical coupling remains a major bottleneck for
an accurate prediction of thermodynamic and kinetic prop-
erties in magnetic alloys. This is indeed the case for atomic
diffusion, a fundamental process governing the kinetics of
microstructural evolutions such as segregation, precipitation,
and phase ordering [9–13]. Despite its importance for kinetic
simulations in magnetic alloys, so far a proper inclusion of
finite-temperature magnetic effects in the modeling of atomic
diffusion remains an open issue for systems beyond the dilute
limit.

Indeed, previous theoretical investigations of diffusion
properties were typically performed for nonmagnetic systems,
using classical molecular dynamics (MD) or kinetic Monte
Carlo (MC) simulations to follow the trajectories of atomic
movements [14–20], or using semianalytical diffusion models
with a limited number of jump frequencies as input data
[21–28]. For magnetic systems, however, these methods are
unable to explicitly account for the magnetic degree of free-
dom and thermal magnetic effects.

Recently, various approaches have been developed to treat
the finite-temperature magnetism for diffusion, either by inter-
polating the density functional theory (DFT) results between
the magnetic ground state and the perfectly paramagnetic
(PM) state modeled by the disordered local moment (DLM)
method [29–31], or by applying either effective interaction
models (EIMs) or spin-lattice potentials containing explicit
atomic and spin variables in MC or MD simulations [32–35].
These studies have so far been restricted to the case of in-
finitely dilute Fe-X alloys [29–35], whereas such a kinetic
modeling remains elusive for magnetic alloys beyond the
dilute limit. The latter is important not only because of the
practical interest associated with nondilute alloys, but also
because of potentially new physics that may emerge due to
a composition dependence of the magnetochemical coupling.

Indeed, the major challenge of a kinetic modeling for
concentrated magnetic alloys is an accurate and efficient
treatment of the complex magnetochemical interplay. In the
infinitely dilute case, various magnetic configurations only
need to be sampled for a very small number of local chem-
ical environments. By contrast, in a concentrated alloy, it is
necessary to sample a much larger number of local chemical
environments, and of magnetic configurations for each of the
chemical ones due to their mutual dependence [2,36]. With a
purely DFT approach, it is practically impossible to determine
migration barriers for such a huge number of local chemical
and magnetic environments encountered during the diffusion,
due to the prohibitively high computational cost. Furthermore,
there is no available semianalytical model allowing to link
the DFT-calculated migration barriers to macroscopic trans-
port coefficients in a concentrated alloy. Though spin-lattice
MD simulations enable a natural account for the interplay
between magnon, phonon, and chemical effects, it is still
highly challenging to develop sufficiently accurate spin-lattice
potentials for the whole magnetochemical phase diagram
[37]. In addition, spin-lattice MD simulations are computa-
tionally inefficient for thermally activated processes such as
vacancy-mediated diffusion in alloys, except for very high
temperatures.

In this work, we propose a modeling approach repre-
senting a good compromise between accuracy and efficiency
for kinetic properties in concentrated magnetic alloys. Our
approach combines kinetic MC simulations with DFT-
parametrized effective interaction models. We demonstrate its
ability by applying it to the face-centered-cubic (fcc) Fe-Ni
alloys, a model system of austenitic alloys. For this system,
there are a few experimental tracer diffusion data but avail-
able only in the high-temperature PM solid solutions [38,39].
In previous theoretical studies of this system, however, the
effects of magnetic excitation and transition were neglected
[40–44]. Furthermore, the experimental Fe and Ni diffusion
coefficients (D∗

Fe and D∗
Ni, respectively) show a weak com-

position dependence (Fig. 1), whereas previous MD and MC
modelings predicted that D∗

Fe varies by more than three orders
of magnitude between pure Fe and pure Ni [42–44]. For the
Fe-Ni alloys, we aim to solve this experimental-theoretical

2469-9950/2023/107(9)/094103(8) 094103-1 ©2023 American Physical Society

https://orcid.org/0000-0003-4471-8527
https://orcid.org/0000-0003-4369-8296
https://orcid.org/0000-0001-6435-6119
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.094103&domain=pdf&date_stamp=2023-03-06
https://doi.org/10.1103/PhysRevB.107.094103


LI, FU, NASTAR, AND SOISSON PHYSICAL REVIEW B 107, 094103 (2023)

FIG. 1. Tracer diffusion coefficients in PM fcc Fe-Ni alloys un-
der equilibrium conditions. Lines represent the predictions from this
work. Symbols are the experimental data compiled in Ref. [38],
including 10 different studies in nondilute alloys (only two of them
measured simultaneously, D∗

Fe and D∗
Ni).

discrepancy on the composition dependence via determination
of the tracer diffusion coefficients D∗ and the composition
evolution of the constituents of D∗, namely the equilibrium
vacancy concentrations xV,eq, the jump frequencies �, the ki-
netic correlation factors f , and the atom-vacancy binding. We
also discuss the impact of magnetic disorder on these quanti-
ties, as well as the diffusion properties in out-of-equilibrium
conditions.

II. METHODS

A. Effective interaction model

Our approach follows a similar principle to those used
in the studies of Cu and Mn solute diffusion in bcc Fe
[31,32], namely using on-lattice MC simulations coupled with
a DFT-parametrized EIM. The present EIM goes beyond our
previous on-lattice model of fcc Fe-Ni alloys [36,45] by in-
cluding a description of the saddle-point (SP) configurations
for vacancy-mediated diffusion as follows. An N-site saddle-
point configuration consists of one SP atom, N − 2 on-lattice
(OL) atoms, and two first-nearest-neighbor (1NN) vacant
sites. We express the total energy of the SP configuration as
the sum of two parts:

Etot = EOL + ESP, (1)

where EOL is the total energy of the on-lattice system deter-
mined from our previous model [36,45], and ESP is the energy
due to the interactions of the SP atom with its OL neighboring
atoms parametrized in this work.

For the on-lattice system, EOL has the following form:

E =
∑

i

σi

⎛
⎝AiM

2
i + BiM

4
i +

∑
j

σ jJi jM iM j

⎞
⎠

+
∑

i

σi

⎛
⎝εi +

∑
j

σ jVi j

⎞
⎠, (2)

where σi is the occupation variable; Mi is the magnetic
moment; Ai, Bi, and Ji j are the magnetic on-site and exchange-
coupling parameters;

∑
j is a sum over all the neighboring

atoms within the fourth nearest-neighbor shell; and εi and Vi j

are the chemical on-site and pair-interaction parameters. Our
EIM for the on-lattice system has been shown to correctly
predict the magnetochemical phase diagram and the equilib-
rium vacancy concentration in fcc Fe-Ni alloys [36,45,46].
The relevant model parameters can be found in [36].

We express ESP as follows:

ESP = ASPM2
SP + BSPM4

SP +
∑

j

JSP, jMSPM j

+ εSP +
∑

j

VSP, j, (3)

where MSP is the magnetic moment of the saddle-point atom,
and ASP, BSP, JSP, j , εSP, and VSP, j are the corresponding mag-
netic and nonmagnetic parameters. The sum

∑
j goes over

the atoms within the fourth-neighbor shell of the SP atom.
Note that the number of neighbors and the distance from
neighbors for the SP atom are different from those of the OL
atoms.

The EIM is fitted to about 1400 DFT energy data in-
volving magnetically and chemically ordered and disordered
structures. There is no fitting on experimental data. While
the lattice vibration effects on phase stability are included
in the EIM [36,46], vacancy formation vibrational entropies
Svib

f and attempt frequencies of atom-vacancy exchanges
(�0,Fe and �0,Ni) in the alloys are not intrinsically accounted
for in the EIM. Instead, they are linearly interpolated from
the DFT values in antiferromagnetic double-layer (AFD) Fe
(Svib

f = 3.1kB, �0,Fe = 1.9 THz, �0,Ni = 24.3 THz) and in FM
Ni (Svib

f = 2.2kB, �0,Fe = 3.8 THz, �0,Ni = 22.2 THz) [47].
Magnon-phonon coupling [7,48,49] is not considered.

B. Kinetic Monte Carlo simulations

The EIM is used in canonical MC simulations in a 16 384-
site fcc lattice. The vacancy-free system is first relaxed
according to the METROPOLIS algorithm to ensure that both the
magnetic and chemical configurations are in thermal equilib-
rium at the given temperature. Next, a vacancy is introduced
into the system by removing a randomly selected atom. The
atomic diffusion is then simulated by exchanging the vacancy
with one of its 1NN atoms. Each vacancy-atom exchange and
the corresponding time increment are obtained by using the
residence time algorithm [15]:

(i) Calculate the migration barrier Em,i for each 1NN atom
i of the vacancy. Please note that Em,i is dependent on the local
chemical and magnetic environments.

(ii) Calculate the jump frequency �i = �i,0 exp(−Em,i

kBT ),
where �i,0 is the attempt frequency of the atom i. Then,
calculate the cumulative jump frequency �cumu

i = ∑i
j=1 � j .

(iii) Draw a uniform random variable u in the interval
[0, �cumu

12 ). If u is in the interval [�cumu
i−1 , �cumu

i ), exchange the
vacancy with the atom i.

(iv) Update the time tMC = tMC + 1/�cumu
12 .

We note that the magnetic configuration is relaxed again
after each vacancy-atom exchange to ensure that the magnetic
configuration is in thermal equilibrium at the given tempera-
ture before the next vacancy-atom exchange.

Via this kinetic MC approach, we determine the tracer
diffusion coefficients D∗

A (A = Fe or Ni) from the Einstein
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relation [12]:

D∗
A =

〈
r2

A

〉
6t

, (4)

where 〈r2
A〉 is the mean-square displacement of tracer atoms.

Here all atoms of the same element A are considered as tracers
to enhance statistics [32,40–44]. In Eq. (4), t is the physical
time obtained as [15,16]

t = tMC
xV,MC

xV
. (5)

Here tMC is the simulated time, xV,MC = 1/Nsite is the
simulated vacancy concentration, and xV is the vacancy con-
centration in a real system. For diffusion under thermal
equilibrium, we use the equilibrium vacancy concentra-
tion xV,eq = exp(−G f /kBT ), with the vacancy formation free
energy G f = Gmag

f − T Svib
f , where Gmag

f is the vacancy for-
mation magnetic free energy computed from MC simulations
using a Widom-type scheme [36,45].

III. RESULTS AND DISCUSSION

A. Comparison with experimental tracer diffusion coefficients

The highest Curie temperature of fcc Fe-Ni solid solutions
is predicted to be 880 K at Fe-67%Ni [36], in good agree-
ment with experimental data [50,51]. The experimental tracer
diffusion coefficients in these alloys are available only in the
PM regime. As shown in Fig. 1, the experimental data suggest
a weak composition dependence of the diffusion coefficients
considering the data dispersion. Our predicted values are in
overall quantitative agreement with the experimental data,
showing that the largest variation of D∗ in the whole com-
position range is around a factor of 4 at 1223 K and a factor
of 3 at 1523 K. For all the studied temperatures, the minima
of D∗

Fe and D∗
Ni occur in fcc Fe and Fe-60%Ni, respectively.

It is worth noting that previous simulation results in con-
centrated Fe-Ni [41–44] and other alloy systems [17–20] were
often calculated with arbitrarily fixed vacancy concentrations
and did not consider the composition evolution of the equilib-
rium vacancy concentration. Hence a direct comparison with
available experimental diffusion coefficients measured under
equilibrium conditions as shown in Fig. 1 is often missing in
the literature.

B. Constituents of diffusion coefficients

1. Composition dependence of constituents of diffusion
coefficients

The composition dependence of the diffusion coeffi-
cients can be better understood via a decomposition into
its constituents. First of all, in an infinitely dilute alloy, the
solute-diffusion coefficient is known to have the following
expression [12,21,22]:

D∗
A = a2 fAxV,eq exp

(
GV-A

b

kBT

)
�A, (6)

where a is the lattice constant, fA is the correlation factor for
the solute atom A, xV,eq is the equilibrium vacancy concentra-
tion, GV-A

b is the solute-vacancy binding free energy, and �A is
the jump frequency of the solute atom.

To derive a formally equivalent expression for concentrated
alloys, we first recall the expressions for the kinetic correla-
tion factor fA [12] and the Cowley-Warren short-range order
parameter of 1NN vacancy-A pairs α1NN

V-A [52,53]:

fA =
〈
r2

A

〉
nA d2

, (7)

α1NN
V-A = 1 − xV

A

xA
, (8)

where nA is the average number of jumps per A atom during
tMC, d is the jump length equal to the 1NN distance (= a/

√
2

in an fcc lattice), xV
A is the average concentration of A in the

1NN shell of the vacancy, and xA is the nominal concentration
of A atoms in the system. To derive the expression of the
effective jump frequency for A atoms (�A) in an alloy, we first
recall �A in the case of a pure system of A atoms [12]:

�A = Njump

z tMC
, (9)

where Njump is the total performed atomic jumps during the
time interval tMC, and z is the 1NN coordination number
(equal to 12 in an fcc lattice). In an alloy, Njump becomes the
total number of jumps of A atoms (namely nANA, with NA the
number of A atoms), and z becomes the average number of
1NN A atoms around the vacancy (namely z xV

A ). Therefore, in
the alloy,

�A = nANA

z xV
A tMC

. (10)

Combining Eqs. (7)–(10), we have

a2 fA xV,MC
(
1 − α1NN

V-A

)
�A =

〈
r2

A

〉
6 tMC

. (11)

Using the Einstein relation [12], we arrive at the following
expression:

D∗
A = a2 fAxV,eq

(
1 − α1NN

V-A

)
�A. (12)

We note that 1-α1NN
V-A becomes exp(GV-A

b /kBT ) in Eq. (6) in an
infinitely dilute alloy.

As shown in Fig. 2, the composition dependence of D∗ and
of its main constituents (xV,eq, �, and f ) can be qualitatively
different. Although D∗

Fe and D∗
Ni show a weak composition

dependence, their constituents can have a distinct behavior.
In particular, xV,eq varies with composition by up to a factor
of 8, which is mainly related to the large difference between
the vacancy formation energies in Fe and Ni (1.8 and 1.4 eV,
respectively [36]). The impact of xV,eq on the composition
dependence of D∗ is partially compensated by the other con-
stituents, especially the effective jump frequency, while the
effects of f and 1 − α1NN are minor (Table I). Specifically, the
variation of D∗

Fe is mainly dictated by the behavior of xV,eq,
both presenting a minimum in pure Fe and a maximum in
pure Ni. On the other hand, the variation of D∗

Ni mainly results
from an interplay of xV,eq and �Ni, which have an opposite
composition dependence.
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FIG. 2. Calculated (a) tracer diffusion coefficients, (b) effective
jump frequencies, (c) kinetic correlation factors, and (d) equilibrium
vacancy concentrations vs Ni content at 1223 K. The composition
dependence for other temperatures in the PM regime (above 1000 K)
is similar. The y-axis in (a),(b),(d) and in (c) adopt, respectively, a
log and a linear scale.

2. Temperature dependence of the effective atomic jump frequency

The effective atomic jump frequency is usually expressed
as

�A = �0,A exp

(
−Em,A

kBT

)
, (13)

where Em,A is the effective migration energy for A atoms.
Often Em,A is assumed to be a constant and �A is assumed
to follow an Arrhenius law, for instance in pure systems
and dilute alloys [22,26,41]. However, although the systems
are rather simple, the presence of magnetic order-disorder
transitions may lead to a non-Arrhenius behavior [31,32,54].
Here we intend to discuss whether there is a deviation from
this often assumed Arrhenius law in concentrated PM Fe-Ni
alloys.

First, it should be pointed out that in principle Em,A is
temperature-dependent even for a nonmagnetic alloy, since
Em,A is an average of the exponentials of the individual
migration energies Ei

m,A, which depend on local chemical
configuration i. For magnetic systems, as magnon excitations
are faster than atomic jumps [32], each individual migration

TABLE I. Maxima and minima of xV,eq (in 10−6), �A (in GHz),
fA, 1 − α1NN

V-A , and D∗
A (in 10−6 m2/s) in PM Fe-Ni solid solutions at

1223 K. Please note that xV,eq is independent of the diffusing element
A, therefore its extremum is the same for Fe and Ni.

xV,eq �A fA 1-α1NN
V-A D∗

A

Max (A = Fe) 8.0 1.4 0.8 1.0 3.8
Min (A = Fe) 1.0 0.7 0.6 0.9 0.8
Max (A = Ni) 8.0 2.8 0.8 1.3 3.4
Min (A = Ni) 1.0 0.5 0.5 1.0 0.9

energy Ei
m,A is actually a migration magnetic free energy

Gi
m,A as it integrates fast magnetic degrees of freedom (i.e.,

averaged over various magnetic configurations j of a given
chemical configuration i). In bcc Fe, for instance, the Fe
migration magnetic free energy is known to vary significantly
with magnetic order and thus with temperature [32].

In magnetic alloys, Em,A becomes the effective migration
magnetic free energy Gm,A, and it can depend on both mag-
netic and chemical orders. According to our EIM, the Fe-Ni
alloys are the PM disordered solid solutions above 900 K
for the whole composition range. For the temperature range
discussed in this work (1223–1523 K), the variations of Em,Fe

and Em,Ni with temperature are found to be small (less than
0.03 eV, which is within the typical calculation uncertainties).
As a result, we find that the temperature dependence of �Fe

and �Ni is well described by the Arrhenius law in the consid-
ered temperature range.

C. Impact of magnetic state on diffusion properties

It should be noted that previous state-of-the-art simulations
in concentrated magnetic alloys did not consider magnetic
excitation. First-principles calculations in magnetic alloys
typically use a magnetic ground state (MGS) at 0 K to rep-
resent the equilibrium magnetic state at finite temperatures,
which is only valid if the effects of magnetic disorder on
diffusion properties are negligible. To elucidate the role of
magnetic disorder, we also show in Fig. 2 the diffusion co-
efficients and their main constituents in the solid solutions
at the corresponding 0 K magnetic configuration (MGS). In
the MC simulations, the paramagnetic (PM) configuration is
obtained by equilibrating the chemical and magnetic degrees
of freedom at a given temperature T . By contrast, the MGS
is simulated by applying the 0 K magnetic structures to the
chemical equilibrium configurations at T . For the solid solu-
tions with more than 20%Ni, the predicted MGS is collinear
ferromagnetic (FM). Below 20%Ni, the MGS gradually be-
comes noncollinear with decreasing Ni content, with the
reduced magnetization decreasing to zero at 5%Ni [36]. For
pure fcc Fe, the MGS is predicted to be a spin spiral with
q = 2π

a (0, 0, 0.3) [45].
We note a significant PM-MGS difference in both D∗

Fe and
D∗

Ni in concentrated regions, which is mainly due to the large
difference of vacancy concentration around 60–80 %Ni. The
significantly larger equilibrium vacancy concentration in the
MGS is related to the strong FM interaction in the concen-
trated alloys, as shown in Ref. [36]. To verify the EIM results,
we also checked with DFT for the case of the L12 − FeNi3

structure and confirmed an increase in vacancy formation
energy due to the magnetic disorder [36].

Concerning the Fe diffusion, the effective jump frequency
�Fe is another important factor leading to the large MGS-
PM difference in D∗

Fe. While the composition evolution of
�Fe is qualitatively similar between the PM and MGS, the
amplitude of the variation is much more significant in the
MGS: in the whole composition range, �Fe changes by up
to a factor of 43 in the MGS, whereas it varies by no more
than a factor of 2 in the PM state. This result indicates a
reduction of chemical-composition effects due to magnetic
disorder, which is not only seen in �Fe but is also observed in
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FIG. 3. Generalized vacancy-atom 1NN binding free energy vs
Ni concentration.

the Fe and Ni diffusion coefficients, the equilibrium vacancy
concentration, and the correlation factors (Fig. 2). A simi-
lar magnetic-disorder impact (reducing chemical-interaction
effects) on the solute-vacancy binding and therefore on the
solute and solvent migration barriers was also noted in dilute
bcc Fe-Cu and Fe-Mn systems [31,32]. On the other hand, the
effective jump frequency of Ni atoms is less affected by the
magnetic state.

We find a very small value of fFe and fNi in the MGS
around Fe-5%Ni. This is found to be related to the strong
attraction between the vacancy and the small Ni clusters in
an antiferromagnetic Fe lattice, which increases with the Ni-
cluster size. To evidence this point, we first need to define a
generalized 1NN vacancy-A binding free energy as

GV-A
b = kBT ln

(
1 − α1NN

V-A

) = kBT ln
xV

A

xA
. (14)

In the dilute limit (xA → 0), GV-A
b becomes the usual vacancy-

solute binding free energy. The MC results of GV-A
b in the

MGS and PM states are shown in Fig. 3. According to the
definition of GV-A

b , a positive value indicates that the 1NN A
concentration around the vacancy is higher than the nominal
xA, namely an attraction of vacancy towards a Ni-rich envi-
ronment. Figure 3 shows that there is a significant vacancy-Ni
attraction in the MGS, which is strongest around 5%Ni. Ac-
cording to our EIM, the MGS remains antiferromagnetic up
to 5%Ni, above which the reduced magnetization starts to
increase. Therefore, the maximum GV-A

b occurs around 5%Ni,
that is, the highest Ni concentration in the strictly antiferro-
magnetic Fe lattice.

As a further confirmation, we calculate the binding energy
between a vacancy and a Ni cluster in the AFD Fe using our
EIM and DFT. The binding energy Eb is calculated as the
energy difference between the system with the vacancy and
the Ni cluster far away from each other, and the system with
the two at the 1NN distance. Hence a positive Eb indicates an
attraction. As shown in Fig. 4, both EIM and DFT confirm that
Eb is positive and increases with increasing Ni cluster size.
Therefore, in the presence of the attractive configurations, the
jump frequencies to enter or exit such configurations have

FIG. 4. Binding energy between the vacancy and a given Ni
cluster in the AFD Fe vs the number of Ni atoms in the cluster.

very different amplitudes, leading to strong kinetic correla-
tions and low correlation factors.

D. Diffusion properties beyond equilibrium conditions

The present approach also enables us to evaluate diffusion-
related quantities in nonequilibrium conditions, where a much
larger amount of vacancies can be created, e.g., by a rapid
quenching from high temperatures, by plastic deformation,
or under irradiation [59]. In these cases, the diffusion coef-
ficients are no longer functions of the equilibrium vacancy
concentration. Meanwhile, the ratio of tracer diffusion co-
efficients D∗

Fe/D∗
Ni is a quantity independent of the vacancy

concentration. It is a key parameter dictating the enrich-
ment or depletion of an alloying element in sinks (e.g., grain
boundaries) due to the so-called radiation-induced segregation
(RIS), a frequently observed phenomenon under irradiation
[60]. Figure 5(a) shows that D∗

Fe/D∗
Ni increases from 0.4 to 1 at

30%Ni, then it varies more slowly between 1 and 2, presenting
a maximum around 60%Ni. Our prediction is in excellent

FIG. 5. Predicted (a) ratio between Fe and Ni tracer diffusion
coefficients, and (b) vacancy migration magnetic free energy Gm,V

at 1223 K. In (a), the experimental ratios are computed using data
of D∗ compiled in Ref. [38] (diamonds and up-triangles use data
from [55] and [38], respectively; down-triangles use the mean D∗

of Fe and Ni; the solid line uses D∗ linearly fitted to all the compiled
experimental data; the shaded area indicates the error bars); classical
MD results are from Ref. [42]. In (b), the experimental vacancy
migration energies are taken from Refs. [56–58].
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TABLE II. Magnetic and nonmagnetic on-site parameters for the
SP atom.

ASP (meV/μ2
B) BSP (meV/μ4

B) εSP (meV)

SP = Fe −205.2016 15.6446 −7707.2197
SP = Ni 74.0210 301.1836 −5883.8414

agreement with experimental data above 30%Ni, whereas it
is lower than the experimental ratios by a factor of 2 in the
Fe-rich limit, in which the experimental data show a larger
dispersion. To the best of our knowledge, the only previous
theoretical determination of these ratios comes from classical
MD simulations [42] (Fig. 5). However, those results strongly
deviate from our predicted values and the experimental ones.
Such a deviation suggests a high sensitivity of these ratios
to the quality of the empirical potentials used. Our results
suggest that the coefficient ratios in fcc Fe-Ni alloys may
actually be different from those in fcc Fe-Ni-Cr alloys. For the
latter, previous experiments [61] in the alloys with 20–45 %Ni
found the D∗

Fe/D∗
Ni to be 1.8, while existing models addressing

the RIS usually assumed the ratio to be rather large (larger
than 2 or 3).

It is also relevant to determine vacancy migration energies
and compare them with available experimental data, since
they control physical processes such as the growth rate of
dislocation loops under irradiation [62,63]. In fcc Fe-Ni al-
loys, there are available experimental values from magnetic
anisotropy [56] and electrical resistivity measurements [57],
and the ones extrapolated from the electrical resistivity results
in Fe-Ni-Cr alloys with varying Cr content [58]. We have
determined the vacancy migration magnetic free energy Gm,V

with effects of magnetic excitations included (Appendix B).
We find a good theoretical-experimental agreement as shown
in Fig. 5(b), where we predict a nearly linear increase in Gm,V

from pure Fe to pure Ni.

IV. CONCLUSION

In summary, we propose a DFT-based modeling approach
and apply it to the prediction of atomic diffusion proper-
ties in PM fcc Fe-Ni alloys as a function of composition.
It consists in kinetic Monte Carlo simulations coupled with
an effective interaction model entirely parametrized on DFT.
Both chemical and magnetic variables and their coupling are
explicitly taken into account. The accuracy of our approach is
attested by the good modeling-experiment agreement in vari-
ous diffusion-related quantities. In addition, we also propose a
way to express the tracer diffusion coefficient in concentrated
alloys in terms of its constituents using the same formal ex-
pression as in the dilute case.

For PM Fe-Ni alloys, we predict a weak composition de-
pendence of the diffusion coefficients, which can be explained
by the interplay of the stronger but distinct composition de-
pendence of the equilibrium vacancy concentration and the
effective jump frequency.

Regarding the impact of magnetic disorder, we find a much
stronger composition dependence of the diffusion properties
if we assume the 0 K magnetic configurations instead of the

TABLE III. Magnetic exchange interaction parameters JSP,OL (in
meV/μ2

B) between the SP atom and the OL atom separated by a given
distance.

SP OL 1NN 2NN 3NN 4NN

Fe Fe −5.3855 −8.0161 1.5916 −0.6457
Fe Ni −24.5305 5.8653 9.1694 −9.4957
Ni Ni −71.6976 −35.0767 13.9183 −8.3676
Ni Fe −13.2241 −3.7589 −18.7414 5.8729

PM state. Such a reduction of the chemical-interaction effect
due to magnetic disorder was evidenced in some dilute bcc Fe
alloys. Here we find the same effect well beyond the dilute
limit, regardless of the alloy concentration. The distinct diffu-
sion properties between the ordered and disordered magnetic
states also indicate that the magnetic ground state is not a
good representation for the modeling of diffusion in the PM
concentrated alloys.

Finally, the present model provides a way to access the dif-
fusion data for a broad range of temperatures, complementing
nicely the diffusion experiments feasible only at high temper-
atures. It is fully transferable to other concentrated magnetic
metal alloys under both equilibrium and nonequilibrium
conditions.
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APPENDIX A: MODEL PARAMETERS

The numerical values of the parameters in the expression of
ESP [Eq. (3)] parametrized in this work are given in Tables II–
IV. The parameters for the on-lattice configuration (EOL) can
be found in Ref. [36].

APPENDIX B: COMPUTATION OF VACANCY EFFECTIVE
MIGRATION FREE ENERGY

In the following, we describe how the vacancy effective
migration free energy Gm,V shown in Fig. 5(b) is computed in
MC simulations. We start with the attempt frequency of the

TABLE IV. Nonmagnetic pair interaction parameters VSP,OL (in
meV) between the SP atom and the OL atom separated by a given
distance.

SP OL 1NN 2NN 3NN 4NN

Fe Fe −28.7755 47.2913 30.9704 −29.1062
Fe Ni −34.6618 14.367 62.7312 −19.1265
Ni Ni 147.0236 54.6353 57.2937 −56.6513
Ni Fe 65.3323 12.8306 60.7932 −67.5517
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vacancy and then relate it to the vacancy jump frequency and
finally Gm,V . As the vacancy exchanges with both Fe and Ni
atoms, the attempt frequency of the vacancy is no longer a
constant but relates to �0,Fe and �0,Ni as follows [24]:

�i
0,V = zi

Fe�0,Fe + zi
Ni�0,Ni, (B1)

where zi
Fe and zi

Ni are the numbers of 1NN Fe and Ni atoms
for a given local chemical environment i.

We define an effective attempt frequency �0,V using the
average number of 1NN Fe and Ni atoms (zFe and zNi) around
a vacancy:

�0,V = zFe�0,Fe + zNi�0,Ni. (B2)

On the other hand, the effective jump frequency of the
vacancy is simply equal to the total number of atomic jumps
Njump divided by the time interval tMC:

�V = Njump

tMC
. (B3)

Then, similar to Eq. (13), we have

�V = �0,V exp

(
−Gm,V

kBT

)
. (B4)

Therefore, vacancy migration magnetic free energy can be
calculated as

Gm,V = −kBT ln
�V

�0,V
. (B5)
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