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Zigzag charged domain walls in ferroelectric PbTiO3
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We report a theoretical investigation of a charged 180◦ domain wall in ferroelectric PbTiO3, compensated
by randomly distributed immobile charge defects. For this we utilize atomistic shell-model simulations and
continuous phase-field simulations in the framework of the Ginzburg-Landau-Devonshire model. We predict that
domain walls form a zigzag pattern and we discuss their properties in a broad interval of compensation-region
widths, ranging from a couple to over 100 nm. The zigzag is accompanied by a local polarization rotation which
we explain to provide an efficient mechanism for charge compensation.
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I. INTRODUCTION

Ferroelectric materials are known to host complicated do-
main structures that can be used to tune the material properties
for a specific application. It turns out that interfaces between
the domains—the domain walls—have very different proper-
ties, e.g., electrical conductivity [1,2] or phonon modes [3],
from the bulk ferroelectric itself, and therefore understanding
the microstructure of the domain wall is receiving increasing
attention in the research of ferroelectrics.

The domain walls are typically electrically neutral or near
neutral, i.e., (P1 − P2) · n ≈ 0, where P1 and P2 are the fer-
roelectric polarizations inside the ferroelectric domains on
either side of the wall of interest, and n is the wall normal.
This is because deviation from the charge-neutrality condi-
tion leads to a large energy penalty due to the depolarizing
electric fields from the polarization-originated bound charges
qP = −divP at the walls. In a perfect dielectric material these
depolarization fields would suppress charged interfaces in the
early stages of their formation.

However, in spite of apparently unfavorable electrostatics,
charged ferroelectric domain walls do exist [4–7]. This can be
rationalized by the presence of charged defects such as, e.g.,
electrons, or ionic-type point defects, which compensate for
the charge of such walls. The charged walls, as they usually
involve defects of some kind, are different compared to their
neutral counterparts, and therefore exhibit different proper-
ties (such as, e.g., electric conductivity [8] and potentially
enhanced dielectric response functions [9]); this makes them
interesting from both fundamental and application perspec-
tives.

Charged domain walls have been studied theoretically
using analytical considerations and model Hamiltonians
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[10–12], density-functional theory [13–15], and phase-field
simulations [9,16–18], demonstrating the richness of excit-
ing phenomena associated with the charged-domain-walls
physics, including enhancement of the piezoelectric and di-
electric response of a material hosting such walls, differences
in the mobility of charged walls compared to their neutral
counterparts, as well as various, sometimes rather complicated
domain-wall configurations. A common feature of the previ-
ous studies is that the compensation charges, if considered, are
localized in the domain wall, or in a very narrow region close
to the wall, i.e., the focus there is on defects that can migrate
towards the charged wall, or materialize during the wall for-
mation. However, the compensating charges might not be able
to migrate easily and can be distributed over a much broader
region than considered so far. Such charge configuration is
poised to have an impact on the form and functionality of the
domain wall.

Therefore, in this paper we address a situation with
static compensation-defect charges distributed over a rela-
tively wide region. We combine shell-model and phase-field
simulations to study the microstructure and properties of a
domain wall with a charge-compensation region thickness up
to 100 nm. This multiscale approach allows us to consider a
large system in the phase-field simulation while maintaining
the accuracy of the atomistic shell model, which is limited to
smaller system sizes. We concentrate on the 180◦ tail-to-tail
domain wall in PbTiO3 (PTO), a well-known ferroelectric
material, for which parameters are available in the literature
for both shell-model and phase-field simulations.

In Sec. II we provide details of the utilized method-
ology; in Sec. III we review the results obtained using
shell-model and phase-field simulations, which are discussed
in detail in Sec. IV, where we also provide a simplified model
explaining the observations. Finally, the paper is concluded in
Sec. V.

2469-9950/2023/107(9)/094102(9) 094102-1 ©2023 American Physical Society

https://orcid.org/0000-0001-7273-7288
https://orcid.org/0000-0002-2951-8394
https://orcid.org/0000-0002-3902-8874
https://orcid.org/0000-0002-2046-350X
https://orcid.org/0000-0002-1748-6524
https://orcid.org/0000-0003-2483-3085
https://orcid.org/0000-0002-5474-0990
https://orcid.org/0000-0002-9293-4462
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.094102&domain=pdf&date_stamp=2023-03-06
https://doi.org/10.1103/PhysRevB.107.094102


PAVEL MARTON et al. PHYSICAL REVIEW B 107, 094102 (2023)

FIG. 1. Sketch of distribution of charged-wall-compensation
charges in the x-y cross section of the simulation box. Positive
charges (red) are distributed randomly in a layer of thickness L
(region of interest in simulations); negative charges (blue) are located
on a plane. The charged regions are separated by neutral regions.
The electrostatics dictates that two domain walls will develop: A
tail-to-tail domain wall (DW1) in the positively charged region, and
a head-to-head wall (DW2) in the negatively charged plane. The
properties and location of the DW1 are not known a priori and are the
subject of this study, while the DW2 is collocated with the negatively
charged plane.

II. METHOD

A. Supercell

The cross section of the all-periodic supercell utilized for
the calculations is schematically depicted in Fig. 1. Along
the direction x, it consists of two neutral areas, separated
by positive and negative compensation charges distributed
in broad and very narrow (planar) regions, respectively. The
charges are chosen to exactly compensate for the head-to-
head and tail-to-tail 180◦ domain walls, and they sum up to
zero. It follows from the electrostatic considerations that the
two neutral regions will host oppositely oriented ferroelectric
polarization, separated by two charged 180◦ domain walls
located inside the charged regions.

The negatively charged tail-to-tail wall (DW1), which is
of interest in this work, is expected to form within the thick
positively charged compensation layer covering most of the
simulation box. The positive charges in this wall have average
yz-planar density σDW 1 = 2Ps, and are distributed randomly.
The position and shape of the wall DW1 are not restricted in
any other way, so it is not a priori clear whether the wall is
going to be thick or narrow, planar, or will adopt some more
complicated profile.

The positively charged head-to-head wall (DW2) is on
the right-hand side of the box and forms within a nega-
tively charged compensation layer with the charge density
of σDW 2 = −2Ps. This wall is not of particular interest
in this work and is only present as a consequence of
the simulation-box periodicity. Therefore, this compensation
layer is prepared as thin as possible.

Notice that both present domain walls DW1 and DW2 are
charged, but at the same time the region of either wall is elec-
trically neutral: The polarization-originated bound charges are
exactly balanced by the compensation (defect) point charges.
By calling a wall positive or negative, it is always referred
to as its bound charge due to the head-to-head or tail-to-tail

arrangement of the ferroelectric polarization in the adjacent
domains.

The simulation box is, in general, three dimensional. While
the x dimensions of both neutral regions and the DW2 remain
constant in all simulations, we alter the thickness L of the
charged region and the y dimension of the simulation box W .
Notice that the periodic boundary conditions in all directions
imply, in particular, the periodicity of polarization and electric
fields.

B. Shell-model setup

For atomistic simulations we used a shell model potential
[19] for a solid solution of PbTiO3 and PbMg1/3Nb2/3O3 with
parameters fitted to first-principles results [20]. Therein the
atomic charges (core + shell) are treated as parameters and
attain the following values: Pb+1.80, Ti+2.88, O−1.56, Mg+2.36,
Nb+3.15. The spontaneous polarization obtained for pure PTO
using this model is Ps = 0.66 Cm−2. Notice that working
within an atomistic approach requires the use of defined sub-
stituting atoms. Our choice of Mg and Nb is motivated by
the appropriate charge provision and parametrization that is
proven to work in the PbTiO3 environment [20]. Nevertheless,
the use of particular species is not expected to curtail a general
result on the charged 180◦ DW (as indeed confirmed by the
phase-field calculations).

The model allows us to study the simulation box described
above (Fig. 1), with the DW1 layer (L = 48 unit cells) having
a fraction of Ti atoms randomly substituted by a Nb and DW2
layer (two unit cells thick) with all Ti atoms replaced by Mg.
The two neutral regions are seven unit cells thick and the total
size of the supercell is 64 × 44 × 6 unit cells.

To optimize atomic positions we run molecular dynamics
simulations at low temperature (T = 1 K) using the DLPOLY

software [21]. The time step was 0.4 fs. The atoms in the
initial configuration were in their ideal cubic positions. The
neutral region is under an electric field due to the charged
layers, therefore in each neutral region, the polarization de-
velops parallel to the electric field to which it is subject. After
equilibration for 30 ps, a trajectory of 10 ps was collected and
used for calculation of various properties of interest.

Finally, in the simulations the system is mechanically free
in all directions, which implies that all dimensions of the
supercell can vary during the simulation time. To understand
the implications of this approach, we also performed calcu-
lations imposing the tetragonal strain of PTO (bigger lattice
parameter along x). When comparing the results of the two
approaches it is evident that constraining the lattice parame-
ters has no substantial impact on the results.

C. Phase-field setup

The phase-field simulations are performed using the code
FERRODO2 [22], which implements the evolution of the
ferroelectric polarization in the framework of the Ginzburg-
Landau-Devonshire model together with the dissipative
Landau-Chalatnikov dynamics. Landau, gradient, elastic,
electrostrictive, and electrostatic interactions are taken into
account. For the exact form of the individual energy terms,
see Ref. [23].
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The utilized parametrization [24] of the local part of the
energy functional for PTO is based on first-principles calcula-
tions and was obtained using the same procedure as described
in Ref. [25]. Thus, the simulation temperature is 0 K, sim-
ilar to the shell-model approach. The gradient interaction is
chosen as isotropic. The spontaneous polarization resulting
from this parametrization is Ps = 0.80 Cm−2 (notice that the
spontaneous value differs from the shell model). We tested
that the outcomes of the presented simulations do not partic-
ularly depend on the used parametrization and temperature,
e.g., using the temperature-dependent Model I for PTO from
Table 4.6 in Ref. [23] (@T = 298 K).

The defect charges are represented by point charges (thus,
in contrast to the shell model they have no relation to a
specific atomic species). For the sake of analytical derivations
(see below) we also consider a homogeneous distribution
of the compensation charge, which allows us to eliminate
local effects related to the discrete nature of point charges.
The interaction of the defect charges with the PTO is purely
electrostatic and relies on explicitly solving the Laplace equa-
tion for the electric potential and subsequent evaluation of
the local electric fields due to defect charges. The volume
density of compensation charge is chosen as 2Ps/L. When
integrated along the x axis, it leads to the expected charge
density σDW 1 = 2Ps in the yz plane.

The spatial step � is chosen similarly to the lattice constant
of PTO, � = 0.4 nm. We vary the thickness L of the positive
compensation charge; both neutral regions have thicknesses
of 20�; DW2 is 2� thick.

The initial ferroelectric polarization was set to zero. For
the homogeneous compensation charge a small perturbation
was added, allowing the wall to depart from the strictly planar
configuration, corresponding to an unstable, but symmetry-
locked solution.

The system is mechanically free in all directions [26].
This choice allows us to be consistent with the shell model,
where it is difficult to combine mechanical clamping and
pressure for different components of the stress-strain bound-
ary conditions. It was tested, however, that the use of such
combined boundary conditions has only a minor impact on the
results.

The energy functional utilizes the elimination of mechani-
cal strain under the condition of mechanical equilibrium, i.e.,
the strains immediately follow the polarization [27]. Let us
stress that in all simulations the polarization and strain are
treated as fully three dimensional.

III. RESULTS

A. Shell-model simulations

The most important observation obtained from shell-model
simulations is that the tail-to-tail domain wall develops into a
zigzag wave inside the charged region, as depicted in Fig. 2(a).
The domain wall itself (the transition region where the polar-
ization reverses) is rather narrow irrespective of the thickness
of the charged region: The polarization changes its orientation
from negative to positive values within a couple of unit cells
only. The zigzag triangles are not exactly symmetric, they
are slightly skewed and have a fading, smokelike feature near

FIG. 2. A zigzag domain wall as obtained from shell-model
simulations. Arrows stand for the polarization of individual unit
cells projected to the xy plane, and color represents the Px, Py,
and Pz components of polarization in individual panels. The do-
main wall in the figure was obtained for the L = 48 and W = 45
unit cells.

the top. The reasons for this deviation from ideal symmetric
triangles will be addressed later.

Despite the significant difference between neutral and
charged regions, we observe that the ferroelectric polarization
exhibits no marked change at their interface. Instead, the
domains from the neutral regions penetrate into the charged
regions, with the Px component remaining mostly unaffected.

Figure 2(b) shows the Py. It is evident that this component
of the polarization develops mainly in the triangular domains
inside the charged regions. Its magnitude changes linearly
along the y direction, going from negative to positive, and
abruptly changes sign at the domain wall.

Figure 2(c) displays Pz, which is zero everywhere except
for the domain wall, where both Px and Py are close to zero
and instead Pz is finite.
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FIG. 3. A zigzag domain wall obtained from phase-field simulations. Three types of defect-charge distributions were considered, all
of them leading to the same average charge density in the wall. (a) Homogeneous charge, (b) charges as in shell-model calculations, and
(c) charges equal to the elementary charge. Color represents Px and Py in the first and second panel for each case [and Pz in the third panel of
(c)]. d) Py(y) evaluated for x = 24 shows linear dependence inside the triangular domain for all three studied cases, and a steep decrease within
the domain wall.

B. Phase-field simulations

The results obtained using the phase-field method are
shown in Fig. 3. The dimensions L and W of the charged
region are identical to those considered in the shell-model
simulations (Fig. 2). The different overall dimensions of the
xy-plane plots is caused by different thicknesses of the neu-
tral regions: They are broader in the phase-field simulations
than in the shell-model simulations. Three different ways of
including the defect charges are considered. Figure 3(a) was
obtained for a homogeneous distribution of the compensating
charge and leads to a symmetric zigzag domain. The compen-
sating charges in Fig. 3(b) are analogous to the compensating
point charges used in the shell model. In Fig. 3(c) we used
fewer point charges with a larger charge (the elementary
charge |e|) [28]. Notice that the color scale slightly differs be-
tween Figs. 2 and 3, as the spontaneous polarization predicted
by either model is different.

In accordance with the shell-model simulations, the de-
pendence of the Py on y within the triangular domain is
approximately linear, as can be deduced from the corre-
sponding panels of Figs. 3(a)–3(c). To demonstrate this more
clearly, we plot the dependence of Py along the y axis for all
three studied compensation-charge distributions in Fig. 3(d).
Clearly visible is the linear dependence of Py inside the

triangular domain, and its rapid decrease in the region of the
domain wall. Notice that Py = 0 on the axis of the triangular
domain.

The third panel in Fig. 3(c) displays the Pz component
of the ferroelectric polarization. We observe an out-of-plane
component in the region of the DW1, in agreement with
the shell-model simulations (see the bottom panel of Fig. 2)
[29]. A footprint of the tendency to form an extra component
of polarization in the domain wall can be also observed in
Figs. 3(a)–3(c) for the Py component in the DW2 (for the
head-to-head 180◦ DW2 the y and z directions are practically
equivalent). The appearance of Pz in the charged wall is sup-
ported by auxiliary density-functional-theory calculations; its
magnitude, nevertheless, appears quite sensitive to the details
of the defect-charge representation in the narrow walls con-
sidered within the relatively small supercells accessible with
the first-principles calculations.

Finally, all simulations predict that the polarization vectors
in both neutral regions stay practically at the spontaneous
value in the x direction, justifying the use of rather thin lay-
ers to represent them; this allows for a larger portion of the
simulation box to be devoted to the region of interest. The
wall itself is thicker than a neutral 180◦ domain wall [30]. In
Fig. 3(b) we observe similar features close to the apex of the
triangle as in the shell-model result in Fig. 2.
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In general, there is a very good agreement between the
shell-model and phase-field simulations. Both predict a zigzag
wall within the charged region.

IV. DISCUSSION

A. One-dimensional character of domain-wall modulation

The simulations presented in the previous section are
mostly done with two-dimensional simulation boxes (in the
xy plane). However, simulations using three-dimensional
supercells, typically 60� × 60� × 60� in the phase-field
simulations, were conducted as well: They systematically
predict the development of a zigzag wall modulated along
either the y or the z axis and constant along the other axis
(the charged and neutral regions are stacked along the x
direction). Hence, we conclude that the simulations using
two-dimensional supercells describe the physics of the zigzag
domain wall of interest. Notice that even though the modula-
tion direction was observed to align only with a pseudocubic
y or z direction, this does not need to be the case for all ma-
terials: The anisotropy of the transversal permittivity for the
spontaneous state and the concrete form of the short-range in-
teraction may lead to an alternative preferred wall-modulation
direction (see the discussion below).

B. Origin of the zigzag profile of the wall

For the sake of gaining insight into the zigzag character of
the wall, it is instrumental to use the simplified homogeneous-
charge approximation, already used, e.g., in Fig. 3(a). It allows
us to disregard the actual positions of the defects while pre-
serving their average effect.

There is a simple reason why the domain wall cannot stay
flat: In order for the bound-charge density due to the varia-
tion of solely Px (recall that ρP = −divP) to approximately
compensate the defect charge, the change in Px between its
spontaneous values would need to be approximately linear.
Such a strong deviation from the spontaneous polariza-
tion in such a large volume region would cost too much
energy.

In order to avoid the paraelectric state, the Py component
of polarization develops. A closer look at the polarization in
Figs. 2 and 3 reveals that the Py = 0 at the axis of the triangle.
The Py increases linearly along the direction of the y axis, and
sharply drops in the region of the zigzag domain wall, thus
being zero on average [see also Fig. 3(d)].

The visualization of how the ferroelectric polarization
gives rise to bound charges ρP = −divP = −( ∂Px

∂x + ∂Py

∂y +
∂Pz
∂z ) = ρPx + ρPy + ρPz is depicted in Fig. 4 for the case with

relatively small L, for which the effect is more pronounced.
The upper panel shows the contribution to the polarization-
originated bound charge from Px. It is negative in the region of
the zigzag wall (as it needs to be in a tail-to-tail wall), and zero
elsewhere, i.e., Px stays almost constant within the triangles.
The middle panel depicts the contribution of the Py compo-
nent. Its linear increase along the y axis leads to a negative
charge bound (blue in the triangular domain), while the sharp
drop in the wall results in a large positive bound charge (red
at the triangle edges). Adding these two [31] contributions

FIG. 4. Polarization-originated bound charges, stemming from
the Px (upper), Py (middle) components of polarization, and their
sum (bottom). For better visibility of the DW1 region we artificially
reduce the intensity of charge in the DW2 by a factor of 10.

together (bottom panel) results in an almost constant negative
bound charge within the entire charged region, which matches
the positive compensation charge due to immobile defects.
Notice that the ρP is not exactly constant in the wall region,
but even there the differences (of lighter and darker areas)
approximately cancel and lead to local electric fields only,
which are energetically acceptable.

Thus, while the Px component is responsible for the neg-
ative charge of the wall, Py produces a positive and negative
regions, which approximately compensates the negative wall
and all the positive defect charges at the background. The
polarization-originated bound charge approximately matches
the defect charges, and there remain almost no sources of
energetically costly electric fields.

Notice that the described mechanism of the balance be-
tween the bound and defect charges requires that the wall
penetrate the whole thickness of the charged region, and
therefore the height of the triangular domain must be approx-
imately equal to L. Let us return back to the original question
about the reason why the shape of the wall is zigzag. It is sim-
ply the shortest interface, which at the same time penetrates
the whole charged layer. In other words, it is the energetically
most economic wall from the perspective of the domain-wall
surface energy density, which allows for the charge balancing
mediated by variation of Py.

A similar mechanism can be expected in cases where we
deal with point charges instead of a homogeneous charge
density: The variation of the electric field due to local charges
averages out due to the large number of involved defects.
Figure 3(c) demonstrates the robustness of the zigzag arrange-
ment, which is present even for more strongly charged (and
therefore more sparsely distributed) point defects.

Notice that the observed deviation of Py costs energy; how-
ever, as this is a transversal deviation from the spontaneous
vector, it costs less energy than the longitudinal deviation.
This effect is related to the usually larger permittivity in the
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FIG. 5. Top: Schematic picture of the zigzag pattern, which is
used in the derivation of Wnatural (L). Red and blue colors and arrows
correspond here to positively and negatively oriented ferroelectric
domains (with respect to the x axis). The color of the defects is as
in Fig. 1. Bottom: Dependence of Wnatural (L). Bullets: Phase-field
simulations with homogeneous compensation charge; the dashed
line is just a connection of these. Crosses: Phase-field simulations
with randomly distributed defect charges, as in Fig. 3(b). Solid line:
Simplified model. The dotted line indicates dependence W = L, i.e.,
a triangle with identical width and height.

transversal than in the longitudinal direction in ferroelectrics
[17,18].

C. Natural dimensions of triangular domains

So far, the dimensions W for the given L was chosen in
such a way that it produces a more or less “’acceptable”
modulation length for the zigzag wall (i.e., a single triangle
develops for each domain in the simulations). In the following
we investigate how the energetically optimal base of the trian-
gle Wnatural depends on the width of the compensating charge
distribution L.

We have used phase-field simulations to visualize the de-
pendence in Fig. 5 (bottom panel). For the sake of the plot, the
Wnatural for each considered L (bullets and crosses in the figure)
was evaluated as the W , for which the optimized configuration
with one triangle in the simulation box has the lowest planar
energy density in the yz plane. Thus, Wnatural is the zigzag
period, which would materialize as the energetically most fa-
vorable without constraints on W imposed by the y dimension
of the simulation box.

To understand the behavior of Wnatural(L), and motivated
by our simulations which systematically yield a zigzag profile
independent of the actual positions of the defect charges,
we use here again the homogeneous-defect-charge approx-
imation, and the strictly triangular zigzag domain wall, as
depicted in Fig. 5 (top panel). The first contribution to the
planar energy density of the wall per unit area in the yz plane,

E1, is the surface energy of the wall as a function of W and L,

E1 = 2μ

√(
L

W

)2

+ 1

4
, (1)

where μ represents the surface energy density of the wall.
E1 grows with decreasing of W , because narrow triangular
domains have a (relatively) large wall surface.

The second contribution to the energy density, E2, accounts
for the deviation of the polarization vector in the y direction
from zero by �Py(r). Let us assume that (i) the deviations
�Py are small enough and the Landau energy density fL can
be considered to be quadratic,

fL = fL(Ps) + α′
1(�Py)2, (2)

(ii) �Py(r) linearly increases along y while Px remains con-
stant, (iii) the domain wall has zero thickness, and (iv) all
other energy contributions, e.g., due to electric fields originat-
ing in incomplete compensation of the defect charge by the
polarization variation, can be neglected. Under these assump-
tions, it can be derived that

E2 = 2

W

∫
T

fL(Psx,�Py, 0) − fL(Ps)dr

= 4

W

∫ L

0

(∫ x tg(γ )

0

1

2χ⊥

(
2Psy

L

)2

dy

)
dx

= P2
s W 2

12χ⊥L
. (3)

Here T is the area of a single triangle with the base W ,
χ⊥ = 1/(2α′

1) represents the transversal susceptibility in the
spontaneous ferroelectric state Ps = (Psx, 0, 0), and 2γ is the
angle at the triangle apex. In the derivation, we use the linear
dependence of �Py on y (with zero on the axis of the wedge),

�Py = 2Ps

L
y, (4)

which allows for exact balancing of the homogeneous defect
charge (the coefficient of proportionality is exactly equal to
the homogeneous charge density in the charged layer). There-
fore, the maximal �Py found in the triangle is proportional to
the width W of the triangle. From Eq. (3) it follows that E2

grows with increasing W , as sharper triangles require smaller
maximal values of �Py.

The total energy density of the wall per unit area in the yz
plane is E = E1 + E2. Wnatural is the W for which the energy
is minimal, requiring dE/dW = 0. The complex nature of the
E does not allow one to express the Wnatural(L) analytically
in a simple form; for large L the solution asymptotically
approaches

Wnatural(L) =
(

12μχ⊥L2

P2
s

)1/3

. (5)

The numerical solution is plotted in Fig. 5 (solid line), tak-
ing into account μ = 175 mJ/m2, and χ⊥ = 279ε0 evaluated
from the utilized Landau potential fL(P) [32].
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For large L the polarization will be close to the spontaneous
one within the entire area of each triangle, and the adopted
assumptions are largely valid, and the prediction of the simpli-
fied model agrees well with the numerical data. On the other
hand, for small L we see a discrepancy between the numerical
data and the predicted Wnatural(L). This is because the �Py(r)
can no longer be considered small (see, e.g., Fig. 2), the
volume of the wall itself becomes significant, and the adopted
assumptions, in particular that of a constant Px, are no longer
satisfied. This will lead to smaller E2, and thus to broader
triangles obtained from simulations than is predicted by the
theory, which indeed we observe in Fig. 5.

In general, a tendency to form narrow triangles (small γ )
can be expected in materials with small planar energy density
of the domain wall μ (small cost of the wall area), small
spontaneous polarization magnitude Ps (small defect-charge
volume density), small susceptibility χ⊥ (large energy cost
due to induced transversal polarization �Py(r)), and small
background permittivity εB (reflecting contributions to the
permittivity due to high-frequency polar modes and electronic
degrees of freedom).

D. Deviations from the ideal zigzag pattern

As was already pointed out, there appear smokelike fea-
tures at the tips of the triangles [see Figs. 2(b) and 3(b)].
These features are related to the somewhat smaller height of
the wedge compared to the width of the charged region L, and
they also develop as a response to the discrepancy between
Wnatural(L) and the actual W (enforced by the y dimension of
the simulation box), in particular when W is larger. To demon-
strate this, we show an even more pronounced departure from
the ideal zigzag pattern in Fig. 6, observed for triangles with
increasing base W . The white regions in the figure repre-
sent small 90◦ domains with the ferroelectric polarization
pointing along the ±y direction. Notice that the resulting
90◦ domain walls tend to form an angle of 45◦ with respect
to the pseudocubic axes, i.e., they are close to mechanical
compatibility [33].

For values of W smaller than Wnatural the shape remains
triangular, even though the overall wall length and hence its
surface energy increase. This is because failure of the wall to
percolate the complete thickness of the charged slab would be
energetically forbidden, as explained above.

For values of W larger than Wnatural the shape departs from
triangular only very slowly, indicating a relatively large tol-
erance of the system to the change of the triangle width. At
some point, the smokelike feature above the triangle grows
larger, and is accompanied by smaller and larger cuts to the
side of the triangle along its whole length. The actual positions
of the cuts likely depend on the location of defect charges.
For large W , the cut progressively separates the bottom part
of the triangle, which becomes a seed for a second triangle,
which will fully develop into another triangular domain for
large enough W .

Let us point out that in a real situation the width of the
triangles will likely depend on the history of the sample, and
might be far from optimal. It will depend on, e.g., the number
of seeds during the growth of the domain structure, on any
pinning of the wall (influencing the ability of the triangles to

FIG. 6. Zigzag domain wall as obtained from mutually in-
dependent phase-field simulations for L = 200� = 80 nm and
W ∈ {0.80, 1.20, 1.60, 1.76, 2.00} × Wnatural. The color represents
Px. White regions are areas where the polarization is oriented along
the y axis.

move, merge, or split), and on other aspects of the charged
domain-wall formation. Thus, an irregular pattern and varying
heights of the triangles can be expected.

The other situation for which the wall morphology strongly
departs from the regular zigzag pattern appears for very small
L � 10�. Here the domain wall forms an irregular landscape
within the limits of the charged region, utilizing the energetic
advantage of crossing the oppositely charged defect in the
wall center, if possible. We observed that in this case the wall
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is pinned to the actual defect positions. The absence of the
regular zigzag pattern is the reason why it was not possible to
plot Wnatural(L) for small L in Fig. 5.

E. Theoretical and experimental context

The origin of the zigzag shape of ferroelectric charged
domain walls was previously investigated theoretically by
Zhang and coauthors in Ref. [12]. They construct a minimal
Hamiltonian, including merely short-range and electrostatic
interactions between electric dipoles, leading to the zigzag
modulation of the uncompensated domain wall in a strictly
uniaxial ferroelectric material.

Tikhonov and collaborators in Ref. [16] modeled uncom-
pensated charged domain walls in the uniaxial ferroelectric
Pb5Ge3O11 using phase-field simulations, which led to a com-
plex three-dimensional domain structure including mutual
domain bifurcations. Compensation of the polarization bound
charge by variation of the transverse polarization components
was observed, which is a very similar mechanism to the one
reported here.

The two aforementioned works [12,16] do not assume
compensation of the charged wall by any extrinsic charge,
which, apart from the fact that we work here with a multiaxial
ferroelectric material, is the main difference compared to the
study presented here. In contrast to Ref. [16] we do not pre-
scribe the polarization on either side of the charged interface
in any way.

An important distinctive feature of the zigzag pattern ob-
served here from the previous theoretical studies which do
consider compensation charge is that the domain wall here
is practically independent of the actual positions of charged
defects, i.e., the charges are not accumulated in the wall.

An experimental observation of a similar configuration
of charged domain wall was recently reported in Ref. [4]
for a 250-nm-thick BaTiO3 film. Therein, a charged wall
separates two regions with oppositely oriented polarization
(perpendicular to the substrate). Triangular domains, which
penetrate almost the entire film thickness, are observed along
with smaller triangles. The 180◦ domain structure was seen
to be dependent on the sample thinning and grounding of the
electrodes. A comparable pattern was also observed in rhom-
bohedral BiFeO3 in Ref. [7]. There, a finely modulated zigzag
wall forms within a larger-scale stripe motif. The structures of
these walls bear a strong resemblance to the zigzag pattern
studied here. A triangular charged domain interface (on a
much larger scale) was also observed for LiNbO3 [5].

Zigzag charged domain walls similar to those reported
here are known to appear in magnetic thin films on scales
of micrometers and larger [34–37]. Some of the triangles
show similar smokelike features as those described here. The
compensating electric charge used in the electrostatic con-
siderations performed here is analogous to the notion of the
magnetic charge due to orientation of the magnetization out

of the plane of the film. In this way, the magnetic charged
wall can exist in thin films, while the out-of-plane component
of the magnetization escapes the film and the magnetic flux
closes outside the film.

V. CONCLUSIONS

We used atomistic shell-model and continuous phase-field
simulations of doped ferroelectric PbTiO3 to study the proper-
ties of 180◦ tail-to-tail domain walls that develop in spatially
extended charge-compensation layers.

We observe that the charged domain walls systematically
adopt a zigzag profile. We show that this pattern is stable
against variations of compensating charge distribution and
forms equally for point defect charges of different magni-
tude as well as for homogeneous charge distributions. We
argue that the zigzag shape and triangular domains form as
a consequence of the energetic demand to compensate the
charged layer via polarization gradients while avoiding the
paraelectric state, and keeping the surface area of the wall
as small as possible. The former is achieved by polarization
rotation, which we identify here as an efficient mechanism
to distribute the uncompensated polarization bound charge
from the wall over a larger area, and render the wall energet-
ically more economic. Additionally, we provide a simplified
expression for determining the natural width of the triangles
Wnatural, or equivalently the angle of the zigzag domain wall.
For large enough thickness L of the charged slabs we found
Wnatural ≈ L2/3.

Although the charged region considered here was a slab
with its normal aligned with the direction of spontaneous
polarization in the surrounding domains, the physics pre-
sented here can be straightforwardly extended to more general
orientations of the slab with respect to spontaneous polariza-
tion, and to non-180◦ charged domain walls. This will be
relevant, for example, for the slab normal along the pseu-
docubic axis in a rhombohedral ferroelectric, such as in
BiFeO3.

The results presented here will be equally valid for the pos-
itively charged head-to-head wall, provided the compensation
charges remain distributed in a sufficiently broad region and
are immobile.

Thus, a finite slab of compensation defect charges should
be perceived as a possible scenario to explain observations of
nanoscale zigzag charged domain walls.
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