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Electrical circuit realization of topological switching for the non-Hermitian skin effect
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Non-Hermitian systems reveal rich physics beyond the Hermitian regime, and have aroused great interest.
One remarkable physical phenomenon is the non-Hermitian skin effect. Recently, topological switching for
the non-Hermitian skin effect has been theoretically proposed in cold-atom systems. However, experimental
realization of such a phenomenon remains a great challenge. Here, we theoretically propose and experimentally
demonstrate a topological switch for the non-Hermitian skin effect in electrical circuit networks. By controlling
the operational amplifier and other electric components, the nonreciprocal transport of probability for electrical
signals is observed when the switch is turned on. Furthermore, the robustness of such a topological switch is
demonstrated both theoretically and experimentally when perturbations are added. Our study provides an avenue
for controlling electrical signals in circuit networks, with potential applications in the field of integrated circuit
design.
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I. INTRODUCTION

In recent years, there has been a great deal of interest
in studying non-Hermitian systems due to the exhibition of
properties that are different from those in Hermitian sys-
tems [1–35]. The non-Hermitian skin effect (NHSE), namely,
that the majority of eigenstates of a non-Hermitian operator
are localized at boundaries, is one of the most remarkable
phenomena in non-Hermitian systems [36–50]. The interplay
of the NHSE with topology is particularly interesting [51],
and has been observed in experiments [52,53]. If such a
phenomenon can be finely controlled, there should be many
potential applications. Recently, a topological switch for the
non-Hermitian skin effect has been theoretically proposed in
cold-atom systems [54]. This switch is controlled by atom
loss. When the non-Hermitian skin effect is switched on, wave
packets are transported with nonreciprocal amplification. Un-
fortunately, the precise control of atom loss is difficult, thus
making the experimental observation of topological switching
almost impossible in cold-atom experiments.

On the other hand, electric circuits have been widely
used to simulate quantum phenomena and topological states
[41,45,46,52,55–66]. Non-Hermitian Laplacians can be re-
alized in the circuit by introducing operational amplifiers
(op-amps), analog multipliers, resistor, and other electrical
circuit components [41,45,46,52,58–62]. Based on such real-
ization, the skin effect in the non-Hermitian circuit lattice has
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been experimentally demonstrated [41,49,52]. With appropri-
ate arrangement of op-amps in higher spatial dimensions, the
hybrid topological-skin effect has also been observed [52]. In
these experimental observations, the circuit Laplacians corre-
sponding to the non-Hermitian Hamiltonians are constructed,
and the non-Hermitian skin effect can be demonstrated by
measuring the impedance of a circuit at steady state. One thus
wonders if topological switching of the non-Hermitian skin
effect can also be realized in designed circuit networks.

In this work, we propose theoretically and demonstrate ex-
perimentally that the topological switch for the non-Hermitian
skin effect can be realized in circuit networks. The circuit
networks are designed to simulate dynamics evolution behav-
ior in the quantum system based on the similarity between
circuit Laplacians and lattice Hamiltonians. The dynamical
evolution behavior is observed and the topological switch for
the non-Hermitian skin effect is demonstrated experimentally.

II. THEORETICAL CIRCUIT DESIGN TO REALIZE
THE TOPOLOGICAL SWITCH

In Fig. 1(a), we provide a circuit where the nodes in black
connect to each other by op-amp structure with various colors.
The lattice corresponding to this circuit is shown in Fig. 1(b).
In Fig. 1(b), cve−iϕ is the coupling between different sublat-
tices of the cell, c↑,y, c↓,y, c′↑,y, c′↓,y, c↑,x, and c↓,x are the
couplings between the same sublattices in the different cells,
and cd,x is the coupling between different sublattices of the
different cells. In addition, c�− represents an energy offset
between the sublattices, and icg is the loss. To display the
evolution of the lattice, the nodes of the circuit in Fig. 1(a)
are twice as many as the nodes in the lattice in Fig. 1(b), and
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FIG. 1. Theoretical design of the circuit network. (a) The circuit
structure with four unit cells. Nodes in black connect to each other
by op-amp structure (simplified to colored lines). With the x-y coor-
dinate axis, we can identify a unit cell by (x, y). For example, the unit
cell in (2, 2) is the unit cell in the upper-right corner marked by a red
box. (b) The lattice corresponding to the circuit. The black ellipse,
corresponding to the black box in (a), is the unit cell in the lattice, and
it contains two black sublattices. The different symbols “c” indicate
the couplings between different sublattices. (c) The unit cell (the red
part) in the circuit containing eight nodes, which are labeled 1–8. For
clarity, this part of the connection is colored red in Fig. 1(a) and is
different colors in Fig. 1(c). All nodes are grounded by a capacitor
with value C, and the resistance Rg is added to the nodes with the even
number. The connections between these nodes are op-amp structure,
with different parameters that are marked by different colors. The
nodes 1 and 3 correspond to the real and imaginary parts of the
upper lattices, nodes 2 and 4 correspond to another sublattice, and
so do nodes 5–8. (d), (e) The connection between different unit cells
along the x direction (blue part) and the y direction (orange part),
respectively. For clarity, these parts of connections are colored blue
or orange in (a) and more detailed colors in (c), (d). (f) Details
of the op-amp structure. The op-amp structure is used to control
the current, so that Ijk = Vk/Rjk and Ik j = −Vj/Rjk , which is used
for the correspondence between the circuit matrix and the quantum
Hamiltonian. The value of resistance R0 is the same for all op-amps,
and the value of resistance Rjk is inversely related to the “coupling”
strength between two sublattices in the circuit.

the connections in the circuit with the symbol “t” are twice as
many as the couplings in the lattice with the symbol “c.”

The circuit in Fig. 1(a) can be divided into three parts, the
circuit unit cell as shown in Fig. 1(c) in red, the x-direction
connection as shown in Fig. 1(d) in blue, and the y-direction
connection as shown in Fig. 1(e) in orange. In the circuit unit
cell, each sublattice is connected to the ground by an electric
capacitance C whose value is the same for all sublattices. A
resistance Rg = 1/(2tg), which represents the “loss” in the
circuit system, is used to connect the ground and the sublattice
with an even value j. In addition, the nodes in the circuit
connect to each other with the op-amp structure shown in
Fig. 1(f). The op-amp structure has two kinds of resistance,
one with constant value R0 and another with variable value
Rjk , which is inversely proportional to the coupling strength
in the circuit. Taking the rose-color op-amp structure (t�−)
as an example, the value of Rjk satisfies CRjk = 1/|t�−|. The
op-amp structure adjusts the current to I jk = Vk/Rjk and Ik j =
−Vj/Rjk , which is used for the correspondence between the
circuit matrix and the quantum Hamiltonian in the following
text. For clarity, we take R′

jk = Rjk and R′
k j = −Rjk . Details

have been shown in Appendix A.
As discussed in Refs. [52,54], the lattice in Fig. 1(b) can

possess the non-Hermitian skin effect in the x direction by
the loss, and induce the topology in the y direction, which
results in a typical skin-topological effect controlled by the
topology. It also has the ability to switch on and off the skin
effect through controlling the reciprocity along the x direc-
tion [54]. Here, based on the circuit networks in Fig. 1(a),
we can realize the topological switch for the non-Hermitian
skin effect. When the switch is off, the nonreciprocity with
two sublattices favoring opposite directions can be balanced
by intersublattice couplings and yields net reciprocity. When
the switch is on, the reciprocity is broken when topological
boundary modes localize on the edge, such that nonreciprocal
pumping dominates.

Moreover, due to the extensibility of the circuit, it is con-
venient to study the three-dimensional model. We can stack
the two-dimensional circuit and apply the connection to the
z direction. For example, we can connect the nodes in the z
direction similar to the case in the x direction as shown in
Fig. 1(d), so the similar non-Hermitian skin effect appears.
This three-dimensional circuit is the skin-topological-skin
model. More various controlling results can be found in this
three-dimensional circuit.

Suppose that the circuit in Fig. 1(a) has 2N nodes, and Vj (t )
represents the voltage at the jth node. According to the circuit
design above, the Kirchhoff equation for Vj (t ) is expressed as

C
dVj

dt
+ Vj

Rg
+

∑
j �=k

I jk = C
dVj

dt
+ Vj

Rg
+

∑
j �=k

Vk

R′
jk

= 0. (1)

We can use a column vector |V (t )) =
[V1(t ),V2(t ), . . . ,V2N (t )]T to express the voltages at the
2N nodes at time t , and the superscript “T” denotes the
transpose operation. So the dynamics of the voltages for these
2N nodes is

d|V (t ))

dt
= A|V (t )) ⇒ i

d|V (t ))

dt
= iA|V (t )). (2)
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The circuit Laplacian matrix A governs the dynamics
of the voltages. The element of the matrix is expressed
as Ajk = 1

CR′
jk

= −Ak j . Based on the description above, the

value of R′
jk is inversely related to the “coupling” strength

between two nodes in the circuit. In Appendix B, we
provide the dynamics of the voltages in the unit cell in
detail.

When applying the Fourier transform to the Laplacian ma-
trix A(x, y), we have

A(kx, ky) =
[

g(σ3 − σ0)τ0 − itv sin ϕσ2τ3 −[σ0a+
σ + σ3a−

σ + a+
τ τ0 + a−

τ τ3]

σ0a+
σ + σ3a−

σ + a+
τ τ0 + a−

τ τ3 g(σ3 − σ0)τ0 − itv sin ϕσ2τ3

]
, (3)

where a±
σ = −(2t±,x cos kx − �±)τ0−{t±,y + t ′±,y[cos ky +

cos(ky − kx )]}τ1 − t ′±,y[sin ky + sin(ky − kx )]τ2, a−
τ =

tv cos ϕσ1, and a+
τ = 2td sin kxσ2. Here, σi and τi (i = 1, 2, 3)

are two sets of Pauli matrices. The operators σ0 and
τ0 are the corresponding 2 × 2 identity matrices. Also
t±,α = (t↑,α ± t↓,α )/2 and t ′±,α = (t ′↑,α ± t ′↓,α )/2. Such
a Laplacian matrix A has a close relation to the N-order
Hamiltonian of lattice [Fig. 1(b)] which displays the
nonreciprocal transport of the wave packet. Good agreement
is shown where the dynamics of the voltages governed by
the circuit matrix A corresponds to the evolution of the wave
packet determined by the Hamiltonian; see Appendix C.

In the topological switch, the loss introduces non-
Hermiticity, and the coupling in the x direction induces the
skin effect, resulting in the eigenmode localization. Com-
paring with the quantum model, our designed circuits have
a similar spectrum, eigenmode distribution, and topological
mode governed by the Berry phase. The eigenvalues of matrix
iA (iA|φ〉 = λ|φ〉) with certain parameters are presented in
Fig. 2(a). In our calculation, the periodic boundary condition
(PBC) is chosen along the x direction, and the open boundary
condition (OBC) is taken along the y direction. The red and
blue solid lines correspond to the eigenvalues of localized and
bulk eigenmodes, respectively. The Berry phase related to the
presence of edge states is

γ y
n (kx ) = − 1

π
Im

∮
2π
0 dky〈un(kx, ky)|∂ky |un(kx, ky)〉. (4)

The state |un(kx, ky)〉 is the nth eigenmode of the sys-
tem iA(kx, ky)|un(kx, ky)〉 = εn|un(kx, ky)〉. Considering that
the PBC is chosen along the x direction and the OBC along
the y direction, the average Berry phase is defined as γ̄

y
n (kx ) =∑

kx
γ

y
n (kx )/Nx. It involves the Berry phase of the circuit

Laplacian matrix with different kx, which is proportional to
the corner mode accumulation strength [54]. In Fig. 2(b),
we provide the Berry phase from the eigenmode with the
lowest eigenvalue for the nontrivial topology (γ̄ > 0). Al-
most degenerate chiral edge modes (red curves) in Fig. 2(a)
reflect the Chern topology, with their presence (or absence)
at each kx depending on whether the nearly quantized Berry
phases are close to 1 or 0, and the average Berry phase γ

greater than zero shows the topological mode. At this time,
the switch is on, and the reciprocity is broken such that non-
reciprocal pumping dominates. For comparison, when some
resistances are changed, the trivial topology can be obtained
(γ̄ = 0), and the switch is off, so the nonreciprocity with
two sublattices favoring opposite directions is balanced and
yields net reciprocity. We can also learn the results from the

eigenmode distribution. The eigenmode is the square of the
modulus of the eigenstate of the matrix. Let φm be the mth
eigenstate of the circuit matrix, and the component at the nth
node on the (x, y) unit cell is φm(x, y, n). The eigenmode
on the unit cell ρsum(x, y) = ∑

m

∑8
n=1 |φm(x, y, n)|2 is the

sum of the eigenmodes on the eight nodes of this unit cell.
The eigenmode distributions ρsum(x, y) for different topolo-
gies are shown in Fig. 2(b) in a 20 × 10 unit cell circuit. It
is clearly found that ρsum is localized at two opposite cor-
ners, and the densities along x = 1 and x = 20 are obvious,
while in the trivial case it is strongly clustered in the two
of four corners, and the densities in the other two corner
are almost 0. This kind of state distribution is useless for
propagation. Moreover, the eigenmode distributions of three-
dimensional circuits are shown in Fig. 2(c). Here we discuss
two different three- dimensional circuit designs. One is the
skin-topological-skin (skin-topo-skin) model, which displays
the skin-topological (skin-topo) effect on the x-y plane. We
add a tx connection in the z direction, so the skin effect
along the z direction is implemented. For the skin-topo-skin
model shown in the picture on the left in Fig. 2(c), the eigen-
modes accumulate in the two corners. The other one is the
skin-topological-topological (skin-topo-topo) model, which
possesses topological-topological (topo-topo) modes on the
y-z plane, and tx leads to the skin effect in the x direction. For
the skin-topo-topo model shown in the picture on the right in
Fig. 2(c), they accumulate in the four corners. The different
eigenmode distribution results in different time evolution of
the circuit.

III. NUMERICAL RESULTS AND EXPERIMENTAL
DEMONSTRATION OF TOPOLOGICAL SWITCH EFFECT

In the following, we provide numerical results for the topo-
logical switch effect. The value of capacitance in the circuit is
taken as C = 1 µF. Different values of the resistances Rj,k

in the op-amps are selected to accommodate with the “cou-
pling” strengths shown in topological nontrivial and trivial
cases in Fig. 2. In our simulation, the voltage is injected into
the required nodes of the circuit, and then evolves in the
whole circuit. Two different inputs of voltages V R and V L

are shown for comparison. The case V R describes that at the
initial time (t = 0 ms), only the voltage at the sublattice 1 of
the position (x, y) = (20, 10) (top-right corner) in the circuit
is Vx=20, y=10, n=1 = 1 V and the voltages at other nodes are
zero. The case V L denotes that at the initial time (t = 0 ms),
only the voltage at sublattice 1 of the position (x, y) = (1, 10)
(top-left corner) in the circuit is Vx=1, y=10, n=1 = 1 V, and the
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FIG. 2. Topological properties in the circuit Laplacian
matrix. (a) Real and imaginary parts of the eigenvalues
of the matrix iA. The coupling strengths between different
sublattices {g, t+,x, t−,x, t+,y, t−,y, t ′+,y, t ′−,y,�−, td , tv} are {0.50,

0.39, 0.44, −0.11, −0.41, 0.45, 0.14, 1.25, −0.11, 0.19}(kF−1 �−1)
and ϕ = π/2. The PBC (OBC) is chosen for the x (y) direction. The
eigenvalues of localized (bulk) eigenmodes are shown in red (blue).
(b) The summation of probability distributions of eigenmodes
ρsum(x, y) and Berry phase with different parameters. The circuit in
the simulation contains 20 × 10 unit cells. The parameters for γ > 0
follow those in (a), and the parameters for γ = 0 are changed to
{0.50, 0.06, 0.10, −0.57,−0.62, 0.36, 0.13, 0.76,−0.08, 0.32}(kF−1

�−1) and ϕ = π/2. (c) The eigenmodes ρsum for three-dimensional
circuits. The topological boundary modes localize on the two
edges while the skin modes localize on one edge. Therefore, the
eigenmodes of the skin-topological-skin model accumulate at two
corners while the eigenmodes of the skin-topological-topological
model accumulate at four corners. The eigenmode distribution
affects the time evolution of the circuit.

voltages at other nodes are zero. Then the circuit starts to
evolve, and we explore the evolution of the electrical signal for
the square of the voltages at the nodes, ρx,y,n(t ) = V 2

x,y,n(t ). It
corresponds to the probability density in the quantum model.
We focus on the electrical signals on the unit cell, so we
take ρx,y(t ) = ∑8

n=1 ρx,y,n(t ) which summarizes the square of
the voltages of the eight nodes in one unit cell at (x, y). In
Figs. 3(a) and 3(b), we provide the distributions of the square
of the voltages in the circuit with t = 0, 6, 12 (ms). The details
of voltage distribution in different unit cells are provided in
Appendix D.

As revealed above [Fig. 2(b)], when the circuit is topolog-
ical nontrivial, the peak of the probability distribution of the

FIG. 3. Nonreciprocal transport of voltages in the circuit. (a) The
electrical signal spreads from the top-right corner toward the left.
(b) The electrical signal spreads from the top-left corner toward
the right. In (a), (b), the parameters in the case with γ > 0
(γ = 0) are same as those in the left (right) of Fig. 2(b). The
arrows indicate the direction of propagation of voltages. The cir-
cuit begins with the initial states V R and V L at t = 0 ms. Due
to the attenuation of the electrical signal, the square of the volt-
ages at the beginning is larger than itself in the subsequent time,
and we marked the initial square of the voltages in red. (c) The
time evolution of the sum of the square of the voltages in the
whole circuit ρe(t ). The initial state V R with γ > 0 in red decays
the least, indicative of topology-induced nonreciprocal transport.
(d) The evolution of electrical signals in three-dimensional circuits.
In the γ > 0 (γ = 0) case the nonreciprocal pumping is switched
on (off). The starting coordinates (1, 1, 1) are the first unit cell in
the x, y, and z directions. Only sublattice 1 of the starting unit cell
has voltage 1 V while the other nodes in the circuit have voltage
0 V. These starting unit cells are all in the corner. With different
starting coordinates, the electrical signals have different transmission
results.

eigenmodes appears at the top-left corner of the circuit with
(x, y) = (1, 10). The nonreciprocal transport of the electrical
signal can be found in the first row of Figs. 3(a) and 3(b).
When the initial voltages start from the top-right corner (V R),
the electrical signal is obvious at the top-left corner at t =
12 ms, and only a few probabilities are found in the middle of
the circuit; see the first row in Fig. 3(a). For comparison, when
the initial voltages are at the top-left corner (V L), the electrical
signal is less obvious at the top-right corner at t = 12 ms, and
more probabilities are found in the middle of the circuit; see
the first row in Fig. 3(b). In this way, the topological switch
is turned on, and the nonreciprocal transport of voltages is
presented, while, when the circuit is topologically trivial, the
transport along the edge of the circuit disappears, no matter
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where the initial voltages start—from the top-left or -right
corner. The second rows in Figs. 3(a) and 3(b) show such
a phenomenon. Here, the topological switch is turned off.
Therefore, the presence and the absence of the nonrecip-
rocal transport of voltages is controlled by the topological
switch.

We also show the sum of the squares of the voltages in the
whole circuit ρe(t ) = ∑

x,y,n ρx,y,n(t ) with time; see Fig. 3(c).
The decay rate of ρe(t ) can show whether the switch turns on
or off. Red and blue solid lines correspond to the evolution
of ρe(t ) when the topological switch is turned on, manifesting
the nonreciprocal pumping. Magenta and cyan dashed lines
indicate that the topological switch is turned off. It is shown
that most of voltages are kept in the circuit when the topo-
logical switch is turned on, especially the case for the initial
voltages starting from the top-right corner of the circuit (red
solid line). Moreover, there exists an obvious difference of
ρe(t ) between the evolutions starting from the top-right and
top-left corner. However, if the topological switch is turned
off, lots of voltages are dissipated quickly with time. So the
evolution of ρe(t ) also indicates the topological properties
in the circuit. Figure 3(d) demonstrates topological switches
for three-dimensional circuits in Fig. 2(c). In Fig. 3(d), the
size of the skin-topo-skin model is 6 × 6 × 6, and the size
of the skin-topo-topo model is 6 × 6 × 12, so the starting
coordinates are all on the corners. We use (x, y, z) to label
the position of the unit cell in a three-dimensional circuit. For
example, (1, 1, 1) means the first unit cell in the x, y, and z
directions. When t = 0 ms, only the voltage at sublattice 1 of
the starting unit cell is 1 V, and the voltages at other nodes
are 0 V. Solid lines correspond to topological cases while
dashed lines correspond to trivial ones. Different colors cor-
respond to different initial states. More details are provided in
Appendix E.

To demonstrate experimentally the functioning of the topo-
logical switch, we physically construct the electric circuit.
The unit cell of the electric circuit is provided in Fig. 4(a),
and many cells are composed together to form the whole
circuit. The red frame in Fig. 4(a) represents one unit cell,
and the connections between different unit cells along the
x direction and the y direction are shown in blue and or-
ange frames, respectively. In the experiment, the op-amp
LT1013 and the relay G6K-2F-Y are chosen. The value of
capacitance is 1 µF. Different resistances are chosen to imple-
ment the “coupling” between electric nodes. It is noted that
such topological switches depend on hybrid skin-topological
modes, and therefore similar results can be found for two-
and three-dimensional circuits. We experimentally observed
the topological switch in the two-dimensional circuit. The
whole circuit contains 3 × 2 unit cells and the nonreciprocal
transport of the voltages can be observed clearly. The details
of the whole circuit are shown in Appendix F. In Fig. 4(b), we
provide the experimental results of ρe(t ) with four different
cases. Red and blue (magenta and cyan) dots correspond to
the cases with the topological switch turned on (off). The
initial voltage is injected into the top-right (-left) corner for
red and magenta (blue and cyan) dots. It is found that when
the topological switch is turned on, the dissipation of ρe(t )
is very small with the initial voltage starting from the top-
right corner. For comparison, when the topological switch is

FIG. 4. Experimental realization of the topological switch. (a)
The circuit realization for one unit cell: red frame, the unit cell;
blue (orange) frame, the connection between cells along the x (y)
direction. (b) The evolution of the square of the voltages ρe(t )
with different initial states and topology. The red dots (V R with
γ > 0) decay the least, manifesting topology-induced nonreciprocal
pumping. The magenta and cyan dots for the trivial case have the
same decay rate, and the nonreciprocal pumping disappears. In the
experiment, the whole circuit contains 3 × 2 unit cells. For γ > 0,
different resistances are chosen to make the coupling strengths
between nodes {g, t+,x, t−,x, t+,y, t−,y, t ′+,y, t ′−,y, �−, td , tv} become
{0.50, 0.45, 0.55, − 0.00, − 0.50, 0.50, 0.00, 1.00, − 0.10, 0.10}
(kF−1 �−1) and ϕ = π/2. For γ = 0, the “coupling” strengths be-
come {0.50, 0.03, 0.13, −0.45, −0.55, 0.33, 0.17, 1, −0.10, 0.32}
(kF−1 �−1) and ϕ = π/2. The error bars are obtained from the
average with data from 20 groups. The inset in the bottom left
provides the simulation results. (c) The voltage evolution in (1, 2).
When γ > 0, the peak voltage means the successful transmission
of the electrical signal, while when γ = 0 the almost 0 V voltage
means that the electrical signal cannot travel to this unit cell. (d) The
decay of the square of the voltages with perturbations. The extra
resistance connecting to the op-amp is chosen randomly. For dark
red and blue (orange and cyan), the value of this resistance is chosen
randomly in the range of 1 k� (10 k�). With different perturbations,
ρe(t ) changes slightly which manifests the robustness.

turned off, the sum of voltages ρe(t ) is dissipated quickly. The
inset in the bottom left of Fig. 4(b) provides the simulation
results with the same scale of circuit; they agree well with
the experimental results. It is noted that the value of ρe(t )
at the early time is slightly larger than 1, which might come
from the op-amp. In Fig. 4(c), we exhibit the voltage evolution
in (1, 2) with the initial state V R beginning at the top-right
corner. In the topological case (γ > 0), an electrical signal can
propagate to the top-left corner while it cannot in the trivial
case (γ = 0). More experimental details and error analysis are
shown in Appendix G.
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IV. ROBUSTNESS

Moreover, to verify the topological properties of a switch,
the perturbation is introduced into the circuit. As an example,
we randomly choose ten to 20 resistors, and connect them
in parallel with 10 k� resistors. We repeat this behavior ten
times and observe the average results. We also perform similar
operations using 1 k� resistors. When the topological switch
is turned on, the sum of the squares of the voltages with per-
turbation is shown in Fig. 4(d). With different perturbations,
ρe(t ) changes slightly. In these cases, the topological mode
still exists, and the difference of ρe(t ) between the decay of
V R and V L exists. All of these indicate the existence of the
nonreciprocal transport of voltages, which demonstrates the
robustness of this switch.

V. SUMMARY

In summary, we experimentally demonstrated a topologi-
cal switch on the non-Hermitian skin effect in our designed
circuit. The nonreciprocal transport of voltages has been un-
covered when the topological switch is turned on. Even for
a small circuit, the performance as a topological switch is
evident. We have also experimentally constructed an electric
circuit to implement the topological switch and demon-
strated the nonreciprocal transport of voltages. Furthermore,
the robust property of the topological switch has also been
demonstrated when a small perturbation is introduced. This
means that the electrical signal propagations can be controlled
very finely by designing the circuit networks, and the present
work may have potential applications in the field of integrated
circuit design.
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APPENDIX A: PROPERTIES OF LUMPED OPERATIONAL
AMPLIFIER STRUCTURES

In our design, the op-amp is used to realize the topological
switch. Here, we give the details of the op-amp.

In Fig. 5, the details of the op-amp structure are shown.
The main module in the op-amp is the negative impedance
converter (INIC). In the INIC, the inverting input voltage is
equal to the noninverting input voltage V2 = Vj , and the invert-
ing and noninverting input currents are zero Iop1,+ = Iop1,− =
0. Thus I j1 = Vj−V1

R0
= V2−V1

R0
= I21 = Ik2 = Vk−Vj

R jk
= Vj−Vk

−Rjk
, and

the current flowing through the INIC is equal in magnitude but
opposite in direction. In this way, the INIC can be equivalent
to an “effective resistance” connecting node j to node k, R′

jk

and R′
k j , which also determines the values of Ajk and Ak j in

the circuit Laplacian matrix. According to the circuit equation,
the INIC is supposed to change the values of the diagonal
terms Aj j and Akk . Therefore, we add a grounding part to each
node, which is used to eliminate this extra diagonal term in

FIG. 5. The op-amp structure. The node at the left of the structure
is the node j, and the node at the right of structure is node k. The main
module, called the negative impedance converter (INIC), is marked
with a red box, while the rest is the grounding module. The resistance
R0 is constant, while the resistance Rjk varies with the parameters.

the circuit Laplacian matrix. Now in the op-amp structure, we
have

I jk = Vj

Rjk
+ Vj − V1

R0
= Vj

Rjk
+ V2 − V1

R0
= Vj

Rjk
+ I21

= Vj

Rjk
+ Ik2 + Iop1,− = Vj

Rjk
+ Vk − V2

Rjk
+ 0 = Vk

Rjk

= Vk

R′
jk

. (A1)

In a similar way, we have Ik j = − Vj

R jk
= Vj

R′
k j

, so we have

R′
k j = −R′

jk , which means the “effective resistances” be-
tween R′

jk (from node j to k) and R′
k j (from node k to j)

are opposite. Compared with the simple INIC, the value of
the diagonal term in the circuit matrix is not changed with the
addition of these grounding parts.

APPENDIX B: EQUATIONS OF VOLTAGES
IN THE CIRCUIT DESIGN

In Fig. 1 in the main text, we have provided the cir-
cuit design. Here, we provide the dynamics of voltages in
the circuit. In our design, each unit cell contains eight sub-
lattices (nodes). We label different unit cells with different
positions (x, y), and the different sublattices are expressed
from 1 to 8 as shown in Fig. 1(a). The dynamics of the
voltages for these sublattices are satisfied by Kirchhoff
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equations as

−C
dVx,y,1

dt
= tv sin ϕVx,y,2 + �−Vx,y,3 + tv cos ϕVx,y,4 − (t+,y + t−,y)Vx,y,7

− tdVx−1,y,4 + tdVx+1,y,4 − (t+,x + t−,x )Vx−1,y,3 − (t+,x + t−,x )Vx+1,y,3

− (t ′+,y + t ′−,y)Vx,y+1,7 − (t ′+,y + t ′−,y)Vx−1,y+1,7, (B1)

−C
dVx,y,2

dt
= −tv sin ϕVx,y,1 + 2gVx,y,2 + tv cos ϕVx,y,3 − �−Vx,y,4 − (t+,y − t−,y)Vx,y,8

+ tdVx−1,y,3 − tdVx+1,y,3 + (t+,x − t−,x )Vx−1,y,4 + (t+,x − t−,x )Vx+1,y,4

− (t ′+,y − t ′−,y)Vx,y+1,8 − (t ′+,y − t ′−,y)Vx−1,y+1,8, (B2)

−C
dVx,y,3

dt
= −�−Vx,y,1 − tv cos ϕVx,y,2 + tv sin ϕVx,y,4 + (t+,y + t−,y)Vx,y,5

+ tdVx−1,y,2 − tdVx+1,y,2 + (t+,x + t−,x )Vx−1,y,1 + (t+,x + t−,x )Vx+1,y,1

+ (t ′+,y + t ′−,y)Vx,y+1,5 + (t ′+,y + t ′−,y)Vx−1,y+1,5, (B3)

−C
dVx,y,4

dt
= −tv cos ϕVx,y,1 + �−Vx,y,2 − tv sin ϕVx,y,3 + 2gVx,y,4 + (t+,y − t−,y)Vx,y,6

− tdVx−1,y,1 + tdVx+1,y,1 + (t+,x − t−,x )Vx−1,y,2 + (t+,x − t−,x )Vx+1,y,2

+ (t ′+,y + t ′−,y)Vx,y+1,6 + (t ′+,y + t ′−,y)Vx−1,y+1,6, (B4)

−C
dVx,y,5

dt
= −(t+,y + t−,y)Vx,y,3 − tv sin ϕVx,y,6 + �−Vx,y,7 − tv cos ϕVx,y,8

− tdVx−1,y,8 + tdVx+1,y,8 − (t+,x + t−,x )Vx−1,y,7 − (t+,x + t−,x )Vx+1,y,7

− (t ′+,y + t ′−,y)Vx,y−1,3 − (t ′+,y + t ′−,y)Vx+1,y−1,3, (B5)

−C
dVx,y,6

dt
= −(t+,y − t−,y)Vx,y,4 + tv sin ϕVx,y,5 + 2gVx,y,6 − tv cos ϕVx,y,7 − �−Vx,y,8

+ tdVx−1,y,7 − tdVx+1,y,7 − (t+,x − t−,x )Vx−1,y,8 − (t+,x − t−,x )Vx+1,y,8

− (t ′+,y − t ′−,y)Vx,y−1,4 − (t ′+,y − t ′−,y)Vx+1,y−1,4, (B6)

−C
dVx,y,7

dt
= (t+,x + t−,x )Vx,y,1 − �−Vx,y,5 + tv cos ϕVx,y,6 − tv sin ϕVx,y,8

+ tdVx−1,y,6 − tdVx+1,y,6 + (t+,x + t−,x )Vx−1,y,5 + (t+,x + t−,x )Vx+1,y,5

+ (t ′+,y + t ′−,y)Vx,y−1,1 + (t ′+,y + t ′−,y)Vx+1,y−1,1, (B7)

−C
dVx,y,8

dt
= (t+,y − t−,y)Vx,y,2 + tv cos ϕVx,y,5 + �−Vx,y,6 + tv sin ϕVx,y,7 + 2gVx,y,8

−tdVx−1,y,5 + tdVx+1,y,5 + (t+,x − t−,x )Vx−1,y,6 + (t+,x − t−,x )Vx+1,y,6

+ (t ′+,y − t ′−,y)Vx,y−1,2 + (t ′+,y − t ′−,y)Vx+1,y−1,2. (B8)

The voltages at the sublattices of each unit cell satisfy
these eight equations. If we use the column vector |V (t )) to
represent the voltages in the whole circuit, we can have the
equation involving the circuit Laplacian matrix A, i d|V (t ))

dt =
iA|V (t )). Here as a result, we exhibit the numerical re-
sults of the voltage evolution along the boundaries; this
behavior is essentially determined by these equations above.
See Fig. 6.

APPENDIX C: CORRESPONDENCE BETWEEN
THE CIRCUIT AND THE LATTICE

The dynamics of the voltages are expressed as
the equation i d|V (t ))

dt = iA|V (t )). In the following,

we show the correspondence between such dynam-
ics of voltages and quantum evolution of wave
packets.

The quantum evolution of the wave packet |ϕ〉 satisfies
the Schrödinger equation H |ϕ〉 = i ∂

∂t |ϕ〉. When the complex
conjugate operation is applied to this evolution, we have
H∗|ϕ〉∗ = −i ∂

∂t |ϕ〉∗. The superscript “*” denotes the complex
conjugate operation. By combing these two equations, we
have the form [H 0

0 −H∗] 1√
2
(|ϕ〉
|ϕ〉∗) = i ∂

∂t
1√
2
(|ϕ〉
|ϕ〉∗).

Consider the unitary transformation U = 1√
2
[1 −i
1 i ] ⊗ I ,

where the operator I is the identity matrix whose dimen-
sion is the same as the Hamiltonian H; the equation now
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FIG. 6. The voltage evolution of the unit cell.

becomes

U †

[
H

−H∗

]
UU † 1√

2

(|ϕ〉
|ϕ〉∗

)
= U †i

∂

∂t

1√
2

(|ϕ〉
|ϕ〉∗

)
,

(C1)
or

i

[
Im[H] −Re[H]
Re[H] Im[H]

](
Re[|ϕ〉]

−Im[|ϕ〉]
)

= i
∂

∂t

(
Re[|ϕ〉]

−Im[|ϕ〉]
)

,

(C2)
where Re[H] = 1√

2
(H + H∗) and Im[H] = −i√

2
(H − H∗). So

far, H can be any matrix.

As we mentioned in the main text, the circuit equation is
iA|V (t )) = i d|V (t ))

dt . Here |V (t )) = [V1(t ),V2(t ), . . . ,V2N (t )]T

is the column vector consisting of the voltages at all 2N
nodes in the circuit, where Vj (t ) is the voltage at the node
j, and the operator T represents the transpose operator. In
this way, the circuit Laplacian matrix is assumed to have the
form A = [Im[h2D] −Re[h2D]

Re[h2D] Im[h2D] ], where we take H = h2D as the
Hamiltonian of the corresponding quantum system, and h2D

is an N × N matrix. We also apply the Fourier transform to
h2D, h2D(kx, ky) = ∫

dxdyh2D(x, y)ei(kxx+kyy), and obtain the
expression of h2D(kx, ky) = h2D(�k) = h+

σ σ0 + h−
σ σ3 + h+

τ τ0 +

FIG. 7. The spectrum of Hamiltonian h2D and circuit matrix iA. (a) Real and imaginary parts of the spectrum for h2D.
The periodic boundary condition (PBC) is chosen along the x direction, and the open boundary condition (OBC) is chosen
along the y direction. The value of coupling parameters {g, t+,x, t−,x, t+,y, t−,y, t ′+,y, t ′−,y, �−, td , tv} in the Hamiltonian h2D are
{0.50, 0.39, 0.44, −0.11, −0.41, 0.45, 0.14, 1.25, −0.11, 0.19} and ϕ = π/2. (b) Real and imaginary parts of the spectrum for iA. The PBC
is chosen along the x direction, and the OBC is chosen along the y direction of the circuit. The value of the parameters in the circuit Laplacian
matrix A are the same as in Fig. 2 in the main text. In (a), (b), red (blue) solid lines represent the localized (bulk) eigenmodes of the
system.
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FIG. 8. The dynamics of voltages at four different unit cells in the simulation. In the topological case (γ > 0), the electrical signal can
propagate along the boundaries, and the nonreciprocal pumping can be quantified through the decaying of the total electrical signal ρe(t ) in
the main text. But in the trivial case (γ = 0), the voltages in the boundaries are almost 0.

h−
τ τ3, with

h±
σ = −(2t±,x cos kx − �± ± ig)τ0

−{t±,y + t ′±,y[cos ky + cos(ky − kx )]}τ1

− t ′±,y[sin ky + sin(ky − kx )]τ2,

h−
τ = (tv cos ϕ)σ1 + (tv sin ϕ)σ2,

h+
τ = (2td sin kx )σ2. (C3)

This is the Hamiltonian for Fig. 1(b). Therefore, if we
provide the appropriate initial voltages in the circuit, we can
show the quantum evolution governed by this Hamiltonian.
The eigenvalues of h2D are shown in Fig. 7, which have
similar topological eigenmodes as those in the circuit Lapla-
cian matrix iA. The difference between Figs. 7(a) and 7(b)
comes from the similarity that iA = U †[h2D

−h∗
2D

]U , where U =
1√
2
[1 −i
1 i ] ⊗ I and the operator I is the identity matrix whose
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FIG. 9. The dynamics of voltages at four different unit cells in the experiment. In the topological case (γ > 0), the electrical signal can
propagate along the boundaries. But in the trivial case (γ = 0), the voltages in the boundaries are close to 0.

dimension is the same as the Hamiltonian h2D. Although the
circuit system contains no imaginary number, we can simu-
late the real and imaginary parts of the quantum evolution
by the real voltage in the circuit based on the similarity. In
this way, the correspondence between the dynamics of the
voltages and the quantum evolution of the wave packets is
established.

As shown in Fig. 7, we can find that the topological
eigenmodes appear in the Hamiltonian h2D [red solid lines in
Fig. 7(a)] under certain parameters. Although the distribution

of the spectra shows some differences, the topological eigen-
modes are still found in the red solid lines [Fig. 7(b)] when
referring to the spectrum of iA.

APPENDIX D: DYNAMICS OF VOLTAGES
AT DIFFERENT UNIT CELLS

The nonreciprocal transport of voltages has been shown in
the main text. In our discussion, the nonreciprocal transport
can be found when the topological switch is turned on, and

085426-10



ELECTRICAL CIRCUIT REALIZATION OF … PHYSICAL REVIEW B 107, 085426 (2023)

FIG. 10. The eigenvalue of the three-dimensional circuit.

there is no such nonreciprocal transport when the switch is
turned off. Here, we provide the evolution details of some unit
cells during the nonreciprocal transport. Four different unit
cells are chosen to show the evolution. The positions of these
unit cells in the circuit are (x, y) = (1, 10) (top-left corner),
(x, y) = (10, 10) (middle of the top), (x, y) = (20, 10) (top-
right corner), and (x, y) = (10, 5) (middle of the circuit).

When the topological switch is turned on, the voltage start-
ing from the top-right corner (the first row in Fig. 8) is found
at the top-left corner with time, obviously. For comparison,
when the switch is turned off, the voltage starting from the
top-right corner (the second row in Fig. 8) is hardly found at

the top-left corner with time. Most of the voltages are found
in the bulk of the circuit. In the third and fourth rows of
Fig. 8, the voltages start from the top-left corner. When the
topological switch is turned on, the voltage can be found at
the top-right corner with time (the third row in Fig. 8). The
amplitudes of the voltages are smaller than those in the first
row while, when the switch is turned off, no voltage can be
found at the top-right corner, and the transport of the voltages
is not along the edge of the circuit.

We also provide the dynamics of the voltages in the exper-
iment. Four different unit cells are chosen and the positions
are (x, y) = (1, 2) (top-left corner), (x, y) = (2, 2) (middle of
the top), (x, y) = (3, 2) (top-right corner), and (x, y) = (2, 1)
(bottom of the circuit).

In our experiment, we choose the circuit with a small size.
When the topological switch is turned on, we find that most
of the voltages can be found along the top (the first and third
rows in Fig. 9). When the topological switch is turned off, the
voltages at the bottom become obvious (the rightmost panels
in the second and fourth rows in Fig. 9).

APPENDIX E: DYNAMICS OF THREE-DIMENSIONAL
CIRCUIT

The three-dimensional circuit is based on the two-
dimensional circuit, so that they have similar Laplacian
matrices,

A(kx, ky, kz ) =
[

g(σ3 − σ0)τ0 − itv sin ϕσ2τ3 −[σ0a+
σ + σ3a−

σ + a+
τ τ0 + a−

τ τ3]
σ0a+

σ + σ3a−
σ + a+

τ τ0 + a−
τ τ3 g(σ3 − σ0)τ0 − itv sin ϕσ2τ3

]
, (E1)

where for the skin-topo-skin model,

a±
σ = −(2t±,x cos kx + 2t±,x cos kz − �±)τ0

−{t±,y + t ′±,y[cos ky + cos(ky − kx ) + cos(ky − kz )]}τ1

− t ′±,y[sin ky + sin(ky − kx ) + sin(ky − kz )]τ2,

a−
τ = tv cos ϕσ1,

a+
τ = 2td (sin kx + sin kz )σ2, (E2)

and for the skin-topo-topo model,

a±
σ = −(2t±,x cos kx − �±)τ0

−{t±,y + t ′±,y[cos ky + cos(ky − kx )

+ cos kz + cos(kz − kx )]}τ1

− t ′±,y[sin ky + sin(ky − kx ) + sin kz + sin(kz − kx )]τ2,

a−
τ = tv cos ϕσ1,

a+
τ = 2td sin kxσ2. (E3)

Here we present the spectrum of three-dimensional circuits
in Fig. 10 and the dynamics of them in Fig. 11. For the γ > 0
(γ = 0) case, the nonreciprocal pumping is switched on (off)
along the direction displaying the skin effect.

APPENDIX F: ASSEMBLY OF UNIT CELLS
IN THE ELECTRIC CIRCUIT

A photo of the assembly of the unit cells in the electric
circuit is shown in Fig. 12. The whole circuit contains 3 × 2
unit cells. In Fig. 12, we provide the whole electric circuit in
the experiment. It consists of six printed circuit boards (PCBs)
where each PCB denotes one unit cell. Along the x direction,
the unit cell is connected to the pin header through the op-
amp. The type of op-amp is LT1013, in which the value of
R0 = 1 k�. The different values of Rjk are chosen according
to the design. Three different Rjk , Rjk = 1 k�, Rjk = 6.2 k�,
and Rjk = 10 k�, are selected, respectively. Along the y di-
rection, the unit cell is also connected to the pin header by
the op-amp. The type of such op-amps is also LT1013, and
R0 = 1 k�. Two different Rjk , Rjk = 2 k� and Rjk = 6.2 k�,
are chosen corresponding to the two kinds of couplings along
the y direction. At the boundary of the circuit, the op-amp
is removed or grounded to screen the disturbance on the
circuit.

APPENDIX G: EXPERIMENTAL DETAILS
AND ERROR ANALYSIS IN THE CIRCUIT

In the circuit, we use the op-amp LT1013 and the re-
lay G6K-2F-Y. The value of the capacitor is 1 µF, and the
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FIG. 11. The dynamics of three-dimensional circuits. We present the distribution of the electrical signal in the whole circuit at t = 4 ms.
The left column is the square of the voltages at initial time, and the next two columns are the evolution results for the γ > 0 case (middle
column) and the γ = 0 case (right column). At the beginning, the electrical signal exists at one unit cell. The electrical signal for the γ > 0
case travels along the direction displaying the skin effect, while for the case with γ = 0 it does not. Due to the attenuation of the electrical
signal, the square of the voltages at the beginning is larger than itself in the subsequent time, so we mark the initial square of the voltages in
red. For the skin-topo-skin case, the initial voltage locates at the position (x, y, z) = (1,1,1), (6,1,1), and (6,1,6) from top to bottom; for the
skin-topo-topo case, the initial voltage locates at the position (x, y, z) = (1,1,1) and (6,1,1) from top to bottom.
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FIG. 12. The whole electric circuit in the experiment.

resistances are taken as 1, 2, 6.2, and 10 k�. In the simulation,
when the topological switch is turned on, the resistances Rjk

of the op-amp LT1063 in the unit cell are chosen as R12 =
0.8 k�, R13 = +∞ (which is realized by the open circuit),
R14 = 5 k�, R17 = 2 k�, and R28 = 3 k�. Along the y direc-
tion, the op-amp is used to connect different unit cells. The
resistance Rjk of the op-amp LT1063 is chosen as R17 = 2 k�

and R28 = 3 k�. Along the x direction, the op-amp is used
to connect different unit cells. The resistance Rjk of the op-
amp LT1063 is chosen as R13 = 1.3 k�, R14 = 10 k�, and
R23 = 20 k�. For comparison, when the topological switch
is turned off, the resistance Rjk of the op-amp LT1063 in
the unit cell is chosen as R12 = 1.3 k�, R13 = +∞ (which is
realized by the open circuit), R14 = 3 k�, R17 = 20 k�, and
R28 = 0.8 k�. Along the y direction, the op-amp is used to
connect different unit cells. The resistance Rjk of the op-amp
LT1063 is chosen as R17 = 2 k� and R28 = 4 k�. Along the
x direction, the op-amp is also used to connect different unit
cells. The resistance Rjk of the op-amp LT1063 is chosen as
R13 = 6.2 k�, R14 = 10 k�, and R23 = 20 k�.

Here we discuss how the effective resistances are achieved.
When the topological switch is turned on, the resistance Rjk of
the op-amp LT1063 in the unit cell is chosen as R12 = 1 k�,
R13 = +∞ (which is realized by the open circuit), R14 =
10 k�, R17 = 2 k�, and R28 = 2 k�. Along the y direction,
the op-amp is used to connected different unit cells. The
resistance Rjk of the op-amp LT1063 is chosen as R17 = 2 k�,
and R28 = 2 k�. Along the x direction, the op-amp is used to
connect different unit cells. The resistance Rjk of the op-amp
LT1063 is chosen as R13 = 1 k�, R14 = 10 k�, and R23 =
10 k�. For comparison, when the topological switch is turned
off, the resistance Rjk of the op-amp LT1063 in the unit cell
is chosen as R12 = 1 k�, R13 = +∞ (which is realized by
the open circuit), R14 = 2 k�, R17 = 10 k�, and R28 = 1 k�.
Along the y direction, the op-amp is used to connect different
unit cells. The resistance Rjk of the op-amp LT1063 is chosen
as R17 = 2 k� and R28 = 6.2 k�. Along the x direction, the
op-amp is used to connected different unit cells. The resis-
tance Rjk of the op-amp LT1063 is chosen as R13 = 6.2 k�,
R14 = 10 k�, and R23 = 10 k�.

The slew rate of the op-amp LT1013 is 0.4V /μs, while
the time unit is milliseconds (ms) and the voltage unit is volts
in the experiment. Therefore, the op-amp in our circuit works
in the steady condition. The time error of relay G6K-2F-Y
is about 0.1 ms. Errors between different relays may cause
measurement errors.

The op-amp in the circuit can offset the losses caused by
the resistance in the circuit. If the loss resistance g has value 0,
the circuit matrix iA is a Hermitian matrix, and the loss caused
by the resistance in the circuit just offsets the gains generated
by the op-amp. Therefore, the square of the voltages does
not decay and remain constant. This means that our structure
can be extended arbitrarily, because the circuit losses are in
balance with the op-amp gains.

However, due to the existence of internal resistance in the
circuit, the electrical signals in the experiment still decay,
but when the nonreciprocal transport disappears, the rate of
pumping decay from left to right is the same as that pumping
decay from right to left. We assume that this kind of circuit
decay is completely attributed to the internal resistance in the
circuit, and omit the decay by the internal resistance. This only
results in a proportional change in the ordinate of the exper-
imental results, and does not affect the results. Similarly, the
balance between resistance losses and op-amp gains depends
on the ratio of the resistance value in the op-amp structure.
When there is resistance error or internal resistance in the
circuit, the op-amp gains may be larger than resistance losses.
As a result, the total square of the voltages may be greater
than 1 at the beginning, as in our experiments (Fig. 4 in the
main text).
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