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We theoretically investigate the phase transition from a nontrivial topological p-wave superconductor to a
trivial s-wave-like superconducting phase through a gapless phase, driven by different magnetic textures as a
one-dimensional spin-chain impurity, e.g., Bloch-type, in-plane, and out-of-plane Néel-type spin chains, etc. In
our proposal, the chain of magnetic impurities is placed on a spin-triplet p-wave superconductor where we obtain
numerically as well as analytically an effective s-wave-like pairing due to spin rotation, resulting in gradual
destruction of the Majorana zero modes present in the topological superconducting phase. In particular, when
the impurity spins are antiferromagnetically aligned, i.e., spiral wave vector Gs = π , the system becomes an
effective s-wave superconductor without Majorana zero modes in the local density of states. The Shiba bands,
on the other hand, formed due to the overlapping of Yu-Shiba-Rusinov states play a crucial role in this topological
to trivial superconductor phase transition, confirmed by the sign change in the minigap within the Shiba bands.
We also characterize this topological phase transition via gap closing and winding number analysis. Moreover,
interference of the Shiba bands exhibiting oscillatory behavior within the superconducting gap −�p to �p, as
a function of Gs, also reflects an important evidence for the formation of an effective s-wave pairing. Such
oscillation is absent in the p-wave regime. We also analyze the case of two-dimensional p-wave superconductor
hosting Majorana edge modes (in absence of any magnetic chain) and show that initially Majorana zero modes
(in presence of one-dimensional magnetic chain) can hybridize with such Majorana edge modes. Interestingly, in
the topological regime with a fixed Gs value, the Mazorana zero modes survive at the ends of the magnetic chain
even when the Majorana edge states disappear at some critical value of the chemical potential and exchange
coupling strength.
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I. INTRODUCTION

Topological phases of matter have been at the forefront of
research in modern condensed matter physics for the past few
decades. Due to nonlocal properties of these phases it is not
possible to characterize the state of matter with a single phys-
ical order parameter. Instead, we need to define a topological
invariant which can only take some discrete integer values.
Quantization of the Hall conductance was the first signature
of nontrivial topological states of matter [1]. However, the
theoretical and experimental discovery of the quantum spin
Hall effect in two-dimensional (2D) systems [2–6] character-
ized by Z2 topological invariant [7,8] have attracted a great
deal of attention for the last two decades. These concepts have
also been extended to three-dimensional (3D) materials with
nontrivial topological features in the band structures [9–17]
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The above ideas of topology were restricted to the system with
a band gap and as a result these systems were insulators. How-
ever, later it was realized that the topological classification
is in principle valid for a many-body state with a band gap
in the spectrum [18]. In this regard, Kitaev’s elegant model
was developed to characterize the topological superconductor
(TSC) for a one-dimensional (1D) system [19,20]. Earlier,
Read and Green proposed the idea of TSC in fractional quan-
tum Hall state based on a 2D system [21]. Later on, Fu and
Kane emphasized the realization of TSC on the 2D surface
of a 3D topological insulator, in close proximity to an s-wave
superconductor and magnetic insulator [22].

Intriguingly, these TSCs host Majorana zero modes
(MZMs) which are of their own antiparticle and satisfy non-
Abelian statistics [23–26]. These MZMs are also suggested
to be beneficial for topological quantum computation as they
are free from decoherence by the environment [26]. In this
context, theoretical proposals [27,28] to engineer such a TSC
from a semiconducting 1D nanowire with Rashba spin-orbit
coupling have stimulated a lot of recent exciting experiments
towards realizing this exotic phase hosting MZMs. The zero-
bias peak, observed in several transport experiments based
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on hybrid superconductor-semiconductor systems, has been
interpreted as the indirect signatures of Majorana fermions
[29–34]. However, this conclusion still remains openly
debated.

In recent times, much attention has been directed at an
alternative proposal, where a TSC phase can be realized in
a chain of magnetic impurities placed on the surface of an
s-wave superconductor [35–54]. Physically, magnetic impu-
rities placed on a conventional superconductor give rise to
Yu-Shiba-Rusinov (YSR) states [55–58]. The individual lo-
calized YSR states can hybridize and form a band called
Shiba band. The helical spin texture plays the combined role
of the spin-orbit coupling and external magnetic field in the
1D nanowire proposal [27,28]. As a result, the topologi-
cal superconducting phase can be effectively realized in the
Shiba bands, akin to spinless p-wave superconductors (Kitaev
model) hosting MZMs at the two ends of the 1D spin chain
[19,59–61]. A particular advantage of the YSR chain proposal
is that the signature of YSR states or topological MZMs can
be experimentally detected by scanning tunneling microscopy
(STM) measurements [62–66].

In our work, we take the opposite route in which a chain
of magnetic impurities is placed on a spin-triplet p-wave
superconducting substrate. Although (pseudo)spin-triplet or
odd-parity superconductors are rarely observed in nature,
various successful attempts are made to host unconven-
tional superconductivity in materials, e.g., heterostructures
by growing a magnetic layer on a Rashba superconductor
[67], superconducting doped topological insulator [68–70],
etc. However, here we would not like to make any direct
connection between our theoretical toy model and promising
candidate material and relevant experiments. We rather in-
vestigate the effect of various magnetic textures in the form
of in-plane and out-of-plane Néel-type, Bloch-type, etc., spin
spirals (SSs) on the topological superconducting phase. De-
pending on the spin configuration of the magnetic impurities,
we observe a phase transition from TSC to trivial supercon-
ductor. As a result, the MZMs disappear via a gap closing
within the Shiba bands. The system periodically returns back
to the original TSC phase as the spins rotate back to their
initial configuration. Considering a lattice model, we also
show that the Majorana peak height in the local density of
states (LDOS) gradually becomes smaller in magnitude as we
rotate the spin configuration and eventually vanishes in the
trivial phase. This also becomes evident from similar analysis
in our 2D model. Initially, the MZMs can hybridize with the
Majorana edge modes (MEMs) present for a pure 2D p-wave
superconducting substrate, i.e., in the absence of any mag-
netic spin chain. Such MEMs disappear at some critical value
of the chemical potential and exchange coupling strength and,
hence, only the MZMs survive within the Shiba bands. These
MZMs are further destroyed as we tune the spin configuration
of the magnetic impurities. We further analytically empha-
size that the spin configuration of the magnetic impurities
induces an effective s-wave pairing in the nontrivial phase of
the magnetic chain, resulting in a phase transition between
topologically nontrivial to trivial superconductors.

The remainder of the paper is organized as follows. In
Sec. II, we present our 1D lattice model including vari-
ous possible configurations of the impurity spin chains. We

FIG. 1. Schematic setup of our model where different 1D SSs,
representing chain of magnetic impurities, are placed on a p-wave
superconductor. Different spiral textures are schematically depicted
by the SSs with propagation vector along the x axis with different
rotational axes as (SS1) out-of-plane Néel-type, (SS2) Bloch-type,
and (SS3) in-plane Néel-type impurity spin chains.

discuss our numerical results for the band spectrum, LDOS,
topological invariant, and analytical results for the effective
pairing gap in Sec. III. In Sec. IV, we discuss our 2D results
based on a lattice model. Finally, we summarize and conclude
our paper in Sec. V.

II. MODEL HAMILTONIAN AND IMPURITY
SPIN TEXTURE

In this section we construct a 1D tight-binding lattice
model considering different orientations of the impurity spin
chains and our supporting observable.

A. Tight-binding model and different impurity
spin configurations

We consider a 1D chain of magnetic impurities placed on
a superconducting substrate essentially with p-wave (spin-
triplet) pairing. Our setup is schematically shown in Fig. 1. We
can effectively describe this system using a 1D lattice model
with the following Hamiltonian:

H =
∑
l,α

(tl c
†
l,αcl+1,α + H.c.) − μ

∑
l,α

c†
l,αcl,α

+
∑
l,α,β

( �Bl · �σ )α,βc†
l,αcl,β + �p

∑
l,α

(c†
l,αc†

l+1,α
+ H.c.),

(1)

where c† and c correspond to electron creation and annihi-
lation operators, respectively, for the superconductors, t is
the electron hopping amplitude between adjacent spins in
the 1D chain, μ is the chemical potential, and �p is the
spin-symmetric triplet order parameter of the superconduc-
tor [61,71]. The doping of electron or hole depends on the
sign of μ. Here, we assume tl = t∗

l = t and set t = 1 for the
overall energy scale of our system. The third term represents
the exchange coupling between the magnetic impurity spin
and the electron spin of the superconductor. We assume that
all magnetic impurity spins in the chain are classical spins
and each spin is represented by a three-dimensional vector
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with a magnitude S. This assumption only remains valid for
large S were the quantum fluctuations of impurity spins can
be neglected. Hence, the impurity spins interacting with the
electronic spin �σ can be replaced by an effective local mag-
netic field as �Bl = B0Ŝl in our model, where B0 = JS, J is the
magnetic exchange coupling strength, Ŝl is the site-dependent
impurity spin direction. Also, l and α, β correspond to the
lattice sites and spin indices, respectively. Then one can write
the unit vector along impurity spin direction in spherical polar
coordinate system [35,36] as

Ŝl = sin θl cos φl î + sin θl sin φl ĵ + cos θl k̂, (2)

where θl = Gsxl [72] and φl = Ghxl [73], xl = la, a is the
lattice constant which has been considered to be unity. Note
that θ (cone angle) and φ are two important quantities to
determine the noncollinear spiral configuration. For a fixed
value of φl (θl ), Gs (Gh) determines the period of SS. In
our model, the impurity spin chain propagates along the x
direction as shown in Fig. 1. There are a number of cases
that arise depending on different configurations of the inpurity
spins [37] and a few cases are mentioned below.

(1) When φl = 0 and θl = Gsxl , then the impurity spin
rotates in the xz plane as shown in Fig. 1, named
SS1. Therefore, spin rotation axis lies perpendicular
to the direction of propagation of the SS. This is called
out-of-plane Néel-type SS configuration [74].

(2) On the other hand, spiral configuration with φl = π/2
and θl = Gsxl corresponds to rotation axis of impurity
spins parallel to the direction of propagation, i.e., in
the yz plane [38,39,75]. Such configuration with heli-
cal modulation is called Bloch-type SS configuration,
named SS2 in Fig. 1.

(3) Now, if θl , the cone angle is fixed to π/2 and φl =
Ghxl , inpurity spins rotate in the xy plane with rota-
tional axis perpendicular the x axis. Such configuration
is known as in-plane Néel-type SS, named SS3 in
Fig. 1. This type of SS configuration is also commonly
known as flat spiral. Additionally, for 0 < θl < π/2
and φl = Ghxl , the spiral structure takes the conical SS
form.

(4) One can in general consider the situation where both
θl and φl change with respect to the lattice site index l ,
resulting in a complex spin texture [see Fig. 2(b) as a
schematic example].

In our analysis, we mainly focus on cases 1 and 4 through-
out the paper. After transforming to the Bogoliubov basis
	l = (cl,↑, cl,↓, c†

l,↓,−c†
l,↑), the Hamiltonian in Eq. (1) takes

the form

H =
∑

l

(	†
l T̃l	l+1 + H.c.) + 	

†
l Ẽl	l , (3)

where the matrices T̃l and Ẽl can be written as

T̃l =

⎛
⎜⎜⎝

t 0 0 −�p

0 t �p 0
0 −�p −t 0

�p 0 0 −t

⎞
⎟⎟⎠, (4)

Ẽl =
(−μσ0 + �Bl .�σ O2×2

O2×2 μσ0 + �Bl .�σ
)

. (5)
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FIG. 2. (a) Spin-chain configuration for the Néel-type rotation in
the xz plane for Gh = 0. (b) Spin-chain configuration for the general
type of rotation on a sphere, where both Gs, Gh �= 0. (c) Numerical
results for LDOS peak height at E = 0 are shown in the Gs − Gh

plane. The color bar at the right most indicates the amplitude of
LDOS peak in an arbitrary unit. Here, we choose the other model
parameters as μ = 4t , B0 = 5t , �p = t .

Here, σ0 and �σ = (σx, σy, σz ) are 2 × 2 identity matrix and
Pauli matrices in spin space, respectively, and O2×2 is a null
matrix. Index l runs from 0 to N (any finite number of lattice
sites). We consider N = 48 throughout our numerical compu-
tation employing open boundary condition (OBC).

B. Observable

To understand the physical presence of MZMs in a real sys-
tem, one needs to calculate the LDOS [35,66]. This identifies
the topological superconducting phase by manifesting a zero-
bias peak (ZBP) associated with the MZMs at the end of the
impurity spin chain, whereas the middle of the system exhibits
the presence of Shiba bands within the superconducting gap
[35,66]. The energy difference between the two Shiba bands’
main peaks (on either side of the Majorana ZBP) can be
defined as a band gap, called “minigap” �m [35]. Sign change
of this minigap corresponds to nontopological to topological
phase transition [35,38]. The quasiparticle LDOS for the ith
site and at a given energy E can be defined as [35,40]

Di(E ) =
∑
nσ

(∣∣un
iσ

∣∣2 + ∣∣vn
iσ

∣∣2)
δ(E − En), (6)

where un
iσ and vn

iσ are the electronlike and holelike quasi-
particle amplitudes, respectively. Here, n and σ being the
eigenvalue and spin indices, respectively.

III. RESULTS

In this section, we discuss our numerical results based on
the lattice model as well as the analytical treatment by con-
sidering a continuum model to support the former. We mainly
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focus on the discussions of how the topological properties of
the system, in particular, the MZMs in the TSC phase, are
gradually destroyed due to the effect of different SS config-
urations, captured in their LDOS behavior. This essentially
establishes that the p-wave superconducting gap contribution
gradually decreases and the s-wave pairing gap amplitude
grows with the controlled modulation of Gh and Gs in spin
chains.

A. LDOS at E = 0 in Gs − Gh plane

In this subsection, we discuss the results of our model
mainly for a general case where a chain of magnetic impurities
along the x direction is engineered via controlled variations
of Gs and Gh on top of a p-wave superconducting substrate.
Due to the freedom of choosing different rotational configura-
tions of impurity spins on the surface of a sphere, governed
by Gs, Gh values, interesting phenomena can occur on the
Majorana ZBP and the corresponding topological phase. In
Fig. 2, we summarize our results in the Gs − Gh plane. Fig-
ure 2(a) illustrates the schematic of a special case of SS with
the rotation axis perpendicular to the xz plane. Hence, along
the Gh = 0 line (φl = 0), the linearly varying θl with lattice
sites keeps Néel-type spin rotation with a period 2π

Gs
in the

unit of lattice constant. Furthermore, Fig. 2(b) schematically
represents the more general case of a SS configuration with
an arbitrary rotational axis direction due to both Gs, Gh �= 0,
i.e., both θl and φl vary linearly with the lattice sites. In
Fig. 2(c), we show the variation of zero-energy LDOS as a
function of Gs and Gh such that both θl and φl vary with
the 1D lattice sites. Here, LDOS is computed employing the
formula mentioned in Eq. (6). Also, this LDOS is presented
corresponding to the end of the finite chain where MZMs are
present in the topological regime. At the four corner points in
Fig. 2(c) corresponding to Gs, Gh = (0, 0), (0, 2π ), (2π, 0),
and (2π, 2π), the alignment of all spins is ferromagnetic in
the chain. Those corner points and their nearby regime indi-
cate Kitaev chains [19,60] with pure spin-symmetric triplet
p-wave pairing gap �p, highlighted by maroon color regime
within the dashed white line in Fig. 2(c). The LDOS at
zero energy becomes maximum at those points, indicating
topological superconducting phase hosting MZMs at the ends
of the chain. Additionally, the red region beyond the white
dashed line in Fig. 2(c) where the noncollinear spin configu-
rations are determined by Gs, Gh �= 0, the p-wave pairing is
significantly strong enough to host MZMs which, however,
gradually disappear in the blue region. This is due to the
fact that an effective s-wave pairing is generated, giving rise
to a trivial phase in the deep blue region. As a result, the
LDOS peak height at E = 0 decreases significantly to a small
value from its maximum value of about 0.25 (in arbitrary unit
[35]). Therefore, the thin white regime separating red and blue
regions in Fig. 2(c) represents roughly the phase boundary
between topologically nontrivial and trivial superconducting
phases via a nontrivial gap closing. Note that, when it enters
into the topologically trivial phase, the zero-energy LDOS
peak height becomes vanishingly small and a trivial s-wave
gap opens along Gs = π line, as indicated by a vertical dashed
line at the middle of Fig. 2(c). In this regime, no MZMs are
present as the p-wave pairing contribution is destroyed and the

(a) (b)

FIG. 3. (a) Band gap (E2 − E1) (normalized by �0) is shown as
a function of two spiral wave vectors Gs and Gh considering purely
p-wave pairing. Here, we choose μ = 4t , B0 = 5t . (b) Winding num-
ber Wn is depicted as a function of Gs for the Néel-type (φl = 0)
rotation of the magnetic impurities. The gap closing points and the
concomitant jumps of Wn indicate the topological phase transition.

system hosts an effective s-wave pairing (see further discus-
sion on this effective s-wave contribution in the subsequent
subsections).

B. Topological characterization

From the features of LDOS, one can only observe how
the Majorana peak height gradually decreases as we tune the
spiral wave-vector configuration. In this regard, we illustrate
the variation of gap structure |E2 − E1|/�0 in Gs − Gh plane
where the maroon lines (one such marked by the dashed
white line for guide to the eye) indicate the boundary re-
gion between topologically nontrivial (Wn = +1) and trivial
(Wn = 0) phases [see Fig. 3(a)]. It has been clearly shown
that when Gh = 0, gap closing takes place around Gs ∼ 2.5.
In order to characterize the topological phase of our model,
we also calculate the topological invariant considering the
Néel-type SS configuration. As our lattice model does not
satisfy translation symmetry, but continues to preserve the
chiral symmetry in the presence of the magnetic impurities,
we follow Refs. [76,77] to compute the winding number Wn

in real space. The corresponding winding number Wn is shown
for the case when φl = 0 and θl = Gsla (Néel type as shown
in Fig. 1) in Fig. 3(b). It is evident that there are sharp topolog-
ical phase transitions around Gs1 = 2.5 and Gs2 = 3.7 where
Wn jumps from 1 → 0 in accordance with the gap |E2 − E1|
closing points. This also matches with the Gh = 0 line of
Fig. 3(a). The topological superconducting phase with Wn =
+1 hosts Majorana zero modes. This gives a clear signature
of the topological phase transition in our model. Furthermore,
for the Néel-type rotation, an analytical understanding of the
gap structure is presented in Appendix C.

C. Detailed study of the topologically nontrivial to trivial
superconductor phase transition for Néel-type rotation

in the magnetic impurity chain

In this subsection, we further discuss the outcome for
a Néel-type rotation of impurity spin chain, SS1 depicted
in Fig. 1. In this case, we obtain the variation of different
physical quantities for a SS with varying period by changing
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FIG. 4. (i) The first row, (a)–(e), represents the eigenvalue spectrum for a finite-size 1D chain considering different values of spiral wave
vector Gs = 0.0, 1.57, 2.0, 2.5, 3.14. Here, we choose the other model parameters as μ = 4t , B0 = 5t , �p = t . (ii) In the second row, (f)–(j),
we show the LDOS as a function of energy for the same set of SS wave vector Gs and choosing the same parameter values as mentioned above.
The Majorana ZBP is indicated by the red plots in (f)–(h) when LDOS is computed at the end of the finite chain, whereas blue plots denote the
Shiba bands in LDOS when they are measured at the middle of the chain.

Gs while keeping φl = 0. In Figs. 4(a)–(e), we show the
eigenvalue spectrum for different values of Gs, considering
a finite-size system with OBC. Those Gs values are approxi-
mately marked by the cyan dots on the Gs axis of Fig. 2(c).
This enables one to understand the appearance and disappear-
ance of MZMs under the influence of SS period. For Gs = 0
and 2π, a pair of MZMs appears at the two ends of a finite
chain due to pure p-wave superconductivity, i.e., the Kitaev
limit [19,59–61]. Around these points, MZMs appear with the

condition B0 �
√

μ2 + �2
p [27,28], akin to the 1D nanowire

case. Due to the modulation of SS wave vector by changing
Gs, the topological superconducting gap or the minigap �m

within the Shiba bands gradually decreases and the MZMs
lying in the gap disappear from the system for Gs = 2.45.
Interestingly, a nontrivial gap closing takes place within the
Shiba bands for a particular period of the SS corresponding
to Gs = 2.45 as shown in Fig. 4(d). However, further mod-
ulation of Gs up to π opens up a trivial superconducting
gap without MZMs in the system. The Gs = π represents an
antiferromagnetic spin-chain configuration and with further
rotation of spins from π , the spin chain will again become
a ferromagnetic chain at Gs = 2π point. Therefore, within
2π > Gs > π , the phenomena repeat as we move away from
2π point towards π point and the Kitaev phase reappears at
Gs = 2π .

The main underlying physics of our model is governed by
the modulated spin textures which can be characterized by Gh

and Gs. Here, it is worth to mention that noncollinear mag-
netism [75,78] including spin-spiral order [74] occurs due to
the competition between underlying Heisenberg exchange in-
teraction and the Dzyaloshinskii-Moriya (DM) interaction. In
most cases where magnetic layer or chain is grown on metallic
or semiconducting substrate, the ubiquitous Ruderman-Kittel-
Kasuya-Yosida (RKKY) exchange tensor between magnetic
atoms contains both Heisenberg exchange and DM inter-
actions. The antisymmetric DM interaction is the result of
spin-orbit coupling that occurs in magnetic heterostructures
due to the broken inversion symmetry. In addition, there

may exist another spin-orbit coupling induced interaction pa-
rameter called axial magnetic anisotropy constant. In order
to engineer G, one needs to have control on these interac-
tion parameters. Indeed, these parameters are highly tunable
through intercalation [79], electron doping [78], thickness
[80], and adjusting the interatomic distances [83], etc. Hence,
the smooth variation in G can be attributed to the high tun-
ability of RKKY exchange tensor and magnetocrystalline
anisotropy energy.

In the presence of superconducting substrate, the exchange
frustration arises from the similar RKKY-type exchange
interactions between the impurity spins [38,41,84]. Such
RKKY-type interaction between two magnetic impurities at a
distance xi j apart can be mediated via the virtual exchange of
electron-hole excitations whereas superconductivity prohibits
the pairs with energy less than the superconducting gap. As
a result, system exhibits an effective pairing gap which de-
pends on xi j and spin spiral wave vector. Hence, for our case,
the physical reason behind the disappearance of zero-energy
MZMs can be attributed to the fact that interplay of Néel-type
spin spiral order and p-wave superconductivity generates an
effective pairing gap which is s wave in nature. This can be
written in real space as

�̃eff
i j = − (ε0/2)δi j − (1 − δi j )

×
[

�t√
1 + �̃2

p

sin(k′
F |xi j |) + γ�t cos(k′

F xi j )

]

× e− |xi j |
ξ0 cos

(
Gs

2
xi j

)
, (7)

where xi j = xi − x j , k′
F = kF√

1+�̃2
p

, �̃p = �p/VF , �t =
�pkF√
1+�̃2

p

, and γ = �̃p√
1+�̃2

p

.

Here, ξ0 = VF /ω(0) is the superconducting coherence
length, VF and kF are the Fermi velocity and Fermi momen-
tum, respectively, and ω(0) = �t/

√
1 + �̃2

p . ε0 is the YSR
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bound-state energy in the deep Shiba limit when a single
magnetic impurity is placed on a p-wave superconductor
[85]. Detailed analytical derivation of Eq. (7) is presented in
Appendix B based on a low-energy continuum model. It is
evident from Eq. (7) that the nature of the effective gap is
s-wave like as �̃eff

i j = �̃eff
ji . Due to the emergence of effective

s-wave pairing, the system approaches to a trivial supercon-
ducting phase with the modulation of Gs within the range
π � Gs � 2.5. Particularly at Gs = π , the SS corresponds
to the antiferromagnetic spin chain and the effective gap is
purely s-wave type, consistent with the earlier reports [73].

To elaborate further, in Figs. 4(f)–(j), we discuss about the
variation of LDOSs as a function of energy with different val-
ues of Gs. In the topological regime, if we compute the LDOS
at the end of the finite chain, we obtain Majorana ZBP (red
color) at exactly zero energy (E = 0). On the other hand, the
feature of LDOS at the middle of the chain indicates nontopo-
logical Shiba band (blue color) within the superconducting
gap −�p to �p [35,66]. Distance between the two closest
Shiba peaks on either sides of the E = 0 peak is called the
minigap �m [35]. From Fig. 4(f), it is evident that the height
of the Majorana ZBP for Gs = 0 is maximum, ≈0.25 in an
arbitrary unit. Concomitantly, no Shiba peak appears within
−�p to �p as the impurities are ferromagnetically aligned.
Height of the Majorana peak at E = 0 decreases with the
enhancement of Gs. Eventually, at Gs = 2.5, Majorana ZBP
disappears and it refers to a gapless phase in LDOS. Finally,
we obtain some trivial gap in LDOS spectrum at Gs = π .
Simultaneously, the signature of Shiba bands is reflected in the
LDOS behavior within −�p to �p [see Figs. 4(g)–(j)] when
Gs �= 0. This can be understood as we increase Gs, the mag-
nitude of minigap �m decreases with Gs, and at Gs = 2.45,
it vanishes. Afterwards, further increase of Gs enables the
minigap to change sign and |�m| increases further in mag-
nitude. Sign change of minigap (�m) indicates the topological
to nontopological phase transition.

In Fig. 5, we explain the variations of important physical
quantities as a function of Gs for out-of-plane Néel-type SSs.
In Fig. 5(a), we depict the variations of the energy spectrum
within the range −�p to �p, as a function of Gs. The spec-
trum exhibits 2π periodicity with respect to Gs. For Gs = 0,
the system is in the Kitaev limit manifesting topological su-
perconducting phase and thus we always obtain the MZMs,
indicated by the red line in Fig. 5(a). Majorana modes merge
into the bulk states and disappear completely around Gs = 2.5
as after that the system purely behaves like a trivial s-wave
superconductor. Interestingly, we observe that Shiba bands
within −�p to �p (precisely, above |E/�p| � 0.6) in the
trivial s-wave superconducting phase oscillate as they inter-
fere with each other in the presence of a magnetic impurity
chain. This can be clearly visible in Fig. 5(b) where the in-
terference of Shiba bands exhibits oscillations around Gs = π

SS configuration, within a range 3.8 � Gs � 2.5. Such type
of oscillations can be another evidence of the formation of an
effective pure s-wave pairing and is absent in the nontrivial
topological p-wave superconducting phase. In Appendix A,
we discuss in detail that similar oscillations of Shiba bands
can be obtained when 1D spin spiral is placed on a purely
s-wave superconductor. With further increase in Gs beyond
Gs ≈ 3.8 value, the system starts to tune itself and the initial

(a) (c)

(b) (d)

FIG. 5. (a) Band spectrum where the energy E is plotted as a
function of Gs within the energy range −�p to �p. (b) Enlarged
view of the energy spectrum is shown as a function of Gs, around the
trivial gapped region in the vicinity of Gs = π . (c) LDOS at E = 0
is shown as a function of Gs and the vanishing LDOS represents the
trivial s-wave gapped phase. (d) Variation of the absolute value of
the minigap (�m) is illustrated as a function of Gs. Here, other model
parameters are chosen as μ = 4t , B0 = 5t , �p = 1.0t .

topological superconducting phase with a dominant p-wave
pairing reappears as shown by the normalized LDOS peak
height behavior with change of Gs in Fig. 5(c). The Majorana
ZBP height is maximum for the ferromagnetic spin chain cor-
responding to Gs = 0 and 2π. As we tune the Gs towards π , a
smooth variation of the Majorana peak height is observed as
a function of Gs. Interestingly, it monotonically decreases up
to Gs ≈ 2.5 (Gs ≈ 3.8) starting from Gs ≈ 0 (Gs ≈ 2π ) and
after that the Majorana peak disappears. The corresponding
gap in the LDOS signifies emergence of topologically trivial
phase with an effective s-wave pairing. Therefore, in a real
system, one can control the appearance and disappearance of
MZMs using the variation of SS wave vector. In Fig. 5(d), we
depict the variation of the absolute value of the minigap (�m)
as a function of the Gs. The absolute value of �m gradually
decreases from its maximum value at Gs = 0 and vanishes
around Gs = 2.5, referring to the topological phase in the
system. A small plateau corresponding to �m = 0 indicates
a gapless phase near Gs = 2.5 [see also Figs. 4(d) and 4(i)]
and afterwards its magnitude rises again as one changes Gs.
Hence, it is evident that there is a sign change of �m within
the Shiba bands, indicating a topological phase transition from
a nontrivial p-wave to a trivial s-wave superconductor through
a gapless phase.

D. Analytical results based on continuum model

In this subsection, we discuss our analytical approach for
the Néel-type rotation in order to support our numerical results
presented in the previous subsection. Our analytical calcula-
tion is based on an effective continuum theory of our lattice
model in Eq. (1). A similar approach was reported earlier in
case of a chain of magnetic impurities placed on an s-wave
superconductor [38,42,43]. From the features of the energy
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(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

FIG. 6. (i) In the first row, (a)–(e), we show the behavior of the energy eigenvalue spectrum εk for five different values of Gs =
0.0, 1.57, 2.0, 2.55, 3.14. (ii) Second row, (f)–(j), represents the variation of the onsite term hk and the effective pairing gap �k as a function of
the propagating vector k, considering the same set of Gs values as mentioned above. Here, we choose the other parameters as ε0 = 0, ξ0 = 2a,
kF a = (2π + Gs/2).

spectrum, the effective gap structure and total density of states
(DOS) presented in Figs. 6 and 7, respectively, we confirm
the topological phase transition along with the nature of an
effective s-wave pairing gap.

We begin from the low-energy continuum model
[Bogoliubov–de Gennes Hamiltonian (BdG)] in which a
1D chain of localized magnetic impurities is placed on a
p-wave superconductor,

H = ξkτz − J
∑

j

( �S j · �σ )δ(x − x j ) + �pkτy, (8)

where ξk = k2

2m − μ, k is the wave vector corresponding to
a model with 1D spin chain placed on a superconducting
substrate with pairing gap �p. Particle-hole and spin degrees
of freedom can be expressed in terms of the Pauli matrices

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

(E)

0.0

0.2

0.4

0.6

0.8

1.0

D
O

S
(E

)

Numerical

Analytical

FIG. 7. Normalized total DOS is shown as a function of energy
E for Gs = π , i.e., when impurity spins follow antiferromagnetic
alignment. Here, numerical and analytical results are indicated by red
and blue colors, respectively. We choose the other model parameters
as μ = 4t , B0 = 5t , �p = 1.0t and ε0 = 0, ξ0 = 2a, kF a = (2π +
Gs/2) for our numerical and analytical computation, respectively.

τ and σ , respectively. Starting from this model one can ob-
tain an effective pairing gap in real space as mentioned in
Eq. (7). The calculational details are presented in Appendix B.
Hence, taking Fourier transform of this effective gap and
diagonal components of the real-space Hamiltonian, we ob-
tain diagonal elements (hk) and effective pairing gap (�k)
as nondiagonal elements in momentum space. The analytical
expressions of hk and �k for our 1D chain can be written as

hk = ε0

2
− 1

2

{
k′

F �p

[
F1

(
k + Gs

2

)
+ F1

(
k − Gs

2

)]

+ γ�t

[
F2

(
k + Gs

2

)
+ F2

(
k − Gs

2

)]}
, (9)

�k = − ε0

2
+ 1

2

{
�t√

1 + �̃2
p

[
F4

(
k + Gs

2

)
+ F4

(
k − Gs

2

)]

+ γ�t

[
F3

(
k + Gs

2

)
+ F3

(
k − Gs

2

)]}
. (10)

Therefore, from the BdG Hamiltonian (see Appendix B
for details) we can obtain the effective energy spectrum
of our system as εk = ±

√
h2

k + �2
k . In Eqs. (9) and (10),

ε0 = 2�t/α is the Shiba bound-state energy for a sin-
gle magnetic impurity placed on a p-wave superconductor
[85], α = JS/(VF

√
1 + �̃2

p ) is the impurity strength, and the
renormalized Fermi momentum k′

F = kF /
√

1 + �̃2
p . The cor-

responding functions which we have defined in Eqs. (9) and
(10) read as

F1(k) = Im

[
i

1 − e
a
ξ0

−i(k′
F +k)

+ i

1 − e
a
ξ0

−i(k′
F −k)

]
, (11)

F2(k) = Re

[
i

1 − e
a
ξ0

−i(k′
F +k)

+ i

1 − e
a
ξ0

−i(k′
F −k)

]
, (12)

F3(k) = Re

[
1

1 − e
a
ξ0

−i(k′
F +k)

+ 1

1 − e
a
ξ0

−i(k′
F −k)

]
, (13)

F4(k) = Im

[
1

1 − e
a
ξ0

−i(k′
F +k)

+ 1

1 − e
a
ξ0

−i(k′
F −k)

]
, (14)
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where ξ0 is the superconducting coherence length. In princi-
ple, in our model Hamiltonian [Eq. (1)], we always consider
ξ0 → ∞ limit so that mean field theory of superconductiv-
ity remains valid [86]. Therefore, in the theoretical model
[Eq. (8)] we always consider ξ0 > a throughout our analysis.

In Figs. 6(a)–(e), we depict the variation of the energy
spectrum εk for Néel-type rotation of the magnetic impuri-
ties, choosing different values of Gs. Moreover, Figs. 6(f)–(j)
represent the variation of both the effective gap �k and hk

as a function of k, employing Eqs. (9) and (10), respec-
tively. For Gs = 0 case, the superconducting gap is p wave
in nature. Therefore, we obtain a topologically nontrivial
gap in the energy spectrum [see Fig. 6(a)]. This phase hosts
MZMs. Afterwards, this gap became smaller in magnitude
with increasing Gs, as one compares the gap around εk = 0 in
Figs. 6(b) and 6(c). Eventually, this gap closes at Gs = 2.55
and after that it again open up as evident from Figs. 6(d) and
6(e). Therefore, a topological phase transition takes place at
Gs = 2.55. This phenomenon can also be understood from
the individual behavior of �k and hk for the same set of
Gs values. Most importantly, this gap closing and reopening
phenomenon within our analytical treatment matches with our
numerical results where it has been shown to take place at
slightly lower value of Gs, which is 2.5.

For Gs = π , when impurity spins form an antiferromag-
netic spin chain, the gap in the energy spectrum is trivial [see
Fig. 6(e)]. However, this gap is not insulating as evident from
the variation of �k at Gs = π in Fig. 6(j). Hence, one can con-
clude that it should be a trivial superconducting phase rather
than a trivial insulator. To confirm that this superconducting
phase is effectively s wave in nature, we compute the total
DOS, both numerically as well as analytically, and compare
their behavior at Gs = π as a function of energy as shown
in Fig. 7. We employ the following formula to numerically
compute the total DOS as

D(E ) = 1

π

∑
n

δ(E − En), (15)

where the sum is taken over the energy eigenvalues (En) of
Eq. (1) and δ(E − En) is modeled using a Lorentzian with
broadening 0.01t . Analytically, normalized total DOS can be
calculated from the formula

D(E ) =
∫ π

−π

dk

2π
δ(E − εk ), (16)

where εk = ±
√

h2
k + �2

k and we use Eqs. (9) and (10). Note,
we obtain qualitatively similar features of total DOS for both
the cases at Gs = π . In particular, quasiparticle peaks appear
at �eff  �p/2 and after that they decay as can be seen from
Fig. 7. Hence, we conclude that this superconducting phase is
conventional s-wave like with no MZMs present.

IV. DISCUSSION CONSIDERING 2D
p-WAVE SUPERCONDUCTOR

In this section, we consider a 1D magnetic spin chain
(locally varying) on top of a 2D p-wave superconduc-
tor. We can describe this 2D system using the following

Hamiltonian as

H2D =
∑
l,α

(tl c
†
l,αcl+1,α + H.c.) − μ

∑
l,α

c†
l,αcl,α

+
∑
l,α,β

( �Bl · �σ )α,βc†
l,αcl,β + �p

∑
l,α

(c†
l,αc†

l+1,α
+ H.c.).

(17)

Here, the index l accounts for the x and y coordinates of
the corresponding 2D lattice sites. In particular, we choose
l = (n, m) in 2D, and the number of sites along x (y) direc-
tion is Nx (Ny). Other symbols in Eq. (17) indicate the same
meaning as mentioned after Eq. (1). A pure 2D p-wave super-
conductor (in absence of any magnetic spin chain) exhibits
a gapless topological superconducting phase at the bulk of
the system hosting MEMs of flat type [87,88]. Afterwards, we
incorporate a 1D magnetic spin chain on top of this 2D p-wave
superconductor. Here, the ends of the chain lie exactly on
the edge of the superconducting substrate. Initially, for some
specific values of the exchange coupling strength (B0 = JS)
and chemical potential (μ) of the system (when the chain is
in the topological regime), MZMs (localized at the two ends
of the magnetic chain) can hybridize with the MEMs. Hence,
one cannot distinguish between the MEMs and MZMs in this
regime. However, MEMs disappear at some specific values
of the μ and B0 even when the chain is in the topological
regime. Only MZMs can survive and they are localized at
the two ends of the chain. In this case, the Shiba states are
energetically separated from the rest of the system. This is
the prime reason for the suppression of the hybridization of
the MZMs with the MEMs. Hence, this feature hints towards
an interesting interplay between μ and B0, which makes the
distinction between MEMs and MZMs possible when the
chain is in the topological regime. However, it is difficult to
find an analytical condition between μ and B0 in the case of
a 2D p-wave superconductor in presence of the magnetic spin
chain. Although, the above-mentioned features are evident
from our numerical results based on the 2D p-wave super-
conductor. In Fig. 8(a), we depict the LDOS at E = 0 in Lx-Ly

plane choosing B0 = 0.0 and μ = 2.0t . In absence of any spin
chain, the system is a purely 2D p-wave superconductor where
MEMs appear and it is also reflected in the corresponding
eigenvalue spectrum [see Fig. 8(e)]. On the other hand, at
any intermediate values of μ and B0, the MZMs hybridize
with the MEMs as shown via LDOS [Figs. 8(b) and 8(c)] and
the corresponding eigenvalue spectrum [Figs. 8(f) and 8(g)].
Further, MEMs disappear when μ = 4.0t and B0 = 5.0t , only
MZMs present and localized at the two ends of the chain [see
Fig. 8(d)]. In this case, we obtain gapped eigenvalue spectrum
and only two localized MZMs appear at exactly E = 0 [see
Fig. 8(h)]. In the above cases, we fix the spiral wave vector at
Gs = 0.5, i.e., the chain is in the topological regime.

As we start increasing Gs, the MZMs are gradually de-
stroyed by the modulation of the spiral wave vector. It is clear
from Fig. 9 that Gs drives the system from topological super-
conductor to trivial superconductor (s-wave like) within the
magnetic spin chain (Shiba band). Note that the magnitude of
E = 0 LDOS (unnormalized) is vanishingly small in Fig. 9(d)
due to the absence of any zero-energy state in the trivial phase
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FIG. 8. (a), (b), (c), (d) Correspond to LDOS (at E = 0) in Lx-Ly plane for four different combinations of the parameters (i) μ = 2.0t, B0 =
0.0, (ii) μ = 3.0t, B0 = 3.0t , (iii) μ = 3.0t, B0 = 4.0t , and (iv) μ = 4.0t, B0 = 5.0t , respectively. (e), (f), (g), (h) Correspond to the eigenvalue
spectrum for the same parameter regime, respectively. The other remaining parameters take the value Gs = 0.5 and �p = t .

as shown in Fig. 9(h). Therefore, when the chain is in the
trivial regime, neither MEMs nor MZMs appear in the system.

V. SUMMARY AND CONCLUSIONS

To summarize, in this paper, we consider a 1D chain of
magnetic impurities placed on a p-wave unconventional su-
perconducting substrate and discuss the effect of different spin
textures on the topological superconducting phase. First, we
numerically analyze various 1D SS configurations by varying
both Gs and Gh (controlling parameters for changing θl and
φl ) as the general case. We find that the effect of p-wave
pairing gradually becomes weaker while an effective s-wave
pairing is simultaneously generated, giving rise to a trivial su-
perconducting phase at Gh, Gs = (π, π ). This is also reflected
in the zero-energy LDOS behavior when it is calculated at
the ends of the finite chain. If we continuously increase the
pitch vectors of the SS by changing (Gh, Gs) until (π, π ), then

the Majorana peak height in the LDOS slowly decreases and
eventually vanishes at (π, π ). Hence, we find that the reason
behind the complete destruction of MZMs is the formation
of an effective s-wave pairing gap. Moreover, we analyze the
gap structure |E2 − E1|/�0 in Gs − Gh plane to find the gap
closing points in the parameter phase. Interestingly, consid-
ering the Néel-type SS configuration (Gh = 0, Gs �= 0), we
compute the topological winding number Wn and show that
sharp topological phase transition takes place around Gs1 =
2.5 and Gs2 = 3.7 where the band gap |E2 − E1| closes. In
order to have a better understanding of this phenomenon, we
analyze this Néel-type rotation (Gh = 0, Gs �= 0) further in
both numerical and analytical model studies. Interestingly,
we find that the rotation of magnetic impurity spins in the
chain and p-wave superconductivity generates an effective
s-wave superconducting phase at Gs = π , i.e., when the
impurity spins form an antiferromagnetic spin chain. Thus,
one can realize a phase transition from topological to trivial

FIG. 9. (a), (b), (c), (d) Correspond to LDOS (E = 0) in Lx-Ly plane for four different values of the spiral wave vector Gs =
0.5, 1.57, 2.4, 3.14, respectively. (e), (f), (g), (h) Correspond to the eigenvalue spectrum for the same values of Gs, respectively. We choose the
remaining parameter values as μ = 4.0t, B0 = 5.0t, �p = t .
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superconductor in which the signature of MZMs vanishes in
LDOS. In our analytical model, we begin from a low-energy
model of a chain of magnetic impurities in the presence of
p-wave superconducting pairing and obtain an analytical ex-
pression of the effective pairing �̃eff

i j . We also calculate the
total DOS from our analytically obtained energy spectrum εk

at Gs = π . This exhibits a conventional s-wave-like behavior
which qualitatively matches with our numerical results. More-
over, we show that the nontopological Shiba bands (within
−�p to �p) oscillate with the spiral wave vector Gs, when the
system reaches to the trivial s-wave superconducting phase.
Such kind of oscillation can be obtained when magnetic im-
purities are placed on an s-wave superconductor. We also
consider a 2D p-wave superconductor and show via the LDOS
and eigenvalue spectrum that initially MZMs can hybridize
with the MEMs. However, even when the magnetic chain is
in the topological regime, MEMs disappear at some critical
value of the chemical potential μ and exchange coupling
strength B0 = JS and only MZMs survive. These MZMs also
disappear when the chain is in the trivial regime with further
modulation of the SS wave vector Gs.

Experimental realization of topological Shiba bands in
atomic spin chains has been reported in very recent ex-
periments [62,66,89–93]. In those experiments, different
transition metals like Fe [91], Mn [93], etc., have been de-
signed as a chain of magnetic impurity atoms on the surface of
conventional s-wave superconducting substrates like Pb (110),
Nb (110) [66,91], etc. In such systems, the value of the s-wave
pairing gap (e.g., Nb) is approximately �s ∼ 1.52 meV [91]
and experiments have been performed at low temperatures
(1.4–1.6 K) [66]. They have observed the Majorana ZBP
in topological Shiba bands via (dI/dV ) measurement with
different positions of the scanning tunneling microscope tip
[66,91]. Therefore, given the so far experimental progress in
this research field, we believe that our theoretical model pro-
posal is timely and may be possible to realize in future exper-
iments based on p superconductors engineered in materials,
e.g., heterostructures by growing a magnetic layer on a Rashba
superconductor [67], doped topological insulator [68–70], etc.
Furthermore, the smooth variation of G can be attributed to the
high tunability of RKKY exchange tensor and magnetocrys-
talline anisotropy energy by various routes [78,81–83].
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APPENDIX A: OSCILLATION OF THE SHIBA BANDS
IN CASE OF s-WAVE SUPERCONDUCTOR

Here, we discuss the nature of the Shiba bands when
magnetic impurities are placed on a conventional s-wave su-
perconductor. It is evident from Figs. 10(a) and Fig. 10(b) that
Shiba bands are formed within −�s to �s and they are non-
topological in nature when Gs = 0. We obtain the oscillation
of the Shiba bands with respect to Gs when the Shiba states
corresponding to the individual impurity spin interferes with
each other. It is an important observation for the formation of

(a) (b)

FIG. 10. (a) Band spectrum (E ) is shown as a function of spiral
wave vector (Gs) within the energy range −1.5�s to 1.5�s con-
sidering purely s-wave pairing. Here, we choose μ = 4t , B0 = 5t ,
�s = 1.0t . (b) Close view of the energy spectrum (within the range
−0.5�s → 0.5�s) is depicted when Gs varies from 0 → π .

s-wave superconductor as mentioned in Fig. 5(a) of the main
text. It is evident from Fig. 10(a) that such oscillation of Shiba
band persists until Gs � π/2, i.e., within the trivial regime.
When Gs � π/2, the system enters into the topological super-
conducting regime due to the formation of an effective p-wave
gap and such oscillation of the Shiba bands disappears [see
Fig. 10(b) for more clarity].

APPENDIX B: ANALYTICAL CALCULATION
OF THE EFFECTIVE PAIRING GAP BASED

ON LOW-ENERGY EFFECTIVE MODEL

In order to support our numerical results based on the
lattice model [Eq. (1)], we also carry out analytical calculation
considering low-energy BdG Hamiltonian that describes mag-
netic impurities on a p-wave superconductor. Our continuum
Hamiltonian can be written as

H = ξkτz − J
∑

j

�S j · �σδ(x − x j ) + �pkτy, (B1)

where ξk = k2

2m − μ, k is the momentum along the 1D chain,
and �p is the superconducting gap. Particle hole and spin de-
grees of freedom can be expressed in terms of Pauli matrices
τ and σ , respectively. The BdG Hamiltonian can be expressed
in terms of Nambu basis 	 = (φ↑, φ↓, φ

†
↓,−φ

†
↑).

At first, we calculate the eigenvalues and eigenvectors for a
single magnetic impurity placed on a p-wave superconductor.
The motivation for this part is to understand the spinors that
are needed for our final calculation of the multiple impuri-
ties. For arbitrary orientation of the single-impurity spin, our
Hamiltonian reads as

H = ξkτz − J �S · �σ + �pkτy. (B2)

The eigenvalues of Eq. (B2) are

λ1 = −(
JS +

√
ξ 2

k + �2
pk2

)
, (B3)

λ2 = JS −
√

ξ 2
k + �2

pk2, (B4)

λ3 = −(
JS −

√
ξ 2

k + �2
pk2

)
, (B5)

λ4 = (
JS +

√
ξ 2

k + �2
pk2

)
. (B6)
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The corresponding BdG spinors of the eigenvectors can be
written as

α1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

i
(
−ξk+

√
ξ 2

k +�2
pk2

)
k�p

cos
(

θ
2

)
− i

(
ξk−

√
ξ 2

k +�2
pk2

)
k�p

eiφ sin
(

θ
2

)
cos θ

2

eiφ sin
(

θ
2

)

⎞
⎟⎟⎟⎟⎟⎟⎠

, (B7)

α2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

i
(
ξk−

√
ξ 2

k +�2
pk2

)
k�p

e−iφ sin
(

θ
2

)
− i

(
ξk−

√
ξ 2

k +�2
pk2

)
k�p

cos
(

θ
2

)
−e−iφ sin θ

2

cos( θ
2 )

⎞
⎟⎟⎟⎟⎟⎟⎠

, (B8)

α3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

− i
(
ξk+

√
ξ 2

k +�2
pk2

)
k�p

cos
(

θ
2

)
− i

(
ξk+

√
ξ 2

k +�2
pk2

)
k�p

eiφ sin
(

θ
2

)
cos θ

2

eiφ sin( θ
2 )

⎞
⎟⎟⎟⎟⎟⎟⎠

, (B9)

α4 =

⎛
⎜⎜⎜⎜⎜⎜⎝

i
(
ξk+

√
ξ 2

k +�2
pk2

)
k�p

e−iφ sin
(

θ
2

)
− i

(
ξk+

√
ξ 2

k +�2
pk2

)
k�p

cos
(

θ
2

)
−e−iφ sin θ

2

cos
(

θ
2

)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B10)

Under the approximation ξk � �p, these spinors take the
form

ψ1 =

⎛
⎜⎜⎜⎜⎝

i cos
(

θ
2

)
ieiφ sin

(
θ
2

)
cos θ

2

eiφ sin
(

θ
2

)

⎞
⎟⎟⎟⎟⎠, ψ3 =

⎛
⎜⎜⎜⎜⎝

−ie−iφ sin
(

θ
2

)
i cos

(
θ
2

)
−e−iφ sin θ

2

cos
(

θ
2

)

⎞
⎟⎟⎟⎟⎠, (B11)

ψ2 =

⎛
⎜⎜⎜⎜⎝

−i cos
(

θ
2

)
−ieiφ sin

(
θ
2

)
cos θ

2

eiφ sin
(

θ
2

)

⎞
⎟⎟⎟⎟⎠, ψ4 =

⎛
⎜⎜⎜⎜⎝

ie−iφ sin
(

θ
2

)
−i cos

(
θ
2

)
−e−iφ sin θ

2

cos
(

θ
2

)

⎞
⎟⎟⎟⎟⎠. (B12)

The eigenvectors of σ · S are

|↑〉 =
(

cos
(

θ
2

)
eiφ sin

(
θ
2

)
)

, |↓〉 =
(

e−iφ sin
(

θ
2

)
− cos

(
θ
2

)
)

. (B13)

Hence, we can write the BdG spinors in terms of the eigen-
states of σ · S as

ψ1 =
(

i |↑〉
|↑〉

)
, ψ3 =

(−i |↓〉
− |↓〉

)
, (B14)

ψ2 =
(−i |↑〉

|↑〉
)

, ψ4 =
(

i |↓〉
− |↓〉

)
. (B15)

As for p-wave superconductor the constituent quasiparti-
cles exhibit symmetric spin, i.e., triplet pairing, therefore, one

has to choose the spatial wave functions as

ψ1(r j ) =
(

i |↑, j〉
|↑, j〉

)
, ψ2(r j ) =

(−i |↑, j〉
|↑, j〉

)
. (B16)

Hence, for multiple impurities we start from the Schrödinger
equation Hψ (x) = Eψ (x). Now, following Ref. [38] we can
write from Eq. (B1),

[E − ξkτz − �pkτy]ψ (x) = −JS
∑

j

Ŝ j · �σδ(x − x j )ψ (x).

(B17)

Thus, one can further obtain

ψ (xi ) = − JS
∑

j

∫
dk

2π

eik(xi−x j )

[E − ξkτz − �pkτy]
Ŝ j · �σψ (x j )

= − JS
∑

j

∫
dk

2π

⎛
⎝ E+ξk

E2−ξ 2
k −�2

k k2
−i�k k

E2−ξ 2
k −�2

k k2

i�kk
E2−ξ 2

k −�2
k k2

E−ξk

E2−ξ 2
k −�2

k k2

⎞
⎠

× eik(xi−x j )Ŝ j · �σψ (x j ). (B18)

From Eq. (B18), we can further find

ψ (xi ) = −
∑

j

JE (|xi − x j |)Ŝ j · �σψ (x j ), (B19)

where

JE (|xi − x j |) = JE (xi j )

= f (1)
E (xi, j )I + f (2)

E (xi, j )τz + f (3)
E (xi, j )τy

(B20)

and

f (1)
E (xi j ) = JS

∫
dk

2π

Eeikxi j

E2 − ξ 2
k − �2

kk2
,

f (2)
E (xi j ) = JS

∫
dk

2π

ξkeikxi j

E2 − ξ 2
k − �2

kk2
,

f (3)
E (xi j ) = JS

∫
dk

2π

�kkeikxi j

E2 − xi2
k − �2

kk2
. (B21)

Afterwards, we linearize the spectrum around the Fermi
momentum and thus obtain ξk = VF (k − kF ). Here VF and kF

are the Fermi velocity and Fermi momentum, respectively.
Under this approximation, the results of the integrals are given
by (see Ref. [85])

f (1)
E (x) = − E

VF

JS

1 + �̃2
p

cos(k′
F x)

ω(E )
e− ω(E )x

VF ,

f (2)
E (x) = 1

VF

JS

1 + �̃2
p

[
γ�t

ω(E )
cos

(
k′

F x
) + sin

(
k′

F x
)]

e− ω(E )x
VF ,

f (3)
E (x) =− i

VF

�̃pJS

1 + �̃2
p

[
k′

FVF

ω(E )
sin

(
k′

F x
)+ sgn(x) cos

(
k′

F x
)]

× e− ω(E )x
VF , (B22)

where k′
F = kF√

1+�̃2
p

, �̃p = �p

VF
, ω(E ) =

√
�2

t −E2√
1+�̃2

p

, �t =
�pkF√
1+�̃2

p

, γ = �̃p√
1+�̃2

p

as introduced in the main text also.
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From Eq. (B19) we can write

ψ (xi ) + JE (0)Ŝi · �σψ (xi ) = −
∑
j �=i

JE (|xi − x j |)Ŝ j · �σψ (x j ).

(B23)
Therefore, at |xi − x j | = 0, these functions become

f (1)
E (0) = − JS

VF

E√
1 + �̃2

p

1√
�2

t − E2
,

f (2)
E (0) = JS

VF

γ�t√
1 + �̃2

p

1√
�2

t − E2
,

f (3)
E (x) = 0. (B24)

We can define the impurity strength in terms of a new parame-

ter α = JS/(VF

√
1 + �̃2

p). We further assume that impurities

are sufficiently dilute such that the resulting impurity band
remains well within the superconducting gap, i.e., �t � E .
Using Eq. (B24) and substituting E = 0, α = 1/γ in the right-
hand side of Eq. (B23), we obtain (following Ref. [85])[

Ŝi · �σ −
(

αE

�t
− αγ τz

)]
ψ (xi )

= −
∑
j �=i

[
f (2)
0 (xi j )τz + f (3)

0 (xi j )τy
]
(Ŝi · �σ )(Ŝ j · �σ )ψ (x j ).

(B25)

Hence, Eq. (B25) can be written as

H̃effφ = Eφ. (B26)

Now projecting Eq. (B16) into (B25), we can find the diagonal
and off-diagonal elements of Heff as

h̃eff
i j = (ε0/2)δi j + (1 − δi j )

× [k′
F �p sin(k′

F |xi j |) + γ�t sgn(xi j ) cos(k′
F xi j )]

× e− |xi j |
ξ0 〈↑, i| |↑, j〉 (B27)

and

(�̃eff )i j = − (ε0/2)δi j − (1 − δi j )

×
[

�t√
1 + �̃2

p

sin(k′
F |xi j |) + γ�t cos(k′

F xi j )

]

× e− |xi j |
ξ0 〈↑, i| |↑, j〉 , (B28)

where ε0 = 2�t/α denotes the Shiba bound-state energy
for a single magnetic impurity in the deep Shiba limit and
ξ0 = VF /ω(0) is the phase coherence length for a p-wave
superconductor. Here, �̃eff

i j denotes the effective pairing gap

in real space which we have mentioned in the main text [see
Eq. (7)].

Therefore, considering Néel-type rotation of the magnetic
impurities, i.e., φi = 0 and θi = Gs ja ( j is the lattice site
index and a is the lattice spacing), one can obtain

〈↑, i| |↑, j〉 = cos(Gsxi j/2)

and

〈↑, i| |↓, j〉 = − sin(Gsxi j/2).

Hence, the effective k-space 2 × 2 BdG Hamiltonian reads as

Hk =
(

hk �k

�∗
k −h∗

−k

)
, (B29)

where

hk =
∑

j

(h̃eff )i je
ikxi j , (B30)

�k =
∑

j

(�̃eff )i je
ikxi j . (B31)

Inserting Eqs. (B27) and (B28) into the above equations, we
finally obtain Eqs. (9) and (10) which we have introduced in
the main text to explain our analytical results.

APPENDIX C: ANALYTICAL SOLUTION
OF TOPOLOGICAL PHASE BOUNDARY FOR OUR

1D LATTICE MODEL HAMILTONIAN

As the tight-binding model [Eq. (1) in our main text]
does not respect translational symmetry, hence, we can-
not directly perform Fourier transform to obtain a spectrum
in k space. Thus, following Ref. [35], we transform our
Hamiltonian to the Majorana basis in order to diagonal-
ize it in momentum space. Under the new basis mk =
(mk,1,↑, mk,1,↓, mk,2,↑, mk,2,↓), our k-space Hamiltonian can be
written for the Néel-type rotation as

H (k) = i

4

∑
k

m†
kh(k)mk, (C1)

where nonzero elements of Eq. (C1) are

h13 = (2t + �p)α cos(k) + B0 − μ = h∗
31, (C2)

h14 = 2itβ sin(k) − �pβ cos(k) = h∗
41, (C3)

h23 = −2itβ sin(k) + �pβ cos(k) = h∗
32, (C4)

h24 = (2t + �p)α cos(k) − B0 − μ = h∗
42. (C5)

For k = π , the eigenvalues of the above Hamiltonian
[Eq. (C1)] can be written as

E = ±1

4

[
B0 ±

√
(μ + 2αt )2 + �2

p(α2 + β2) + 2α�p(μ + 2αt]
]
, (C6)

where α = cos(Gs/2) and β = sin(Gs/2). In presence of a p-wave superconductor, the system is initially topological and after
a critical value of the exchange field B0 = JS, it goes to a nontopological phase. We obtain this critical exchange field from the
gap-closing condition of the two minimum bands. From Eq. (C6) we obtain

|Bc1| =
√

(μ + 2αt )2 + �2
p(α2 + β2) + 2α�p(μ + 2αt ). (C7)
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On the other hand, for k = 0 the eigenvalues of the Hamiltonian become

E = ±1

4

[
B0 ±

√
(μ − 2αt )2 + �2

p(α2 + β2) − 2α�p(μ − 2αt )
]
. (C8)

Similarly, from the gap closing condition (considering the lowest two bands) the critical exchange field becomes

|Bc2| =
√

(μ − 2αt )2 + �2
p(α2 + β2) − 2α�p(μ − 2αt ). (C9)

Hence, considering the parameters values μ = 4t , B0 = 5t ,
�p = t and employing Eqs. (C7) and (C9) we obtain Gs1 =
2.526 39 and Gs2 = 3.7568. This matches well with the nu-
merically obtained gap closing points as well as sharp jump
of the topological invariant [see Fig. 3(b)].

Out of four cases, here we present the calculation
for Néel-type rotation (θl = Gsl and φl = 0) only. For
the other two cases, Bloch-type (θl = Gsl, φl = π/2) and
conical-spin spiral (θl = π/2, φl = Ghl), our results remain
the same.
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