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The conductance of graphene nanoribbons and nanoconstrictions under the effect of a scanning gate mi-
croscopy tip is systematically studied. Using a scattering approach for noninvasive probes, the first- and
second-order conductance corrections caused by the tip potential disturbance are expressed explicitly in terms
of the scattering states of the unperturbed structure. Numerical calculations confirm the perturbative results,
showing that the second-order term prevails in the conductance plateaus, exhibiting a universal scaling law
for armchair graphene strips. For stronger tips, at specific probe potential widths and strengths beyond the
perturbative regime, the conductance corrections reveal the appearance of resonances originated from states
trapped below the tip. The zero-transverse-energy mode of an armchair metallic strip is shown to be insensitive
to the long-range electrostatic potential of the probe. For nanoconstrictions defined on a strip, scanning gate
microscopy allows to get insight into the breakdown of conductance quantization. The first-order correction
generically dominates at low tip strength, while for Fermi energies associated with faint conductance plateaus,
the second-order correction becomes dominant for relatively small potential tip strengths. In accordance with
the spatial dependence of the partial local density of states, the largest tip effect occurs in the central part of the
constriction, close to the edges. Nanoribbons and nanoconstrictions with zigzag edges exhibit a similar response
as in the case of armchair nanostructures, except when the intervalley coupling induced by the tip potential
destroys the chiral edge states.
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I. INTRODUCTION

Graphene has established itself as a unique platform for
revealing new physical features since it was discovered [1,2],
due to the electron pseudorelativistic dispersion and its ex-
ceptional high mobilities. Its two-dimensional carbon atom
lattice leads to a gapless linear dispersion at low energies,
and the corresponding electrons, so-called massless Dirac
fermions, can be described in the low-energy regime by a two-
dimensional Dirac equation [3]. Understanding the underlying
principles of electronic transport properties of high-mobility
graphene nanostructures in the quantum coherent regime is
of significant basic interest, as well as crucial for future
nanoelectronics applications [4]. A variety of experimental
techniques have been employed in this quest, among them,
scanning gate microscopy (SGM), originally applied to the
two-dimensional electron gas (2DEG) in the vicinity of a
quantum point contact (QPC) defined on a semiconductor
heterojunction [5].

In the SGM technique, a probe, consisting of a metallized
atomic force microscope (AFM) tip, perturbs the sample local
electrostatic potential, while electron transport is measured.
The provided spatial resolution of the tip-position-dependent
conductance gives additional information regarding coher-
ent transport, beyond that gained in a standard transport
measurement [6]. The 2DEG that forms in the intrinsically
two-dimensional structure of graphene is particularly suited

for scanning probe techniques. Several groups have used
SGM in order to detect localized charges [7–9] and charge
inhomogeneities [10] in graphene samples. Moreover, SGM
techniques have been employed to image the electronic cy-
clotron orbits in graphene [11,12] and scarred wave functions
[13], as well as to probe conductance fluctuations [14] and
weak localization [15,16] for coherent transport in graphene.

An early application to a narrow constriction in a graphene
flake [17] demonstrated that SGM can be used to investi-
gate graphene nanostructures, showing that the conductance
is considerably affected when the tip is at the position
of the narrowing. More recent systematic experiments on
micrometer-sized constrictions [18,19] showed that the phe-
nomenon of Klein tunneling considerably modifies the effect
of the tip, and can lead to the possibility of Veselago lensing
induced by the n-p-n landscape that appears in the presence
of the tip-induced potential. The SGM has also been used to
manipulate quantum Hall edge channels [20,21] and to study
the topological breakdown of the quantum Hall effect at the
edges of graphene constrictions [22,23].

The theoretical study of the Veselago effect in the vicinity
of a graphene nanoconstriction (GNC) has been addressed
with ray-tracing approaches and tight-binding calculations
[19,23], while the magnetic focusing observed with SGM in
graphene samples in Refs. [11,12] has been analyzed with
the aid of quantum simulations [24]. Numerical calculations
have also been employed in a very thorough investigation
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of the SGM response in graphene nanoribbons (GNRs) and
GNCs with different geometrical features [25,26]. Within this
context, it is important to develop a theoretical approach to
the SGM response in order to address the generality of pa-
rameter regimes and geometries that can be experimentally
encountered. Therefore, in this work, we systematically study
the effect of a tip-induced potential on the conductance of
graphene nanoribbons with and without an additional con-
striction. In particular, we generalize the perturbation theory
valid in the regime of noninvasive tips [27,28] to the situation
of graphene and deduce the conductance corrections that ap-
pear in low orders of the tip strength. Numerical tight-binding
simulations are used to test the limits of these predictions and
to address the regime of invasive tips.

We introduce electronic transport in those systems in
Sec. II and the description of the tip potential in Sec. III.
The perturbative approach for low tip strength is presented
in Sec. IV, and the results are discussed together with nu-
merically obtained data for armchair edges, including for the
nonperturbative regime of invasive tips, in Secs. V and VI.
The case of zigzag edges is discussed in Sec. VII. After the
conclusions (Sec. VIII), three Appendixes describe technical
details of the perturbative approach.

II. ELECTRONIC TRANSPORT IN GRAPHENE
NANORIBBONS AND NANOCONTACTS

We choose to characterize the graphene honeycomb struc-
ture by the primitive lattice vectors a1 = a0(1, 0) and a2 =
a0(1/2,

√
3/2), with a0 = √

3 aNN and aNN � 0.142 nm the
nearest-neighbor distance. With the convention adopted in
Fig. 1, the two atoms (indicated by blue and red dots) of the
conventional cell are located at (0,0) and a0(0, 1/

√
3). The

associated first Brillouin zone, defined by the reciprocal vec-
tors b1 = (2π/a0)(1,−1/

√
3) and b2 = (4π/

√
3 a0)(0, 1),

has two inequivalent corners at K = (4π/3 a0)(1, 0) and
K′ = −K.

We describe the electron motion in the x-y plane through
a nearest-neighbor tight-binding model taking into account
the 2pz orbitals of the carbon atoms, with a hopping con-
stant t � 2.7 eV. Within such a model, low-energy physics
is described by a Hamiltonian with two Dirac points located
at the K and K′ points of the first Brillouin zone and where
the two components of the pseudospinor correspond to the
values of the wave function at the two sublattices. These
two valleys (Dirac cones), with a linear pseudorelativistic
dispersion relation and a (Fermi) velocity vF = √

3 a0t/2h̄ �
108 cm/s, are independent in bulk graphene, but they are
coupled through the boundary conditions in the finite-size
samples that we are interested in. Within this work we perform
numerical calculations using the KWANT code [29], adopting
the tight-binding model to constrained geometries, and we use
analytical approaches based on the low-energy description of
pseudorelativistic electrons.

The simplest structure to approach the study of coherent
electronic transport in graphene is a quasi-one-dimensional
strip, that is, a GNR connected to electronic reservoirs
(source and drain). The quest to fabricate atomically pre-
cise GNRs [30–35] was initiated soon after the pioneering
isolation of graphene monolayers [1], while their theoretical
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FIG. 1. Armchair graphene nanoribbon directed along the verti-
cal (y) direction and having a width WL. Red and blue dots designate
the carbon atoms of the two sublattices within the honeycomb struc-
ture. The crosses stand for auxiliary lattice points outside the ribbon
where the boundary condition of a vanishing wave function is im-
posed, and define the effective width W = WL + a0. The primitive
vectors (a1, a2) of the hexagonal lattice verify |a1| = |a2| = a0. The
coordinate system x-y is chosen such that the Brillouin zone has
the two inequivalent corners K = (4π/3 a0 )(1, 0) and K′ = −K.
The graphene nanoconstriction (GNC) geometries are defined by
imposing a vanishing wave function outside the dashed green lines
according to Eq. (2), where WC is the narrowest width.

characterization in the context of graphite studies [36] pre-
dated the previous experimental achievements. In particular,
the electronic and transport properties of perfect GNRs have
been shown to depend on the atomic arrangement at the
edges of the strip [37–43], and to be strongly affected by
defects [44–48]. Considerable progress has been achieved in
the fabrication procedures since the diffusive strips that first
showed signs of subband quantization formation [30,32], and
it is nowadays possible to fabricate very narrow (of the order
of 1 nm in width) GNRs with atomic precision and specific
armchair or zigzag edges [49,50] (although quantum transport
measurements seem for now challenging for these very small
samples). For a recent review on GNRs, see Ref. [51].

Within the convention of Fig. 1, cutting the edges of the
strip along the y direction gives rise to an armchair GNR,
while cutting along the x axis results in a zigzag GNR (not
shown). In the case of an armchair GNR the wave func-
tion vanishes on both sublattices at the edges, while for a
zigzag GNR the wave function vanishes on a single sublat-
tice at each edge. Denoting WL the width of the graphene
strip, we define the effective width W = WL + a0 for conve-
nience. In Appendix A we present the electronic eigenstates
of armchair nanoribbons, which provide a useful basis for the
scattering approach to quantum transport through graphene
nanostructures and for the perturbative development of the
SGM response.

In our study of quantum transport we consider the linear
regime, where a small applied source-drain bias voltage VSD

results in a small current I , and we focus on the linear con-
ductance G = I/VSD at zero temperature. Assuming that the
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FIG. 2. Conductance (in units of the conductance quantum G0 =
2e2/h) as a function of the Fermi energy (scaled by the hopping
constant t = 2h̄vF/

√
3 a0) for different armchair GNRs and GNCs.

The thick solid black line corresponds to a metallic armchair GNR
with a width WL = 599a0 � 147.3 nm. The thick colored solid lines
represent the conductance of GNCs of different shapes defined by
Eq. (2) with WC = 399a0 and C = 25 nm (dark blue), WC = 199a0

and C = 40 nm (green), WC = 199a0 and C = 25 nm (orange), and
WC = 199a0 and C = 10 nm (violet). The thin dashed lines stand
for the conductance of GNRs with the widths WC used to define the
corresponding GNC (according to the color convention). Both values
of the width WC correspond to a semiconductor armchair GNR. The
different points Pi indicate the parameters chosen to perform the
SGM analysis of GNRs in Sec. V. Inset: Detail of the low-energy
sector of the main figure.

scatterer is connected to two leads that can be assimilated to
semi-infinite nanoribbons with N propagating modes labeled
by the channel index a, the two-terminal Landauer formula
reads

G = G0 Tr[t†t], (1)

where G0 = 2e2/h is the quantum of conductance and tba the
matrix elements of the N × N transmission amplitude matrix
t evaluated at the Fermi energy EF.

An infinite GNR provides an example of a perfect scatterer,
with a unitary transmission for all the propagating modes.
Thus, G is a steplike function of the Fermi energy EF. In
Fig. 2 we present the numerical results for the conductance
of a metallic armchair nanoribbon with a width WL = 599a0

(where electron transport is along the vertical direction y) as a
function of the Fermi energy (thick black solid line). The zero-
transverse-energy mode, not being degenerate, determines the
first conductance plateau at G = G0. Upon increasing EF,
the other modes become progressively populated. The Dirac
equation predicts these modes to be doubly degenerate, and
thus conductance plateaus are separated by steps of 2G0. The
numerical results agree with such an expectation for small val-
ues of EF, but as EF increases, lattice effects become relevant,
the mode degeneracy is progressively destroyed, and plateaus
with steps of G0 start to appear.

As commented above, the conductance quantization ob-
tained in a perfect GNR, like that of Fig. 2, is not robust,
since a moderate amount of edge roughness results in an

important suppression of the conductance and the appearance
of localized states at the edges [44–47]. The sensitivity is
most pronounced near the neutrality point, where the num-
ber of propagating modes is small. By the same token, the
definition of a nanoconstriction in a GNR considerably de-
teriorates the conductance quantization. Indeed, a hallmark
of mesoscopic physics, the conductance quantization with
plateaus at integer multiples of G0 observed in transport
through semiconductor-based QPCs [52,53], is elusive in
GNCs, where no well-defined plateaus are typically observed,
particularly for sharp constrictions.

The signatures of conductance quantization observed
in high-quality suspended [54] or hexagonal-boron-nitride
encapsulated [55] devices were reproducible modulations
(kinks) in the conductance with a spacing that varies in the
range of 2 to 4e2/h. The differences with the clear quan-
tization characteristic of semiconductor-based QPCs were
attributed to strong short-range scattering at the rough edges
of the device [56] favoring the intervalley coupling. The use
of nanopatterning techniques allowed to define GNCs with
high precision and reduced edge roughness, resulting in a
more robust quantization [57]. Depending on the geometry
and the smoothness of the edges, spikes in the conductance
might appear due to the resonances associated with the finite
length of the constriction [58].

Conductance quantization in semiconductor QPCs can be
understood from the adiabatic electron transport, in the case of
a smooth constriction with a slow variation in the transverse
dimension [59], or alternatively, from the small mismatch
between the transmission eigenmodes in the leads and the
propagating channels within the junction, in the case of abrupt
geometries [60]. Both adiabaticity and small mismatch are
problematic in GNCs, resulting in a poor observed conduc-
tance quantization. For the case of zigzag edges, the adiabatic
approximation fails to describe the constriction region, since
the electron motion along the stripe is strongly coupled with
that in the perpendicular direction, while for armchair edges
the change of edge orientation along the constriction is a
source of scattering [61]. Unlike a semiconductor QPC, the
GNC appears as a short-range scatterer, which, together with
other possible defects, degrades the conductance quantization.

A million-atom simulation of smooth constrictions resulted
in faint quantization steps in integers of 2e2/h, put in evidence
by a clustering of dips in dG/dEF around these conductance
values [62]. The conductance spikes obtained in geometries
like that of Ref. [58] were linked to the longitudinal quantiza-
tion induced by the finite length of the constriction [63].

We choose for our model calculations a smooth GNC ge-
ometry described by the condition∣∣∣∣x − W

2

∣∣∣∣ <
1

2

[
W − (W − WC) exp

(
− y2

C2

)]
, (2)

which is illustrated by the dashed green lines in Fig. 1, where
WC is the narrowest width and C characterizes the length
of the constriction. Nonzero values of the electronic wave
function are allowed only on lattice sites that fulfill condition
(2). The details of the constriction geometry are known to
be determinant for its transport properties. Depending on the
fabrication procedure, we may have wedgelike constrictions
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[55] or smooth structures [54]. Our choice (2) of a smooth
GNC for the SGM calculations is motivated by its simplicity,
and the fact that by varying the two defining parameters WC

and C, the degree of abruptness can be tuned.
In agreement with the results of Ref. [62], Fig. 2 shows

that the presence of a constriction reduces the transmission of
the ribbon and destroys the conductance plateaus. The thick
colored solid lines show the conductance of GNCs of different
width (WC) and length (C) of the constriction. For each of
the two values of WC chosen, the conductance of a GNR
with that width is presented by thin dashed lines with the
corresponding color, i.e., dark blue (orange) for WC = 399a0

(199a0). These values represent the conductance that would
have a perfectly adiabatic constriction characterized by the
width WC. Since both widths define a semiconductor armchair
GNR, a zero-conductance region appears at low energy, and
for larger EF the conductance plateaus are separated by steps
of G0. Only for very short GNCs (C = 10 nm, violet line),
tunneling across the constriction permits to exceed, at specific
energies, the limit set by the corresponding fictitious GNR.
The conductance resonances appearing at low Fermi energy,
shown on smaller scale in the inset of Fig. 2, have been
observed in other numerical simulations [25,62–64], and they
can be attributed to quasibound states in a GNC [65,66].

An insight into the origin of the faint conductance plateaus
of GNCs can be obtained by working in the representation
of the transmission eigenmodes (i.e., the eigenvectors of t†t)
[67], for which the Landauer formula (1) becomes a diagonal
sum,

G = G0

N∑
n=1

T 2
n , (3)

where the Tn are referred to as the transmission eigenvalues
associated to the transmission eigenmodes n. In the upper
panel of Fig. 3 we reproduce the EF dependence of the con-
ductance presented in Fig. 2 for WC = 399a0 and C = 25 nm
(thick dark blue line), decomposed according to the contribu-
tion of the transmission eigenvalues (thin colored lines). We
see that as EF increases, different transmission eigenmodes
are progressively turned on, and at some point they approach
unitary transmission, which favors the appearance of faint
plateaus with an approximately quantized conductance.

The lower panel of Fig. 3 shows the eigenmode decom-
position for the case of another GNC considered in Fig. 2,
with WC = 199a0 and C = 25 nm (thick orange line), being
more abrupt than the one of the upper panel. The transmission
eigenmodes are also turned on upon increasing EF, and when
they attain an approximately constant value, the resulting
conductance presents a faint plateau. However, the abruptness
of this constriction results in transmission eigenvalues with
some nonmonotonic dependence on EF without achieving the
unitary limit. Therefore, the conductance plateaus are less
well defined than in the previous case, and farther away from
the quantized values. Another special feature of the second
example above is that the n = 2 and n = 3 eigenmodes are
degenerate up to EF/t � 0.01, with the same transmission
eigenvalue.

As we will see in the sequel, the transmission eigenmode
representation greatly helps to understand the SGM response.
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FIG. 3. Decomposition of the conductance in units of the con-
ductance quantum (thick curves), for two of the GNCs shown in
Fig. 2, in terms of the transmission eigenmodes (labeled by the index
n, thin curves with colors according to the legend) as a function of the
Fermi energy (in units of the hopping constant). Top: WC = 399a0

and C = 25 nm (dark blue). Bottom: WC = 199a0 and C = 25 nm
(orange). For a better visibility, the transmission eigenvalues are
ordered and successively shifted by unity in the upper panel, and
gathered in three groups, each of them shifted by unity, in the lower
panel. The different points Qi and Si mark the parameters chosen to
perform the SGM analysis of GNCs in Sec. VI.

The latter is strongly dependent on the value of the unper-
turbed conductance. Parameters used for a detailed study of
the SGM response are indicated in Figs. 2 and 3 by the points
Pi and Qi or Si for GNRs and GNCs, respectively.

III. SGM IN GRAPHENE NANOSTRUCTURES

In an SGM setup the electronic conductance is measured
while the charged tip of an AFM is scanned over the sample.
The electrostatic potential induced by the tip at the level of
the two-dimensional graphene electrons can be approximated
by a Lorentzian function [18,23,26,68], and thus we write the
corresponding potential energy as

UT(r) = uT

1 + (r − rT)2/d2
, (4)

where rT stands for the projection of the tip position on
the graphene plane, while the potential strength uT and the
disturbance width d are related to the voltage applied to
the tip and on the distance between the tip and the graphene
flake, respectively. Since d is typically much larger than the
lattice spacing a0, the perturbing potential UT can be taken
as a scalar (i.e., the same for both sublattices and without
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FIG. 4. SGM scan of the conductance correction in color scale
for a metallic armchair GNR defined by the white dashed lines (W =
600a0), for the case where the unperturbed conductance is placed in
the second plateau (point P2 of Fig. 2). The tip potential is given by
Eq. (4), with uT = 0.02t and d = 20a0.

inducing a coupling between them). In experiments, the value
of d is limited by the distance of the tip to the graphene
sheet, and is then often of the order of 100 nm [18]. In
order to limit technical issues due to tip potentials extending
beyond the system into the leads, we choose smaller values in
our theoretical approach, yet at least an order of magnitude
larger than a0. As we will show in Sec. V, there is no SGM
correction for the zero-transverse-energy mode. Therefore, we
present in Fig. 4 a typical SGM scan, plotting the numer-
ically obtained response δG (defined as the conductance of
the sample with the tip minus the one without) in units of the
conductance quantum G0, as a function of the tip position for
the case of a metallic armchair nanoribbon (with W = 600a0),
for a Fermi energy that places the unperturbed conductance in
the second plateau (point P2 of Fig. 2).

The SGM scan of Fig. 4 appears as translationally invariant
in the longitudinal direction, despite two effects that break
this symmetry. On the one hand, the lattice-induced symmetry
breaking in the y direction produces conductance modulations
that are imperceptible within the chosen scale. On the other
hand, cutting the tip-potential tail at the leads results in a
finite-size effect that we minimize by simulating a strip which
is more than seven times longer than the sector shown.

While many features of quantum transport through
graphene nanostructures can be inferred from the scans like
that of Fig. 4, the large number of physical parameters in-
volved indicate that a systematic approach must be pursued. In
the next section we develop a perturbative approach account-
ing for the SGM response of Dirac electrons in graphene to a
noninvasive tip potential, that will guide our discussion of the
SGM results upon different conditions.

IV. PERTURBATIVE APPROACH FOR NONINVASIVE TIPS

The effect of a noninvasive tip can be obtained from per-
turbation theory following the same lines as in the case of the
2DEG [27,28]. We present in this section the main steps of the
approach, while technical details can be found in Appendixes
A and C.

The Dyson equation for the total Green function GT (in-
cluding the effect of the tip) can be written in terms of the
unperturbed Green function G and the tip-induced potential
UT as

GT(r; r′; ε) =G(r; r′; ε)

+
∫

dr′′ G(r; r′′; ε) UT(r′′) GT(r′′; r′; ε). (5)

Staying up to first order in UT (i.e., within the Born ap-
proximation) and using the Fisher-Lee relation (A11), the
correction to the transmission amplitude can be written as

δt (1)
ba = 2π i(h̄vF)2

M+1∑
m,m′=0

ϕ
(+)†
2,ε,b(m, y) σy

[∑
m′′

∫
dy′′ G(m, y; m′′, y′′; ε)UT(m′′a0, y′′)G(m′′, y′′; m′, y′, ε)

]
σy ϕ

(−)
1,ε,a(m′, y′)

= 2π i(h̄vF)2
M+1∑

m,m′=0

2∑
l̄,l̄ ′=1

∫ ∞

−∞

d ε̄

ε+ − ε̄

∫ ∞

−∞

d ε̄′

ε+ − ε̄′

×
∑
c,c′

ϕ
(+)†
2,ε,b(m, y)σy�l̄,ε̄,c(m, y) U l̄,l̄ ′

c,c′ (ε̄, ε̄′)�†
l̄ ′,ε̄′,c′ (m

′, y′)σyϕ
(−)
1,ε,a(m′, y′), (6)

where we have skipped its explicit ε dependence, used the spectral decomposition (A8) of the unperturbed Green functions, and
defined the matrix element of the tip potential between scattering states,

U l̄,l̄ ′
c,c′ (ε̄, ε̄′) =

M+1∑
m′′=0

∫
dy′′�†

l̄,ε̄,c
(m′′, y′′) UT(m′′a0, y′′) �l̄ ′,ε̄′,c′ (m′′, y′′). (7)

In Appendix B we present explicit calculations for the case where the system is a GNR [see Eqs. (B5) and (B8)].
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Assuming a smooth dependence of the tip-potential matrix elements on ε̄ and ε̄′, expressing the scattering states � in terms
of the modes ϕ(∓), and using the result (C1), we have

M+1∑
m=0

∫ ∞

−∞

d ε̄

ε+ − ε̄
ϕ

(+)†
2,ε,b(m, y) σy �l̄,ε̄,c(m, y) U l̄,l̄ ′

c,c′ (ε̄, ε̄′) = − i

h̄vF
(tbcδl̄,1 + r′

bcδl̄,2)U l̄,l̄ ′
c,c′ (ε, ε̄′), (8a)

M+1∑
m′=0

∫ ∞

−∞

d ε̄′

ε+ − ε̄′ �
†
l̄ ′,ε̄′,c′ (m

′, y′) σy ϕ
(−)
1,ε,a(m′, y′) U l̄,l̄ ′

c,c′ (ε̄, ε̄′) = − i

h̄vF
δc′,a δl̄ ′,1 U l̄,l̄ ′

c,c′ (ε̄, ε). (8b)

Therefore,

δt (1)
ba = −2π i

∑
c

[
tbc U1,1

c,a (ε, ε) + r′
bc U2,1

c,a (ε, ε)
]
, (9)

and we obtain the first-order correction to the conductance,

δG(1)

G0
= 2

∑
a,b

Re
{
t∗
ba δt (1)

ba

} = 4π Im{Tr[t†r′U2,1]}, (10)

which has the same form as in the case of the 2DEG [27].
Expressing the conductance correction as a trace, analogously
to the Landauer formula [Eq. (1)], makes it manifestly inde-
pendent of the basis chosen for the lead states. The basis of
the transmission eigenmodes is quite useful since it allows to
write Eq. (10) as a single sum over the propagating eigen-
modes [28],

δG(1)

G0
= 4π

N∑
n=1

Tn Rn Im
{
U2,1

n,n

}
, (11)

where Tn (Rn) is the transmission (reflection) eigenvalue and
U2,1

n,n is the diagonal matrix element of the tip potential in the
basis of the transmission eigenmodes. The case of a strip is
particularly simple since the lead modes (A6) are the trans-
mission eigenmodes.

It follows directly from Eq. (10) that there is no first-order
correction for the perfectly transmitting modes. In these cases,
which include that of the GNRs, we need to go beyond the
first-order approximation in order to address the SGM re-
sponse. The second-order SGM conductance correction can
be written as

δG(2) = δG(2)α + δG(2)β, (12)

with

δG(2)α

G0
= 2 Re{Tr[t†δt (2)]}, (13a)

δG(2)β

G0
= Tr[δt (1)†

δt (1)]. (13b)

Going up to second order in Eq. (5) we have

δt (2)
ba = 2π i(h̄vF)2

M+1∑
m,m′=0

2∑
l̄,l̄ ′,l̄ ′′=1

∫ ∞

−∞

d ε̄

ε+ − ε̄

∫ ∞

−∞

d ε̄′

ε+ − ε̄′

∫ ∞

−∞

d ε̄′′

ε+ − ε̄′′

×
∑

c,c′,c′′
ϕ

(+)†
2,ε,b(m, y) σy �l̄,ε̄,c(m, y) U l̄,l̄ ′

c,c′ (ε̄, ε̄′) U l̄ ′,l̄ ′′
c′,c′′ (ε̄′, ε̄′′) �l̄ ′′,ε̄′′,c′′ (m′, y′) σy ϕ

(−)
1,ε,a(m′, y′). (14)

The result of the m sum and ε̄ integral of the above equation follows from Eq. (8a), and similarly, the m′ sum and ε̄′′ integration
from Eq. (8b), leading to

δt (2)
ba = −2π i

∑
l̄ ′

∫ ∞

−∞

d ε̄′

ε+ − ε̄′
∑
c,c′

[
tbc U1,l̄ ′

c,c′ (ε, ε̄′) U l̄ ′,1
c′,a (ε̄′, ε) + r′

bc U2,l̄ ′
c,c′ (ε, ε̄′) U l̄ ′,1

c′,a (ε̄′, ε)
]
. (15)

We thus have

δG(2)α

G0
= −4π2

2∑
l̄ ′=1

Tr[t† t U1l̄ ′ U l̄ ′1] + 4π

2∑
l̄ ′=1

Im
∫ ∞

−∞

d ε̄′

ε+ − ε̄′ Tr
[
t† r′ U2,l̄ ′

c,c′ (ε, ε̄′) U l̄ ′,1
c′,a (ε̄′, ε)

]
, (16)

where we have used that Tr[t† t U1,l̄ ′ U l̄ ′,1] is real. The correction δG(2)β can be readily obtained from Eqs. (13b) and (9), leading
to

δG(2)β

G0
= 4πTr[t†tU1,1U1,1 + r′†r′U2,1U1,2 + 2Re{r′†tU1,1U1,2}]. (17)
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From δG(2)α and δG(2)β we obtain the second-order conductance correction

δG(2)

G0
= − 4π2Tr[t† t U1,2 U2,1 − r′† r′ U2,1 U1,2 − 2Re{r′† t U1,1 U1,2}]

+ 4π

2∑
l̄ ′=1

Im
∫ ∞

−∞

d ε̄′

ε+ − ε̄′ Tr[t† r′ U2,l̄ ′ (ε, ε̄′) U l̄ ′,1(ε̄′, ε)]. (18)

As for the first-order correction, the representation of
transmission eigenmodes considerably simplifies the above
expression, since the traces can be calculated as single sums.
In the case where all the propagating eigenmodes are perfectly
transmitting, as in GNRs, Eq. (18) reduces to

δG(2)

G0
= −4π2 Tr[U1,2 U2,1]. (19)

This second-order correction to the conductance in the case
of perfect transmission is trivially negative (or null), respect-
ing the constraint that the presence of the tip cannot open
additional conductance channels in the leads, but only reduce
the transmission of the existing channels.

Equations (10) and (19) are the basis of our analysis of the
SGM patterns obtained in GNRs and graphene QPCs for non-
invasive tips, and will guide our discussion of the numerically
obtained SGM results in different conditions.

V. SGM CORRECTION IN A METALLIC ARMCHAIR
GRAPHENE NANORIBBON

We first tackle the geometry of a nanoribbon, which is
particularly simple since the perfect transmission of the prop-
agating modes results in a vanishing first-order conductance
correction, i.e., δG(1) = 0 according to Eq. (10). Therefore,
the second-order term δG(2), given by Eq. (19), is the leading-
order correction for a noninvasive probe. Moreover, in the case
of armchair GNRs, the tip-potential matrix elements can be
calculated under some approximations (see Appendix B). For
the case of d � W and distances from the tip to the bound-
aries larger than d , the matrix element (B5) is independent of
the tip position, resulting in

δG(2)

G0
= −

(
2πuTd2

h̄vFW

)2 ∑
a

(
qa

ka

)2

K2
0 (2kad ), (20)

where the sum is over the propagating modes a, and K0 stands
for the zero-order modified Bessel function of the second
kind.

In Fig. 5(a), we present the numerically obtained SGM
correction as a function of the tip strength uT (scaled by the
hopping constant t) when the tip of fixed size d = 20a0 is
placed on the axis of the strip (at x = W/2 with the coordi-
nate system of Fig. 1) for three cases where the unperturbed
conductance is in the first (blue solid line), second (red solid
line), and third (purple solid line) plateau (points P1, P2,
and P3 of Fig. 2, respectively).

The first remarkable feature is that when only the zero-
transverse-energy mode is occupied, the SGM correction
vanishes on the scale of the other curves (typically, δG/G0 ∼
−10−8). This singularity, already noticed in Ref. [25], is

consistent with Eq. (20), which dictates that the second-
order conductance correction trivially vanishes in this case.
Moreover, as we stress in Appendix B, it can be shown that

0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

(d/a0)1.6uT/t

δG
/G

0

0 0.2

−2

−1

0

(a)

(b)

uT/t

0 0.05 0.1 0.15

−2

−1.5

−1

−0.5

0

uT/t

δG
/G

0

FIG. 5. (a) SGM conductance correction for a metallic armchair
GNR of width WL = 599a0 when the tip is placed on the axis (x =
W/2) of the strip, for three cases where the unperturbed conductance
is in the first (blue solid line), second (red solid line), and third (pur-
ple solid line) plateau (points P1, P2, and P3 of Fig. 2, respectively)
as a function of the strength uT of the tip-generated potential (scaled
by the hopping constant t). The extent of the tip-induced potential
is given by the value d = 20a0. The red and purple dash-dotted
lines represent the analytical predictions of Eq. (20) for the initial
quadratic dependence on uT for the cases of P2 and P3, respectively.
(b) Data collapse of the initial correction for the point P2 of the
second plateau obtained for various tip sizes 5 � d/a0 � 50 and
strengths 0 � uT/t � 0.2, once the scaling uTd1.6 is implemented.
The unscaled data are shown in the inset as a function of uT (for
values including the initial decrease and the first revival peak). The
colors correspond to those of the data points in the main plot. Curves
with increasing values of d show stronger and stronger conductance
corrections.
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U2,1
a∗,a∗ (ε, ε) = 0, without introducing all the approximations

that lead to Eq. (20), and independently of the characteristics
of the tip potential (uT and d), provided it is long ranged.
The result is indeed valid for an arbitrary long-range dis-
order potential. This leads to the concept of nearly perfect
single-channel conduction for armchair GNRs [39], as the
higher-order terms in the perturbation expansion cannot in
principle be ruled out, since other matrix elements do not
vanish [see Eq. (B8)]. Invoking the time-symmetry breaking
operated by the boundary conditions in the case of metallic
armchair GNRs, Ref. [41] proposed that the zero-transverse-
energy mode in armchair GNRs is a perfectly conducting
channel.

The distinction between a perfectly conducting channel
and a nearly perfect conducting one is delicate from the nu-
merical point of view [41]. Indeed, the small values of δG in
Fig. 5(a) are affected by the finite-size effects due to the long-
range tip potential extending up to the leads in our simulations
with a finite extent along the y direction, as well as by the
fact that the potential of the numerical calculations has a finite
range and therefore mixes the graphene valleys. However,
from the theoretical point of view, the perfect conduction of
the zero-transverse-energy channel can be addressed by going
to higher order in the perturbation expansion.

For the zero-transverse-energy mode, the first correc-
tions to the transmission amplitude are easily obtained from
Eqs. (9), (15), and (C4), resulting in δt (1)

a∗a∗ = −2π iU1,1
a∗,a∗ (ε, ε)

and δt (2)
a∗a∗ = −2 [πU1,1

a∗,a∗ (ε, ε)]2. It is easy to see that the nth-

order correction to the transmission amplitude δt (n)
ba has the

same structure as Eq. (15), with n − 1 intermediate energy in-
tegrals and sums over the lead index, and having products of n
matrix elements in each term. For the zero-transverse-energy
mode important simplifications appear from the condition
U2,1

a∗,a∗ (ε, ε) = 0. From the general result (C7), we have

δt (n)
a∗a∗ = 2

[ − iπ U1,1
a∗,a∗ (ε, ε)

]n
, (21)

which allows us to calculate corrections δG(n) of arbitrary
order n. For odd n we have

δG(n)

G0
= 2Re

⎡
⎣δt (n)

a∗a∗ +
(n−1)/2∑

j=1

[
δt ( j)

a∗a∗
]∗

δt (n− j)
a∗a∗

⎤
⎦ = 0, (22)

since δt (n), as well as each term of the sum, are all pure
imaginary. For even n we have a decomposition analogous to
Eq. (12) with

δG(n)α

G0
= 2Re

⎡
⎣δt (n)

a∗a∗ +
n/2−1∑

j=1

[
δt ( j)

a∗a∗
]∗

δt (n− j)
a∗a∗

⎤
⎦, (23a)

δG(n)β

G0
= ∣∣δt (n/2)

a∗a∗
∣∣2

. (23b)

Using Eq. (21) we have

δG(n)α

G0
= 4

[
iπ U1,1

a∗,a∗ (ε, ε)
]n

⎡
⎣1 + 2

n/2−1∑
j=1

(−1) j

⎤
⎦

= −4
[
π U1,1

a∗,a∗ (ε, ε)
]n = −δG(n)β

G0
. (24)

We therefore have δG = 0 to all orders in perturbation
theory, implying that the zero-transverse-energy mode is a
perfectly conducting channel. We stress that this result is not
restricted to the particular form (B8) of a matrix element cor-
responding to a Lorentzian-shaped tip potential, but it applies
to any long-range potential, including the disordered case
treated in Ref. [41].

The SGM response for the points P2 and P3, on the sec-
ond and third plateaus, depicted by red and purple solid
lines in Fig. 5(a), respectively, exhibits an initial quadratic
dependence as a function of the potential strength uT. The
corrections are always negative, in agreement with the expec-
tation that the dominant SGM correction at weak tip strength
is of second order, and the initial strength dependencies are
well described by the perturbative prediction of Eq. (20) (red
and purple dash-dotted lines, respectively). It is important to
remark that the perturbative regime extends over a relatively
large uT interval and describes rather precisely conductance
corrections up to |δG| � G0. Moreover, the SGM scan of
Fig. 4 confirms the prediction of Eq. (20) of an approximate
independence with respect to the tip position, provided that
the walls are not approached.

In Fig. 5(b) we present the SGM correction for different
potential widths d (different symbols) and strengths uT in a
large range (5 � d/a0 � 50, 0 � uT/t � 0.2), which demon-
strates a robust data collapsing. The noninteger power law for
the scaling in the variable d is consistent with the logarithmic
dependence of the function K0 in Eq. (20) for small values of
the argument.

Another remarkable feature of Fig. 5(a) is the revival of
the GNR conductance for large values of uT, outside the
perturbative regime. These peaks attain the unitary limit of
no conductance correction in the case of the second plateau
(red solid line), and can be understood as resonances through
states electrostatically confined below the tip in the p region
defined for sufficiently large values of uT, like the graphene
quantum-dot states studied in Refs. [69,70]. In Fig. 6 the
SGM conductance correction is presented in color scale as a
function of tip strength and width, highlighting the resonances
(dark colors) and antiresonances (light colors) that appear
as functions of uT and d when the unperturbed conductance
is in the second plateau (point P2 of Fig. 2). These resonance
lines indicate the relation between uT and d , under which
the confined states under the tip remain aligned with the Fermi
energy. The cut shown by the dashed white horizontal line
corresponding to d = 20a0 indicates the parameters for which
the data have been presented in Fig. 5(a) for the second plateau
(solid red line), on a slightly larger uT interval.

The resonances occur at the same tip strengths when the
tip position is moved away from the nanoribbon axis. When
the edges of the ribbon are approached, the revival occurs at
lower tip strength as it can be expected from the behavior of
confined states in a truncated potential.

VI. SGM CORRECTION IN A GRAPHENE
NANOCONSTRICTION

In the case of a GNC defined in a nanoribbon we do
not have well-defined conductance plateaus (see colored
solid lines in Fig. 2), and therefore, we expect the lowest
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FIG. 6. SGM conductance correction (in units of the conduc-
tance quantum G0) for a metallic armchair GNR, when the tip is
placed on the axis of the strip (x = W/2) and the unperturbed con-
ductance is in the second plateau (point P2 of Fig. 2), as a function of
the strength (uT) and extent (d) of the tip-generated potential. On the
dashed white horizontal line corresponding to d = 20a0, the data of
Fig. 5(a) for the second plateau (solid red line) are reproduced.

nonvanishing SGM conductance correction to be the first-
order term of Eq. (10), yielding a linear dependence on tip
strength in the noninvasive regime. The numerical results of
Fig. 7, showing the dependence of the SGM correction as a
function of the tip strength for two GNCs shown in Fig. 2
(WC = 399a0 and C = 25 nm for the upper panel and WC =
199a0 and C = 25 nm for the lower panel) and a tip placed
at their center confirm our expectation for all the operating
conditions defined in Fig. 3, except for the points Q2 and S2

characterizing a maximum of the unperturbed conductance.
Unlike the negative second-order correction that dominates

in the conductance plateaus, the first-order correction, indi-
cated by fits of linear uT dependence (dashed lines with the
corresponding color), can be positive or negative. The matrix
elements (7) that, together with the unperturbed transmission
and reflection amplitudes, determine the value of the conduc-
tance correction are more difficult to evaluate than for the case
of GNRs, since the scattering wave functions are in general
not known (except for particular cases like those of abrupt
junctions [38]). It can be observed in Fig. 7 that the range of
linear behavior is quite reduced, as higher-order terms become
relevant already at moderate tip strengths of uT ≈ 0.01t.

The points Q2 and S2 in Fig. 3 (red lines in Fig. 7)
correspond to unperturbed unitary transmissions set by the
fictitious GNRs of width WC. The effect of the tip can thus
only reduce the conductance, and therefore the second-order
correction dominates, resulting in the quadratic dependence
for very small values of uT observed in Fig. 7. Points like
Q5 and S5 (green lines), corresponding to a plateaulike con-
dition in Fig. 3, exhibit a very small slope, indicating that
the linear correction (10) is weakened when approaching the
regime of conductance quantization. The overall conductance
scale in Fig. 7 of the upper panel is smaller than that of
the lower panel, since the former presents the case of
a smoother junction than the latter and the well-defined

0 0.005 0.01 0.015 0.02
−0.5

0

0.5

uT/t

δG
/G

0

0 0.005

−0.5

0

0.5

−0.2

0

0.2

δG
/
G

0

0 0.005

−0.2

0.2

FIG. 7. Conductance change in a GNC defined by Eq. (2), for
WC = 399a0 and C = 25 nm (upper panel), together with the case
of WC = 199a0 and C = 25 nm (lower panel), as a function of the
tip strength, for a tip of width d = 20a0 placed at the center of
the constriction. The different solid lines correspond to the unper-
turbed conditions characterized by the points Qi (Si), of the same
color, in the upper (lower) panel of Fig. 3. The dashed lines represent
linear fits to the behavior at low tip strength. Insets: Detail of the
small uT region for the conditions defined by the points Qi (upper
panel) and Si (lower panel), with i = 1, 2, 3 characterizing a peak of
the unperturbed conductance.

quantized conductance plateaus of the smooth junction
weaken the contribution arising from the first-order correction
(11).

Figure 8 shows the scan of the conductance correction
in a GNC, as a function of tip position, with an unper-
turbed condition corresponding to the point S4 (orange) of
Fig. 3(b) for the case of a weak tip in the noninvasive regime
(uT = 0.002t) and two values of the tip-potential extent: d =
20a0 (upper panel) and d = 100a0 (lower panel). In both
cases, the strongest SGM response appears when the tip is
close to the GNC, in agreement with previous experimental
[17] and theoretical work [25,26]. Such strong response over-
whelms, on the scale of the figures, the modulations seen in
Fig. 4 arising from the GNR enclosure. On the one hand, the
tip strength is much smaller than that used in the example of
SGM in a GNR. On the other hand, the point S4 corresponds
to the third plateau of the limiting GNR, described by the
point P3 in Fig. 2, where the SGM response is considerably
weaker than in the second plateau (point P2). The smaller
tip (d = 20a0) results in a weaker signal than the large tip
(d = 100a0) since the potential (4) becomes less effective as d
decreases [see Eq. (B5)]. We notice that the SGM conductance
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FIG. 8. SGM scan for a GNC defined in a nanoribbon by Eq. (2),
with W = 600a0, WC = 199a0, and C = 25 nm (white dashed lines),
for the unperturbed condition corresponding to the point S4 in the
lower panel of Fig. 3. The tip potential strength is uT = 0.002t, while
the tip extent is d = 20a0 (d = 100a0) for the upper (lower) panel.

correction is not only negative at the center of the constric-
tion [orange line in Fig. 7(b)], but everywhere in the region
scanned in Fig. 8.

An important difference between the two panels of Fig. 8 is
that the SGM response corresponding to the small tip presents
a spatial feature with two local minima close to the edges
in the narrowest part of the GNC. Figure 9 shows the con-
ductance change when the tip is displaced along the y = 0
line for different widths (d/a0 = 10, 20, . . . , 100), illustrating
how a progressively broader tip blurs the localized features at
the edges. The spatial features of Fig. 8 are rather generic,
as they appear for most of the unperturbed conditions, but
other behavior can be also observed; i.e., for the point S1 (not
shown) no concentration of the SGM signal is obtained.

In semiconductor QPCs, it has been shown [71] that, in cer-
tain cases, a weakly invasive SGM response can be connected
with the unperturbed partial local density of states (PLDOS),
defined as

ρ1,ε(r) = 2π

N∑
a=1

|�1,ε,a(r)|2 (25)

for electrons impinging into the scatterer from lead 1 with
an energy ε, and scattering states given by Eq. (A7a). For

0 200 400 600

−0.4

−0.2

0

x/a0

δG
/G

0

FIG. 9. SGM scan along the transverse central line (y = 0) for
the GNC of Fig. 8 with different tip extents (d/a0 = 10, 20, 40, 80,
100 from top to bottom). The dashed grey vertical lines indicate the
position of the points where the constriction is the narrowest, and the
dashed green vertical lines stand for the limits of the nanoribbon on
which the GNC is defined.

local tips, there is a linear relationship between the first-
order conductance change and the PLDOS in the case of
a single open channel, while when the QPC is tuned on a
conductance plateau, the second-order conductance correc-
tion verifies δG(2)(rT)/G0 = −ρ2

1,EF
(rT), when the position

rT of the tip is in the lead where electrons are transmitted.
The departures from the above relationship for imperfect
transmission were shown to be small, provided the extent of
the tip remains small [71]. In the upper panel of Fig. 10,
we explore the previous connection and plot the PLDOS of
the GNC considered in Fig. 8, obtaining a large enhancement
of the PLDOS at the edges in the narrowest part.

An imaging technique using nitrogen-vacancy-center mag-
netometry has revealed that the current density is concentrated
on the edges of the narrowest part of a micrometer-sized con-
striction operating in the Ohmic regime [72]. When lowering
the temperature below 200 K, the Ohmic regime gives up its
place to the ballistic regime and the current density becomes
homogeneous along the centerline of the constriction. Our
results for the current density (lower panel of Fig. 10) agree
with the ballistic ones of Ref. [72]. Thus, the strong features
appearing in the PLDOS and put in evidence by the SGM
response to a relatively small tip do not seem to have an effect
on the current density.

VII. ZIGZAG EDGES

We have so far mainly discussed the case of armchair
edges, where the eigenenergies and eigenfunctions have the
simple form presented in Appendix A, and analytical expres-
sions could be obtained in the perturbative regime. The case
of zigzag edges is more involved since in a GNR the possi-
ble transverse quantum numbers depend on the longitudinal
momentum. Another difference with respect to the armchair
case is the existence in zigzag GNRs of flat bands with small
values of |ε|, corresponding to chiral eigenstates localized at
the edges for each sublattice.
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FIG. 10. Top: Partial local density of states impinging from the
lower lead (25), calculated for the GNC of Fig. 8 (in arbitrary units).
Bottom: Corresponding current density.

As shown in Fig. 11 the conductance of a zigzag GNR
with a width WL = 599a0 presents a steplike dependence on
EF (thick black solid line). The first conductance plateau at
G = G0 corresponds to the chiral mode in the direction of the
current, while the following plateaus are separated by 2G0, as
a consequence of the mode degeneracy arising from the two
graphene valleys.

Once a constriction is defined on a zigzag GNR (with its
axis rotated an angle of π/2 with respect to the setup of
Fig. 1), the resulting conductance is reduced as compared
to that of the GNR (thick colored lines in Fig. 11). As re-
marked in Ref. [62], the conductance plateaus for zigzag
edges are better defined than in the armchair case, especially
for the case of a wide GNC. At low energies, the GNC
with the largest width (WC = 499a0, brown solid line) does
not break the perfectly conducting channel of the circumjacent
GNR. Narrower GNCs (dark blue, orange, green, and violet
solid thick curves) destroy the perfect conducting channel
at low energies, where similarly to the case of armchair GNCs
of Fig. 2, sharp resonances associated with quasibound states
can be observed [65,66]. Thin dashed lines represent the
conductance of a GNR with a width equal to the narrowest
distance WC of the GNC with the corresponding color. In the
zigzag case the conductance of a wide GNC can be larger than
the one of the corresponding GNR of width WC. In Fig. 11 the
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FIG. 11. Conductance as a function of the Fermi energy for
different zigzag GNRs and GNCs. The thick solid black line cor-
responds to a GNR with a width WL = 599a0. The thick solid
colored lines represent the conductance of GNCs of different shapes:
WC = 499a0 and C = 25 nm (brown), WC = 399a0 and C = 25 nm
(dark blue), WC = 199a0 and C = 40 nm (green), WC = 199a0 and
C = 25 nm (orange), WC = 199a0 and C = 10 nm (violet). The thin
dashed lines stand for the conductance of GNRs with the width WC

of the corresponding GNC (according to the color convention). Inset:
Detail of the low-energy sector of the main figure. The different
points Ri (Ti) define the parameters chosen to perform the SGM
analysis of zigzag GNRs (GNCs).

thick brown and dark blue solid lines may go, in some energy
intervals, above the corresponding dashed lines whenever the
fictitious GNR has its conductance set at G0 by the perfect
conducting channel, while new transverse modes are open in
the GNC setup.

The slightly better quality of the conductance plateaus for
zigzag edges, as compared with the armchair case, can be
understood from the transmission eigenmode decomposition
of the conductance. In the former case the modes are turned
on as EF increases (not shown), attaining unitary transmission
more sharply than in the case of armchair edges presented in
Fig. 3.

The response of an SGM tip for a zigzag GNR presents
some similarities and differences with respect to the armchair
case. In Fig. 12 we show the numerically obtained SGM
corrections as a function of uT, for a tip with d = 20a0 placed
on the longitudinal axis of the strip (y = W/2) for three cases
where the unperturbed conductance is in the first (blue solid
line), second (red solid line), and third (purple solid line)
plateau (points R1, R2, and R3 of Fig. 11, respectively). Simi-
larly to the case of an armchair GNR presented in Fig. 5(a), the
perfectly conducting channel seems to be unaffected by the tip
(blue line), while the other two unperturbed conditions exhibit
an initial quadratic dependence on uT followed by a revival of
the conductance for larger potential strengths (red and purple
lines corresponding to R2 and R3, respectively). However, this
simple picture is modified when the perfect conductance of
the chiral modes is destroyed by the effect of the tip.

In Fig. 13 we present the conductance correction as a
function of uT for d = 20a0 and the unperturbed conditions
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FIG. 12. SGM conductance correction for a zigzag GNR of
width WL = 599a0, as a function of the tip-potential strength, when
a tip with d = 20a0 is placed on the axis of the strip, for three cases
where the unperturbed conductance is in the first (blue solid line),
second (red solid line), and third (purple solid line) plateau (points
R1, R2, and R3 of Fig. 11, respectively).

defined by the points R1, R2, and R3 of Fig. 11 (top, middle,
and bottom panels, respectively) when the tip is placed at the
center of the strip (same color convention as in Fig. 12), at
y = W/4 (brown) and at y = W/8 (green). Remarkable fluc-
tuations appear when the tip approaches the edges, an effect
already noticed in the numerical simulations of Ref. [25].
Similar features can be observed if the tip is kept on the axis
of the strip, while its extent d is increased. For d = 60a0

the perfect conductance is lost for uT � 0.075t, and strong
oscillations set in afterwards (not shown). These results are
consistent with the finding of Ref. [73] evidencing that even
a smooth potential, if it is strong enough to create a local p-n
junction, leads to considerable scattering in a zigzag GNR,
since both valleys are connected by the edge state.

The perturbative approach to the SGM response developed
in Sec. IV is difficult to generalize to zigzag edges, due
to peculiarities of the GNR spectrum. The existence of flat
quasidegenerate bands prevents us from performing the en-
ergy integrations as in Eqs. (C1) (upon which the perturbative
approach is based), since it is not correct to restrict the energy
interval of integration to that where ε belongs. Moreover, the
finite size of the zigzag Brillouin zone cannot be represented
by the Dirac equation, as this continuous description does not
account for the differences that arise according to the parity
of the number of atoms, M, across the transverse direction,
i.e., the contrast between GNRs having the longitudinal axis
of symmetry (zigzag configuration, even M) and without it
(antizigzag configuration, odd M) [73].

The tight-binding model allows one to obtain the form
of the edge-state wave functions [40,48,74–76], and thus the
intervalley tip potential matrix element. Proceeding as in
Ref. [73] by restricting the Hilbert space to the lowest |ε|
states permits to understand the observed dependence of the
SGM response on the tip position or strength, as well as the
relevance of the parity of M. The dependence on the parity of
the number of atoms across the transverse direction appears
in the SGM results of zigzag GNRs. The uT dependence of
the conductance correction at different points of the transverse

0 0.05 0.1 0.15

−2

−1

0

uT/t

δG
/G

0

−2

−1

0

δG
/
G

0

−1

0

δG
/
G

0

FIG. 13. SGM conductance correction for a zigzag GNR of
width WL = 599a0, as a function of the tip-potential strength, when
a tip with d = 20a0 is placed at the center of the strip (same color
convention as in Fig. 12), at y = W/4 (brown) and at y = W/8
(green). Top, middle, and bottom panels correspond, respectively, to
the three unperturbed conditions defined by the points R1, R2, and R3

defined in Fig. 11.

cross section for WL = 598a0 (not shown) presents qualita-
tive differences with respect to that of WL = 599a0 shown in
Fig. 13. And related departures appear when d is varied for
two strip widths corresponding to different parities.

The SGM of a GNC defined on a zigzag GNR exhibits
similar features as in the case of armchair edges. In Fig. 14 we
present the uT dependence of the conductance correction for a
tip with d = 20a0 placed at the center of the constriction for
the unperturbed conditions defined by the points Ti indicated
in Fig. 11. Similarly to the results of Fig. 7, the conductance
corrections present an initial uT dependence which is approx-
imately linear for most of the unperturbed conditions (i.e.,
points T1, T3, T4, and T6), turning into a quadratic one for the
conditions corresponding to a conductance maximum (point
T2) or an approximate conductance plateau (point T5).

The SGM scan of Fig. 15 is similar to that of Fig. 8 (up
to the π/2 rotation). The spatial feature of two local minima
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FIG. 14. SGM conductance correction for a GNC defined in a
zigzag GNR with WC = 199a0 and C = 25 nm as a function of the
tip strength, for a tip of width d = 20a0 placed at the center of the
constriction. The different solid lines correspond to the unperturbed
conditions characterized by the points Ti of the same color in Fig. 11.
Inset: Detail of the small uT region for the conditions defined by the
points Ti, with i = 1, 2, 3 characterizing a peak of the unperturbed
conductance.
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FIG. 15. SGM scan for a GNC defined in a zigzag GNR, with
WL = 599a0, WC = 199a0, and C = 25 nm (white dashed lines), for
the unperturbed condition corresponding to the point T4 in Fig. 11.
The tip potential strength is uT = 0.002t, while the tip extent is d =
20a0 (d = 100a0) for the upper (lower) panel.

close to the edges in the narrowest part of the GNC appearing
for small tips (d = 20a0, upper panel), is blurred for larger tip
strengths (d = 100a0, lower panel). There are no oscillations
of the SGM response close to the edges as in the case of
GNRs, since the GNC effectively breaks the perfectly con-
ducting channel.

VIII. CONCLUSIONS

We have investigated transport in graphene nanoribbons
under the influence of the potential of an SGM tip. We have
extended the perturbative theory for the SGM response in
the regime of noninvasive tips to the case of graphene, and
we have demonstrated numerically the validity of the results in
the limit of weak tips. On the conductance plateaus observed
in metallic armchair ribbons, the tip-induced conductance
correction is of second order in the tip strength, and always
negative. A particular situation occurs in the zero-transverse-
energy mode, where the second-order correction vanishes,
leading to nearly perfect transmission. A data collapse appears
when the conductance correction is plotted as a particular
combination of the tip strength and size, indicating that a small
and strong tip leads to the same lowest-order correction as a
larger and correspondingly weaker tip.

For the regime of stronger tips, we have found that the
conductance contributions from channels above the lowest
one exhibit a revival to full transmission at tip strengths that
decrease with the tip size. These conductance resonances are
interpreted in terms of confined states under the tip potential.

The theory has been applied to constrictions defined in a
nanoribbon. In this case, the conductance plateaus are typ-
ically lost, and the perturbation approach predicts, for the
regime of noninvasive tips, the dominance of a conductance
correction that is linear in tip strength. Numerical results
confirm such a conclusion, and a quadratic dependence is
obtained in the faint surviving plateaus, as well as when the
unperturbed condition corresponds to a maximum of the con-
ductance.

Numerical studies of the conductance corrections as a
function of tip position yield spatial features when the tip
is placed at the narrowest part of the constriction with local
maxima close to the edges. Such a behavior is related to
a concentration of the unperturbed PLDOS at those points.
Nevertheless, the current density does not exhibit a related
behavior.

Zigzag nanoribbons present a similar SGM response as in
the armchair case, with quadratic conductance corrections,
except when the tip potential close to the borders is strong
enough to create local n-p junctions and destroy the per-
fect conductance of the chiral edge states. A GNC defined
on a zigzag nanoribbon typically breaks the perfect channel
transmission, and thus the action of the tip is similar to that
observed for armchair edges. This result is important, as it is
for armchair edges that the perturbative approach for nonin-
vasive tips has been developed, moreover since a GNR with
an orientation intermediate between zigzag and armchair has
been shown to effectively behave as having zigzag edges [36].

Several of the previously mentioned theoretical findings
can be experimentally checked in graphene nanostructures,
i.e., the initial linear versus quadratic dependence of the SGM
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correction on the tip-potential strength and its universal scal-
ing, the revival of perfect conductance outside the noninvasive
regime, the spatial features of the SGM scans in nanoconstric-
tions, and the possible destruction of the perfectly conducting
channels.

The extension of our theoretical approach to micrometer
sizes could allow to analyze the results of Ref. [18] and
make the connection with the semiclassical approaches to
electron optics in graphene [77,78], as well as consider the
Ohmic-to-ballistic transition studied in Ref. [72]. Moreover,
the perturbative expansion developed in our work can be
extended to the magnetic field case, in order to address the di-
versity of field-dependent SGM experiments [11,12,15,16,20–
22,68,79]. Other possible generalizations of the theory con-
cern bilayer graphene, where SGM has allowed detection of
localized states in narrow channels [80] and the observation
of electronic jets emanating from a constriction [81], as well
as transition metal dichalcogenide nanostructures [82,83].
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APPENDIX A: LEAD AND SCATTERING STATES FOR AN
ARMCHAIR GNR

In this Appendix we recall the properties of the electronic
eigenstates for an armchair nanoribbon and we define the
scattering states to be used in the scattering approach for the
conductance of a graphene nanostructure connected to semi-
infinite leads of the armchair type. Our focus on the armchair
case stems from the availability of analytical expressions that
can be readily employed in the perturbative treatment of the
SGM response.

Instead of using the standard continuous form of the wave
functions [37,38,42,84], we adopt a mixed description with
a discretization in the direction transverse to the nanoribbon
axis, where each lattice point describes a conventional cell.
This formulation allows to fix the total number of states partic-
ipating in the perturbative expansion developed in this work.
For an armchair nanoribbon directed along the y direction and
with M unit cells along the transverse direction x (see Fig. 1),
we take the eigenstate basis

ψs,ε,a(m, y) = 1√
2π h̄vF

eiskay �s,ε,a(m), (A1a)

�s,ε,a(m) = 1√
M + 1

( |ξ |
ka

)1/2

sin

(
πam

M + 1

)
Zs,ε,a,

(A1b)

with the pseudospinor

Zs,ε,a =
(

(qa − iska)/ξ
1

)
, (A2)

for −∞ < y < ∞, and m = 0, 1, . . . , M + 1. While the ac-
tual width of the nanoribbon is WL = Ma0, the inclusion of
the fictitious sites m = 0 and m = M + 1 where the wave
function vanishes (marked as crosses in Fig. 1) translates into
an effective width W = (M + 1)a0. The quantum numbers
characterizing the basis are the energy ε (−∞ < ε < ∞), the
transverse channel number a (limited by the fact that there
cannot be more than M channels), and the direction s (s = ±1)
of the longitudinal wave vector ska (we choose ka � 0). In
Eq. (A1b) we have defined the transverse wave vector qa =
πa/W − |K| and the scaled energy ξ = ε/h̄vF = λ

√
k2

a + q2
a,

where λ = sgn(ε). The decomposition (A1a) into longitudinal
and transverse components is useful for notation purposes and
in view of the general relationship [85,86]

M+1∑
m=0

�†
s,ε,a(m) σy �s′,ε,a′ (m) = λ s δs,s′ δa,a′ , (A3)

where σy is the usual (second) Pauli matrix.
The orthonormality and completeness conditions for the

eigenbasis (A1) are expressed, respectively, as

M+1∑
m=0

∫ ∞

−∞
dy ψ†

s,ε,a(m, y)ψs′,ε′,a′ (m, y) = δs,s′δa,a′δ(ε − ε′),

(A4a)∫ ∞

−∞
dε

∑
s,a

ψ ( j)∗
s,ε,a(m, y)ψ ( j′ )

s,ε,a(m′, y′) = δ j, j′δm,m′δ(y − y′),

(A4b)

where the indices j and j′ label the pseudospinor components.
Using the relationship (A3) we obtain the electrical current per
unit energy associated with the state (s, ε, a) as

Is,ε,a = evF

M+1∑
m=0

ψ†
s,ε,a(m, y) σy ψs,ε,a(m, y) = λ s

e

2π h̄
.

(A5)

Two different cases can be distinguished among armchair
nanoribbons, depending on whether or not M + 1 is a multiple
of 3. The first case is that of metallic nanoribbons with a
zero-transverse-energy mode for a∗ = 4(M + 1)/3 and ε =
λh̄vFka∗ , which is nondegenerate, while all the other modes
are doubly degenerate [i.e., for ā = 8(M + 1)/3 − a we have
qā = qa]. The second case is that of semiconducting nanorib-
bons with an energy gap around ε = 0, and nondegenerate
modes everywhere in the spectrum.

The scattering approach to quantum transport in graphene
can be developed along similar lines as for the 2DEG of
semiconductor-based heterojunctions [67], from the nanorib-
bon eigenstates (A1), by defining the incoming (−) and
outgoing (+) modes (lead states)

ϕ
(∓)
l,ε,a(m, y) = 1√

2π h̄vF
eisk∓

a y �s,ε,a(m) (A6)

in the semi-infinite leads. We note l = 1 (2) for the lower (up-
per) lead describing y < 0 (y > 0) (cf. Fig. 1). The direction
s of the longitudinal wave vector is defined such that λ s = 1
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for the up movers (ϕ(−)
1,ε,a and ϕ

(+)
2,ε,a) and λ s = −1 for the down

movers (ϕ(−)
2,ε,a and ϕ

(+)
1,ε,a). An infinitesimal imaginary part is

given to ka in order to define the proper time ordering, and
thus we note k∓

a = ka ∓ iλη (with η → 0+).

Once a quantum-coherent scatterer (of linear extension L in
the y direction) is placed at the coordinate origin, the incoming
modes ϕ

(−)
1(2),ε,a give rise to outgoing scattering states, that in

the asymptotic regions are given by

�1,ε,a(m, y) =
{

ϕ
(−)
1,ε,a(m, y) + ∑

b rbaϕ
(+)
1,ε,b(m, y), y < 0∑

b tbaϕ
(+)
2,ε,b(m, y), y > 0,

(A7a)

�2,ε,a(m, y) =
{∑

b t ′
baϕ

(+)
1,ε,b(m, y), y < 0

ϕ
(−)
2,ε,a(m, y) + ∑

b r′
baϕ

(+)
2,ε,b(m, y), y > 0.

(A7b)

The sums are carried over the number of propagating modes, N , which is the dimension of the matrices r (r′) and t (t ′)
characterizing the reflection and transmission amplitudes from lead l = 1 (l = 2). We do not explicitly indicate the energy
dependence of the scattering amplitudes.

The outgoing scattering states constitute an eigenbasis. Therefore, the retarded Green function is a 2 × 2 matrix admitting the
spectral decomposition

G(m, y; m′, y′; ε) =
2∑

l̄=1

∫ ∞

−∞
d ε̄

∑
ā

�l̄,ε̄,ā(m, y)�†
l̄,ε̄,ā

(m′, y′)

ε+ − ε̄
, (A8)

with ε+ = ε + iη. Taking y′ < 0 and y > 0 we consider

M+1∑
m,m′=0

ϕ
(+)†
2,ε,b(m, y) σy G(m, y; m′, y′; ε) σy ϕ

(−)
1,ε,a(m′, y′)

=
M+1∑

m,m′=0

∫ ∞

−∞

d ε̄

ε+ − ε̄
ϕ

(+)†
2,ε,b(m, y) σy

∑
c

{
tbc ϕ

(+)
2,ε̄,b(m, y)

(
ϕ

(−)†
1,ε̄,c(m′, y′) δc,a + r∗

ac ϕ
(+)†
1,ε̄,a(m′, y′)

)
+ (

ϕ
(−)
2,ε̄,c(m, y) δb,c + r′

bc ϕ
(+)
2,ε̄,b(m, y)

)
t ′∗
ac ϕ

(+)†
1,ε̄,a(m′, y′)

}
σy ϕ

(−)
1,ε,a(m′, y′), (A9)

where we have only kept the terms that survive the sums over m and m′. As in Appendix C, we assume that the energy integration
is dominated by the values of ε̄ � ε, and therefore we restrict the integration as to have λ̄ = λ (and therefore s̄ = s). The ε̄ integral
can be done by performing the change of variables from ε̄ to k̄a, or to k̄b, by using ξ̄ = ε̄/h̄vF = λ̄(k̄2

a + q2
a )1/2 = λ̄(k̄2

b + q2
b )1/2

and ξ = ε/h̄vF = λ(k2
a + q2

a )1/2 = λ(k2
b + q2

b )1/2. Implementing the latter change for the first term of the curly bracket and the
former change for the second term, and using Eq. (C1), we can write expression (A9) as

− i

h̄vF
tba

M+1∑
m′=0

ϕ
(−)†
1,ε,a(m′, y′) σy ϕ

(−)
1,ε,a(m′, y′). (A10)

From definition (A6) of the incoming modes and the general relationship (A3) for the case λs = 1, we obtain the Fisher-Lee
relation for graphene [85,86],

tba = 2π i(h̄vF)2
∑
m,m′

ϕ
(+)†
2,ε,b(m, y) σy G(m, y; m′, y′; ε) σy ϕ

(−)
1,ε,a(m′, y′), (A11)

which, together with Eq. (1), gives access to the electron conductance from the knowledge of the Green function, and it is then
used in the numerical and analytical approaches of this work.

APPENDIX B: MATRIX ELEMENTS OF THE TIP POTENTIAL FOR ARMCHAIR GNRS

For an armchair GNR, according to definition (7), the matrix element of the tip potential between two scattering states
impinging from opposite sides with the same energy ε can be written as

U2,1
a,a′ (ε, ε) = 1

2π h̄vF

M+1∑
m=0

∫ ∞

−∞
dy eiλ(ka+ka′ )y UT(ma0, y) �

†
−λ,ε,a(m) �λ,ε,a′ (m), (B1)

where we have used that s′ = −s = −λ. According to Eqs. (A1b) and (A2), we have

�
†
−λ,ε,a(m) �λ,ε,a′ (m) = 1

M + 1

|ξ |
(kaka′ )1/2 sin

(
πam

M + 1

)
sin

(
πa′m
M + 1

)
Z†

−λ,ε,a Zλ,ε,a′ (B2)
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and

Z†
−λ,ε,a Zλ,ε,a′ = 1 + 1

ξ 2
(qa − iλka)(qa′ − iλka′ ). (B3)

In the case of a metallic GNR, for the zero-transverse-energy mode with a∗ = 4(M + 1)/3 and qa∗ = 0, we immediately
see that Z†

−λ,ε,a∗Zλ,ε,a∗ = 0. Therefore, the matrix element U2,1
a∗,a∗ (ε, ε) vanishes independently of the strength and the position

of the tip, and more generally of the features of the perturbing potential, provided that the latter is long ranged [39] (and as a
consequence it does not induce intervalley scattering).

Leaving aside the trivial case of a = a∗ previously discussed, we readily perform the y integral in Eq. (B1). Moreover, trading
the discrete index m by the continuous variable x = ma0, and noticing that for the lowest-transverse-energy modes the product
of the two sines is a rapidly oscillating function of x in comparison with the other terms of the integrand, we can write

U2,1
a,a′ (ε, ε) = δa,a′

4π h̄vF

uT d

W
e2iλkayT

|ξ |
ka

[
1 +

(
qa − iλka

ξ

)2
] ∫ W

0
dx

exp (−2kad
√

1 + (x − xT)2/d2)√
1 + (x − xT)2/d2

. (B4)

For d � W , and leaving aside the cases where the distance from the tip to the boundaries is of the order of d , we can push
the limits of the x integration to ∓∞, obtaining

U2,1
a,a′ (ε, ε) = δa,a′

2π h̄vF

uT d2

W
e2iλkayT

|ξ |
ka

[
1 +

(
qa − iλka

ξ

)2
]

K0(2kad ), (B5)

where K0 is the zero-order modified Bessel function of the second kind.
The case of equal-energy scattering states impinging from the same side can be worked out similarly. For l = 1 we have

U1,1
a,a′ (ε, ε) = 1

2π h̄vF

M+1∑
m=0

∫ ∞

−∞
dy eiλ(ka′−ka )y UT(ma0, y) �

†
λ,ε,a(m) �λ,ε,a′ (m). (B6)

As in the previous case, we take into account that the tip potential is smooth on the scale of the lattice constant, we readily
perform the y integral, and we convert the m sum into an x integral, obtaining

U1,1
a,a′ (ε, ε) = δa,a′

2π h̄vF

uT d

W

|ξ |
ka

∫ W

0
dx

1√
1 + (x − xT)2/d2

. (B7)

Performing the x integral, we have

U1,1
a,a′ (ε, ε) = δa,a′

2π h̄vF

uT d2

W

|ξ |
ka

ln

(√
(W − xT)2/d2 + 1 + (W − xT)/d√

(xT/d )2 + 1 − xT/d

)
. (B8)

APPENDIX C: ENERGY INTEGRATIONS FOR THE SGM CORRECTIONS

In this Appendix we work out a few integrations appearing in the perturbative treatment of the tip potential. We first present
the results:

M+1∑
m=0

∫ ∞

−∞

d ε̄

ε+ − ε̄
ϕ

(+)†
2,ε,b(m, y) σy ϕ

(+)
2,ε̄,b̄

(m, y) f1(ε, ε̄) = − i

h̄vF
δb,b̄ f1(ε, ε̄), (C1a)

M+1∑
m′=0

∫ ∞

−∞

d ε̄

ε+ − ε̄
ϕ

(−)†
1,ε̄,ā(m′, y′) σy ϕ

(−)
1,ε,a(m′, y′) f2(ε, ε̄) = − i

h̄vF
δa,ā f2(ε, ε̄), (C1b)

M+1∑
m=0

∫ ∞

−∞

d ε̄

ε+ − ε̄
ϕ

(+)†
2,ε,b(m, y) σy ϕ

(−)
2,ε̄,b̄

(m, y) f3(ε, ε̄) = 0, (C1c)

M+1∑
m′=0

∫ ∞

−∞

d ε̄

ε+ − ε̄
ϕ

(+)†
1,ε̄,ā(m′, y′) σy ϕ

(−)
1,ε,a(m′, y′) f4(ε, ε̄) = 0, (C1d)

for y > 0 and y′ < 0, while fi(ε, ε̄) (with i = 1, . . . , 4) are arbitrary functions assumed to have a smooth dependence on ε

and ε̄.
According to definition (A6), in the integration of Eq. (C1a) we have λ s = λ̄ s̄ = 1. The sum over m translates into the

restriction b = b̄. Since the energy integration is dominated by the values of ε̄ � ε, we can restrict the integration as to have
λ̄ = λ (and therefore s̄ = s). Performing the change of variables from ε̄ to k̄b such that ξ̄ = ε̄/h̄vF = λ̄(k̄2

b + q2
b )1/2, the left-hand
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kb

ε λs = 1

λs = −1

Re[k̄b]

Im[k̄b] Γ+

kb + iη

Γ−

kb − iη

FIG. 16. Left: Dispersion relation of the lowest-energy lead states for a metallic armchair GNR showing the up movers (λ s = 1) in green
and the down movers (λ s = −1) in orange. The grey dashed horizontal lines of constant energy ε determine the allowed longitudinal wave
vectors kb of the propagating modes. Right: Contours in the complex k̄b plane for the integration of Eqs. (C2) and (C3). For the integration
of Eq. (C2) the upper (lower) contour �+ (�−) should be used for the case λ = s = 1 (λ = s = −1). The opposite choice is required for the
integration of Eq. (C3).

side of Eq. (C1a) can be written as

− i δb,b̄λ

4π h̄vF

∫ ∞

0
dk̄b

(
k̄b

kb

)1/2 ∣∣∣∣ξξ̄
∣∣∣∣
1/2(qb − iskb

ξ
− qb + isk̄b

ξ̄

)(√
k̄2

b + q2
b +

√
k2

b + q2
b

)
× 1

k̄b − (kb + iλη)

1

k̄b + (kb + iλη)
eis(k̄(+)

b −k(−)
b )y f1(ε, ε̄). (C2)

The integral can be done by contour integration in the complex k̄b plane. In the case λ = s = 1 (λ = s = −1) the contour should
be closed on the upper (lower) half plane with positive (negative) values of Im{k̄b} in order to have vanishing contributions from
the vertical and quarter-circle segments for large values of y (see Fig. 16). Such contours leave aside the other poles at k̄b = ±iqb,
as well as the branch cuts associated with the square root. Therefore, the contour integral is determined by the pole at kb ± iη,
and we readily recover the result (C1a). The integral of Eq. (C1b), where we also have λ s = λ̄ s̄ = 1, follows along the same
lines of the previous case.

In the integrand of Eq. (C1c) we have λs = −λ̄s̄ = 1 and the sum over m′ leads to the condition b = b̄. Restricting the interval
of the energy integration such that λ̄ = λ (and therefore s̄ = −s) and performing the same change of variables specified above,
the left-hand side of Eq. (C1c) can be written as

i δb,b̄λ

4π h̄vF

∫ ∞

0
dk̄b

(
k̄b

kb

)1/2 ∣∣∣∣ξξ̄
∣∣∣∣
1/2(qb + iskb

ξ
− qb + isk̄b

ξ̄

)(√
k̄2

b + q2
b +

√
k2

b + q2
b

)
× 1

k̄b − (kb + iλη)

1

k̄b + (kb + iλη)
e−is(k̄(−)

b +k(−)
b )y f3(ε, ε̄). (C3)

For the case λ = s = 1 (λ = s = −1) the contour should be closed on the lower (upper) half plane with negative (positive) values
of Im{k̄b} in order to have vanishing contributions from the vertical and quarter-circle segments (see Fig. 16), and the absence
of poles inside the contour results in a vanishing integral, as stated in Eq. (C1c). The integral of Eq. (C1d), where we also have
λs = −λ̄s̄ = 1, follows along the same lines of the previous case.

We continue with the demonstration of an important identity concerning the zero-transverse-energy mode of the metallic
armchair GNR: ∫ ∞

−∞

d ε̄

ε+ − ε̄
U1,1

a∗,a∗ (ε, ε̄) U1,1
a∗,a∗ (ε̄, ε) = −iπ

[
U1,1

a∗,a∗ (ε, ε)
]2

. (C4)

Concentrating on the ε̄-dependent terms of the integrand above, we need to evaluate∫ ∞

−∞

d ε̄

ε+ − ε̄
�1,ε̄,a∗ (m, y) �

†
1,ε̄,a∗ (m′, y′) = 1

π h̄vF

1

M + 1
sin

(
πa∗m

M + 1

)
sin

(
πa∗m′

M + 1

) ∫ ∞

−∞

d ε̄

ε+ − ε̄
eiλ̄k̄a∗ (y−y′ ). (C5)

We note ε̄ = h̄vFλ̄k̄a∗ and ε = h̄vFλka∗ . The above ε̄ integral can be readily done by contour integral in the complex k̄a∗ plane,
and thus∫ ∞

−∞

d ε̄

ε+ − ε̄
U1,1

a∗,a∗ (ε, ε̄) U1,1
a∗,a∗ (ε̄, ε) = − 2i

h̄vF

1

M + 1

M+1∑
m=0

M+1∑
m′=0

sin

(
πa∗m

M + 1

)
sin

(
πa∗m′

M + 1

) ∫ ∞

−∞
dy

∫ ∞

−∞
dy′

× θ (y − y′) �
†
1,ε,a∗ (m, y) UT(ma0, y) eiλka∗ (y−y′ ) UT(m′a0, y′) �1,ε,a∗ (m′, y′), (C6)
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where θ is the Heaviside step function. Since the only (y, y′) dependence of the integrand is that of UT(ma0, y)UT(m′a0, y), it is
easy to see that the (y, y′) integrals can be taken as unrestricted, trading θ (y − y′) by a factor of 1/2. Therefore, Eq. (C6) can be
expressed as the product of two matrix elements of the tip potential, and we recover the result (C4), implying that the principal
part of the integral vanishes.

The result (C4) can be generalized to the case of n − 1 intermediate energy integrations, leading to∫ ∞

−∞

d ε̄2

ε+ − ε̄2

∫ ∞

−∞

d ε̄3

ε+ − ε̄3
· · ·

∫ ∞

−∞

d ε̄n

ε+ − ε̄n
U1,1

a∗,a∗ (ε, ε̄2) U1,1
a∗,a∗ (ε̄2, ε̄3) · · · U1,1

a∗,a∗ (ε̄n, ε) = [−iπ ]n−1
[
U1,1

a∗,a∗ (ε, ε)
]n

. (C7)

Such a result can be obtained by expressing the matrix elements in terms of the corresponding wave functions, and then
performing the energy integrations independently, which yields a factor of [−2π i]n−1 and the constraint θ (y1 − y2) θ (y2 −
y3) · · · θ (yn−1 − yn). As before, the only (y1, y2, . . . , yn) dependence of the integrand is contained in the tip potentials UT, and
therefore the (y1, y2, . . . , yn) integral can be taken as unrestricted by trading the Heaviside step function by a factor of 1/2n,
which results in the matrix element U1,1

a∗,a∗ (ε, ε) to the nth power.
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