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Current-driven collective dynamics of non-Hermitian edge vibrations
in armchair graphene nanoribbons
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We study non-Hermitian collective dynamics of spatially separated edge carbon dimer vibrations in armchair
graphene nanoribbons, mediated by coherent and dissipative coupling to nonequilibrium electron transport.
We show that the indirect coupling between two dimers depends crucially on gating and source-drain bias.
In particular, we analyze the competition between two distinctly different energy transfer mechanism from
nonequilibrium electrons to vibrations. One is the deterministic work done by nonconservative current-induced
force, and the other is stochastic Joule heating. We find that the effect of the former can be effectively tuned
electrically through gating and bias. Our work suggests that armchair graphene nanoribbons could serve as
promising candidates in the experimental search for signatures of nonconservative current-induced forces in
nanoconductors, which remains elusive despite intense theoretical study.
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I. INTRODUCTION

Electron-phonon interaction (EPI) is ubiquitous in solid
state and molecular systems and is responsible for many
intriguing physics, from Cooper pair formation in supercon-
ductivity to Joule heating in various devices. Quantitative
understanding of EPI is thus of vital importance from both
fundamental and application points of view. Theoretical
modeling of EPI normally treats different phonon modes in-
dependently within the harmonic approximation, e.g., in the
calculation of electron-phonon scattering processes [1].

In fact, even in the harmonic approximation, simultaneous
coupling to the electronic system may generate indirect cou-
pling among different, especially degenerate, phonon modes.
On the one hand, taking into account this indirect cou-
pling mediated by electrons, it has been shown that under
nonequilibrium conditions with electrical current, determin-
istic work can be done from electrons to phonons through
nonconservative current-induced forces (CIFs) [2]. Moreover,
an effective magnetic field emerges, which originates from
the Berry phase of nonequilibrium electrons [3]. The non-
conservative CIFs offer a novel energy transfer mechanism
through deterministic work from electron to phonon subsys-
tem, distinctly different from stochastic Joule heating. Several
interesting predictions have been put forward in the litera-
ture. Dundas et al . illustrated using a tight-binding model the
ability of nonconservative CIFs to perform work and drive
an atomic waterwheel or motor [2]. Bustos-Marún et al.
analyzed the efficiency of current-driven motors [4]. One
of the authors has studied the interplay of stochastic Joule
heating and deterministic work performed by nonconservative
forces [5]. Despite these theoretical predictions, experimental
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observation of nonconservative nature of CIFs remains elu-
sive. Only indirect evidence was inferred in the breaking of
Au and Pt atomic chains [6,7]. Thus, it is desirable to explore
more systems where the nonconservative CIFs may play dom-
inant roles. In order for the nonconservative force to perform
work, there should be at least two vibrational modes such that
an enclosed loop in mode space can be formed. Moreover,
in order for the CIFs to play dominant roles, the two modes
should be nearly degenerate and isolated from the phonon
environment.

On the other hand, EPI offers an interesting mechanism
to couple otherwise spectrally independent or spatially sepa-
rated phonon modes through nonequilibrium electrons which
serve as a “bus”. This results in an effective non-Hermitian
phonon system which is tunable electrically. It has been
shown that in the presence of time reversal or space inversion
symmetry breaking, phonons may acquire nonzero angular
momentum due to electron-mediated coupling [3,8–13]. Sim-
ilar mechanism has proved useful in hybrid quantum devices,
including electron or phonon mediated magnon coupling in
spin Seebeck effect [14], cavity-mediated vibrational coupling
in optomechanical systems [15], spin dynamics [16], etc.

In this work, we choose graphene nanoribbons (GNRs) to
further explore these aspects of EPI. Nanostructured graphene
has received considerable attention in the past due to its
potential electronic and optoelectronic applications in future
nanoscale devices [17]. Recent experimental progress has
made it possible to fabricate atomically precise nanoribbon
structures from a chemical bottom-up approach [18,19]. The
ability to tune electron chemical potential through gating in
GNRs offers great opportunities to explore electron-mediated
vibrational dynamics under nonequilibrium situations. Un-
like graphene, GNRs have energy gaps which can be
tuned by many means, such as changing ribbon width
and edge properties like passivation [20–25], or by apply-
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ing transverse electric field [26,27]. This gap, absent in
graphene, results from quantum confinement in the width
direction. Previous research has shown that GNRs host spe-
cific vibration modes in addition to those modes in pristine
graphene [28–35].

We study current-driven non-Hermitian vibrational dynam-
ics of carbon dimers at the boundaries of armchair GNRs.
The nearly degenerate, spatially separated dimer vibrations
are coupled through electrical current. Their non-Hermitian
dynamics can be tuned by changing the average Fermi level
(EF ) and the applied voltage bias (V ). We find regions
of the two-dimensional parameter space (EF ,V ) where the
nonconservative CIFs are dominant, which results in dras-
tic increase of the total energy in the dimer vibrations. The
tunability of GNRs makes them better candidates for ex-
perimental search of signatures of nonconservative CIFs,
which have remained elusive despite past intense theoretical
study [2,3,36–41].

II. THEORY

A. General theory

Our theory has been described in detail in previous
works [37,42]. Here, for completeness, we give an outline of
the main idea. We start from the standard two-probe trans-
port setup where we divide the whole system into left and
right electrodes and the central device. In each part, there
are electron and phonon degrees of freedom. We only in-
clude EPI in the central device region. We are interested in
the vibrational dynamics in the central region. We follow the
open system approach and integrate out the nonequilibrium
electron subsystem (including both electrodes and central de-
vice parts) and phonons in the electrodes. This procedure
results in a semiclassical generalized Langevin equation de-
scribing the central vibrational modes, hereafter denoted as
system

ü = −K · u −
∫

dt ′�r (t − t ′) · u(t ′) + f (t ). (1)

Here, u is the displacement vector of the system, K is the
dynamical matrix in the harmonic approximation. We have
ignored anharmonic effect in this work. The last two terms on
the right-hand side are contributions from the environment,
representing the deterministic and the fluctuating forces, re-
spectively. The corresponding effective dynamical matrix K̃
after including the influence of the environment is written in
the frequency domain as

K̃[ω] = K + �r[ω], (2)

where �r[ω] is the retarded self-energy in the nonequilibrium
Green’s function theory due to coupling to the environment.
Here, we concentrate on the coupling to nonequilibrium
electronic environment and ignore the coupling to phononic
environment. This is applicable to the dimer vibrations in
armchair GNRs. The fluctuating force f is characterized by
the correlation function, which only depends on the time
difference. This allows us to make the Fourier transform and

write it in the frequency domain

�̂kl [ω] =
∫

dt〈 fk (t ) fl (0)〉eiωt

= −π�kl (ω) coth

(
h̄ω

2kBT

)
− π

∑
αβ

�
αβ

kl (ω)

×
[

coth

(
h̄ω − (μα − μβ )

2kBT

)
− coth

(
h̄ω

2kBT

)]
,

(3)

with the electron-vibration coupling weighted electron-hole
pair density of states

�
αβ

kl (ω) = 2
∫

dε1

2π

∫
dε2

2π
δ(h̄ω − ε1 + ε2)

× Tr[MkAα (ε1)MlAβ (ε2)]

× [nF (ε1 − μα ) − nF (ε2 − μβ )]. (4)

Here, Mk/l is the electron-vibration coupling matrix for mode
k/l , Aα is the electron spectral function contributed by scat-
tering states from electrode α, nF (ε) = [exp(ε/kBT ) + 1]−1

is the Fermi-Dirac distribution, and μα , T are the chemical
potential and temperature, respectively.

Excitation of the vibrational modes can be studied by
solving the generalized Langevin equation in the frequency
domain. The displacement correlation function is written as

〈uuT 〉(ω) = Dr (ω)�̂(ω)Da(ω), (5)

where the retarded vibration Green’s function is

Dr (ω) = 1

(ω + iδ)2I − K̃(ω)
, (6)

and

Da = (Dr )†. (7)

The energy stored in the vibrational system can then be ob-
tained from

E =
∫

dω

2π
ω2Tr[〈uuT 〉(ω)]. (8)

This setup has been used to study current-driven vibra-
tional dynamics in atomic and molecular junctions [42],
nanoelectromechanical systems [36,43], and molecular dy-
namics on metal surfaces [39]. It has been found that the
real and imaginary parts of �r can be divided into symmetric
and antisymmetric parts, respectively. The symmetric real part
describes renormalization of the dynamical matrix, and the
antisymmetric real part corresponds to the nonconservative
CIF. The symmetric imaginary part is the electronic friction,
and the corresponding antisymmetric part behaves as an ef-
fective Lorentz force due to Berry phase of nonequilibrium
electrons [3,38,43,44]. While both the renormalization and
electronic friction are present in equilibrium, the noncon-
servative CIF and effective Lorentz force are nonzero only
in the presence of electrical current. Notably, the noncon-
servative CIF and the electronic friction render the system
non-Hermitian. Finally, we also note that such eigen spectrum
analysis used here serves to find possible candidate systems
where the CIFs play an important role. To perform further
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quantitative analysis, we need to properly take into account
the anharmonic vibrational coupling [45] and possible back
action of the vibrations on electronic transport. These cal-
culations for realistic systems are highly demanding and are
postponed for future work.

B. Eigen mode analysis

We can study the dynamics and heating of the new
eigen modes after including indirect coupling between carbon
dimers through electrical current. We split �̂(ω) into two
terms

�̂(ω) = �̂0(ω) + ��̂(ω) (9)

with �̂0(ω) representing the equilibrium part and 
�̂(ω) the
Joule heating part


�̂(ω) = −π
∑
αβ

�αβ (ω)

×
[

coth

(
h̄ω − (μα − μβ )

2kBT

)
− coth

(
h̄ω

2kBT

)]
.

(10)

When the broadening of eigen mode i is small, the mode
energy can be written as

Ei = h̄ωi

2
coth

(
h̄ωi

2kBT

)
+ h̄
�̂ii(ωi )

2ηi

≡
(

Ni + 1

2

)
h̄ωi. (11)

We get an effective phonon occupation number

Ni = nB(ωi, T ) + 
�̂ii(ωi )

2ωiηi
, (12)

where ηi = −2 Im[�i], ωi = Re[�i] with �i the complex
eigen value of mode i, and nB(ω, T ) = [exp(h̄ω/kBT ) − 1]−1

is the Bose-Einstein distribution.
Now we focus on the calculation of 
�̂ii(ωi ). In order to

elucidate the detail, we derive the displacement correlation
function in the eigen basis. Because K̃ is not Hermitian, it
has two spectral decompositions

K̃|wi〉 = λi|wi〉, (13)

〈vi|K̃ = λi〈vi| ⇐⇒ K̃†|vi〉 = λ∗
i |vi〉, (14)

where λi = �2
i is ith eigen value of K̃, and |vi〉 and |wi〉 are

ith left and right eigen vectors respectively. Note that |vi〉 and
|wi〉 correspond to the same eigen value and are biorthogonal:

〈vi|w j〉 = δi j .

The phonon retarded Green’s function Dr (ω) is written in
the eigen basis as

Dr (ω) =
∑

i j

|wi〉〈vi| 1

ω2I − K̃
|w j〉〈v j |

=
∑

i

|wi〉〈vi|
ω2 − �2

i

. (15)

Similarly, the phonon advanced Green’s function Da(ω) is

Da(ω) =
∑

i

|vi〉〈wi|
ω2 − �∗2

i

. (16)

The displacement correlation function is

〈uuT 〉(ω) = Dr (ω)�̂(ω)Da(ω)

=
∑

i j

|wi〉〈vi|�̂(ω)|v j〉〈w j |(
ω2 − �2

i

)(
ω2 − �∗2

j

) . (17)

The ith diagonal element is then

〈vi|uuT |vi〉 = 〈vi|�̂(ω)|vi〉(
ω2 − �2

i

)(
ω2 − �∗2

i

) . (18)

This suggests that we should calculate 
�̂ii(ωi ) by


�̂ii(ωi ) = 〈vi|
�̂(ωi)|vi〉. (19)

Finally, utilizing the real parts of time-dependent eigen
vectors, we can construct the eigen orbitals, which typically
enclose an elliptical area. Use r to denote a representative
point in such an orbital. Via r and its time derivative v =
dr/dt , we can define an angular momentum L as

L = r × v = ABω sin 
� k̂. (20)

Here A, B and 
� are the amplitudes and phase difference
of the components of the complex eigen vector. ω is the (real
part of the) frequency of this eigen mode. k̂ is the unit vector
perpendicular to the plane spanned by this eigen orbital. Note
that the angular momentum defined above has the dimension
of frequency because we have chosen normalized eigen vector
(A2 + B2 = 1) during the calculation. We find that the magni-
tude (up to a factor 2/ω) and sign of L determine the shape
and the orbital direction of the mode respectively (see the
Appendix).

III. RESULTS

A. GNR structures

Band gap of armchair GNRs decays with width oscilla-
torily in a period of three [46]. We choose a width with
a band gap of ≈0.13 eV. The boundary carbon dimers are
hydrogenated forming sp2 hybridization (Fig. 1). The status of
hydrogenation in experimentally fabricated ribbons is difficult
to measure and largely unknown. Previous study has sug-
gested using inelastic electron tunneling spectroscopy (IETS)
to identify possible dehydrogenated armchair edge vibrations,
whose frequencies spill out of the bulk phonon band due to
carbon bond contraction [Fig. 2(a), black circle]. These dimer
vibrations do not couple to the rest vibrational modes in the
harmonic approximation and have a small vibrational damp-
ing. This results in an extra IETS signal at the corresponding
bias compared to the perfect hydrogenated structure [47].
The electron transmission spectrum [Fig. 1(c)] is also slightly
modified due to the presence of dehydrogenated dimers.

Here, we consider only minimum model systems which
have two such dimer vibrations and study in details their
collective non-Hermitian dynamics due to simultaneous cou-
pling to electron transport. We have checked its validity by
comparing the results obtained including all the vibrational
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FIG. 1. [(a), (b)] Armchair GNRs with two dehydrogenated car-
bon dimers at the opposite (A) or same (B) side. The shadow areas on
both sides are the electrodes. The vibration modes within red boxes
are calculated. (c) Electron transmission spectra of structures A
and B and perfect GNR (fully hydrogenated). Different broadenings
(10−1 and 10−4 eV) are added to the electrode self-energy to simu-
late the coupling to metal electrodes. Larger broadening (10−1 eV)
smooths out the steplike transmission spectrum and is used in the
following calculations.

modes in both equilibrium and nonequilibrium situations. The
typical structures we investigate in this work are shown in
Figs. 1(a) and 1(b). Other types of relative position of the
dimers at the edges are also studied, and similar results are
found. Structures A and B have two dimers at the opposite
and same sides of the ribbon, respectively. The direct atomic
coupling between the two dimers in structure B is stronger due
to their closer spatial distance, resulting in larger frequency
splitting of the two vibrational modes. The corresponding
atomic motion is depicted in Figs. 2(b) and 2(c) for structure
A and Figs. 2(d) and 2(e) for structure B. The two dimers in
A are largely decoupled, while those in B couple together and
form a pair of in-phase and out-of-phase vibrational modes.

The calculations are performed using density func-
tional theory calculation combined with nonequilibrium
Green’s function method as implemented in SIESTA-
TranSIESTA [48–51]. We use the PBE version of the
generalized gradient approximation [52] for the exchange-
correlation functional, single-ζ polarization for the basis sets
of carbon and hydrogen atoms with an energy cutoff of 200 Ry
for the real space grid. All the structures are relaxed until the

FIG. 2. (a) Vibrational mode spectra of structures A and B for
atoms enclosed by red boxes in Figs. 1(a) and 1(b). Modes with
frequency >300 meV are C-H vibrations. Those with frequencies
at ≈0.24 eV are dimer vibrations at the edges, indicated by the black
circle. [(b), (c)] The two dimer vibrations of structure A. The two
modes are almost independent of each other. [(d), (e)] The two dimer
vibrations of structure B. Both involve motion of the two dimers.
Mode in panel (d) is out of phase, while that in panel (e) is in phase.
The eigen frequencies shown in panels (b)–(e) are obtained without
including their coupling to electrons.

force on each atom in the device region is less than 0.02 eV/Å.
This set of parameters has been used in previous works and
shows reasonable balance between computation accuracy and
cost [47]. The vibrational spectra and the electron-vibration
coupling matrix are calculated for atoms in the red boxes in
Figs. 1(a) and 1(b) using the Inelastica toolkit [53].

B. Coupled carbon dimer dynamics

We have calculated the total energy E = ∑
i h̄ωiNi, exclud-

ing zero-point energy, stored in the two new eigen modes
when including CIFs as a function of the equilibrium Fermi
level EF and the voltage bias V , as is shown in Fig. 3. Before
discussing the main results, we note that when the voltage
bias V is below the vibrational energy (|eV | < h̄ω), there is
no vibrational excitation. All the results in Fig. 3 show this
threshold behavior. We also note that since single-molecule
Raman spectroscopy can be performed on current-carrying
molecular junctions, the effective phonon number deduced
from energy can in principle be measured by optical
spectroscopy.

By tuning EF and V , we can locate the parameter space
where the nonconservative CIF becomes dominant. This cor-
responds to bright regions in Fig. 3(a), where the total energy
stored in these two modes is orders of magnitude higher than
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FIG. 3. Contour plot of total energy stored in the two vibrational
modes as a function of voltage bias V and average Fermi energy
EF for structures A and B at steady state. [(a), (b)] Structure A
with and without nonconservative and effective Lorentz forces. [(c),
(d)] Structure B with and without nonconservative and effective
Lorentz forces. Note the different color scale between panels (a) and
(b)–(d). The effect of nonconservative CIFs is reflected in the order-
of-magnitude increase of the total energy at several regions of the
parameter space in panel (a).

the rest region. In these cases, the dominant energy transfer
mechanism is the deterministic work done by nonconservative
CIF, instead of the stochastic Joule heating. For this to happen,
there has to be at least two vibrational modes involved. From
this point of view, it is a collective behavior, where the energy
of the two vibrational modes is much higher than what one
single mode would have in the same situation, viz. 1 + 1 
 2.
For structure B, no such regions exist, indicating that non-
conservative CIF is negligible. The direct atomic coupling
of the two dimers in structure B introduces larger frequency
splitting and renders the nonconservative CIF less effective,
although the CIF in structure B is comparable in magnitude
to that in structure A (see Figs. 4 and 5). In the following, we
analyze in more details the dynamics of the vibrational modes
at representative Fermi level and bias voltage.

1. Voltage bias dependence at fixed EF

Figures 4 and 5 show the bias dependence of the self-
energy �r separated into four parts, corresponding to four
types of forces, at EF = −0.3 eV for the two structures, re-
spectively. The nonconservative and effective Lorentz force
are antisymmetric in the mode indices and only the off-
diagonal elements are nonzero. They depend approximately
linearly on the bias in the range [−0.5, 0.5] V, consistent with
prediction in the wide band limit [42]. Comparing these two
structures, we find that the magnitude of these four types of
forces are similar for both structures, although the depen-
dence of friction and renormalization on the bias is more
complicated.

For structure A, the dependence of various eigen mode
characteristics on the bias is shown in Fig. 6. Real parts
of the complex eigen frequencies are shown in Fig. 6(a).

FIG. 4. The four parts of the self-energy �r as a function of bias
for structure A at EF = −0.3 eV. RN, NC, FR, and BP correspond
to the real symmetric, real antisymmetric, imaginary symmetric, and
imaginary antisymmetric parts of �r , representing renormalization
of the dynamical matrix, nonconservative CIF, electronic friction,
and effective Lorentz force due to Berry phase of electrons, re-
spectively. The mode indices 1 and 2 correspond to the high- and
low-frequency modes in Fig. 2, respectively.

The frequency splitting is on the order of 10−2 meV. This
indicates that the EPI is rather weak. However, since the
original frequency splitting without coupling to electrons is
also small (≈0.1 meV), the CIFs are quite effective to influ-
ence the dimer vibrations. The inverse Q factor, defined as
1/Qi = ηi/ωi, is shown in Fig. 6(b). For one eigen mode (red
line) 1/Q decreases to zero when bias exceeds some threshold
value, ≈0.5 and −0.45 V at positive and negative polari-
ties. The corresponding effective phonon number N grows
sharply when the bias approaches the threshold [Fig. 6(c)].
The connection between 1/Q and N is rooted in the friction
coefficient ηi, which enters the denominator in Eq. [12]. When
1/Q approaches zero, the effective phonon number diverges,
indicating a vibrational instability and breakdown of harmonic
approximation.

Figure 6(d) shows the dependence of the angular momen-
tum L of eigen orbitals on the bias. The corresponding eigen

FIG. 5. Similar to Fig. 4 for structure B.
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FIG. 6. Bias dependence of real part of eigen frequency (a), inverse Q factor (b), effective phonon number (c), angular momentum (d),
and the corresponding eigen orbitals (e) for structure A at EF = −0.3 eV. Note that the angular momentum shown in panel (d) is multiplied
by 2/ω to be dimensionless. The resulting quantity 2L/ω is closely related to the shape of eigen orbitals in panel (e); that is, an absolute “1”
corresponds to a circle and “0” to a line (see the Appendix).

orbitals are shown in Fig. 6(e). The sign of L determines
the rotation direction of the eigen orbital and its magnitude
determines the shape, which is confirmed by the results in
Figs. 6(d) and 6(e). For example, with the bias adjusted from
−0.5 to +0.5 V, L of the mode represented by red line changes
sign at ≈ −0.3 V and its magnitude first decreases and then
increases. Correspondingly, the orbital changes the rotation
direction at ≈ −0.3 V and its shape first deforms to a line then
recovers to an ellipse. It is worthy noting that both orbitals fol-
low the clockwise direction with negative angular momentum
at zero bias. This is due to their dissipative coupling through
the off-diagonal electronic friction. As shown, the two modes
exhibit opposite bias dependences and each of them changes
the orbital direction upon increasing bias in the two polarities.

FIG. 7. [(a)–(d)] Similar to Fig. 6 for structure B. Inset of (a):
Eigen orbital at zero bias. Note that the scale in panel (d) is different
from that in Fig. 6(d).

We have checked that change of L is mainly determined by
the phase difference 
� of the two eigen vector components,
which is further determined by the bias-dependent nonconser-
vative CIF. The absolute magnitude AB, on the other hand,
changes little with bias.

Since the nonconservative force has a nonzero curl in the
mode space formed by the two dimers, the orbit that goes in
the “correct” direction can gain energy from the nonconser-
vative force field, which results in deterministic work input
to this mode. This correct direction turns out to be clockwise
in the positive bias polarity and anticlockwise in the negative
polarity. This is the physical reason why one of the modes
(red) is excited much larger than the other one (blue).

Similar results for structure B are shown in Fig. 7. Due
to stronger atomic coupling between the two dimers, effects
of the nonconservative CIF are much weaker. The collective
effect ceases to play any role. The excitation of the two modes

FIG. 8. The four parts of the self-energy �r as a function of
gating EF for structure A at bias V = 0.5 V.
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FIG. 9. Dependence of real part of eigen frequency (a), inverse Q factor (b), effective phonon number (c), angular momentum (d), and the
corresponding eigen orbitals (e) on EF for structure A at bias V = 0.5 V.

is mainly due to stochastic Joule heating, with the magnitude
much smaller than that in structure A. The presence of one
mode has little effect on heating of the other mode, and thus
1 + 1 ≈ 2. Both modes have orbital angular momentum close
to zero, as is shown in Fig. 7(d). The corresponding eigen
orbitals almost collapse to lines [see inset of Fig. 7(a)] and
shows little bias dependence (not shown).

2. EF dependence at fixed voltage bias

Similar analysis can be done by changing EF at fixed V .
For structure A, the results in Fig. 8 show that both the non-
conservative and effective Lorentz force vary approximately
linearly with EF and change sign when passing EF = 0, where
the majority current carriers change from electrons at EF > 0
to holes at EF < 0. The corresponding angular momentum
and orbital shape change with EF similar to their V depen-
dence, as shown in Fig. 9. While for structure B, the effects of
CIFs are again negligible (not shown).

IV. CONCLUSIONS

In summary, we have studied the coupled dynamics of
edge vibrations at armchair GNRs mediated by nonequilib-
rium electron transport. This coupling is tunable electrically
in a two-dimensional space of gate and source-drain bias. The
dimer vibrations we focused on here are localized in real space
and in the vibrational spectrum of the ribbon. This greatly
simplifies our analysis, such that we can concentrate on the
effect of electron bath. We show that armchair GNRs are bet-
ter candidates to explore the effects of CIFs on the vibrational
dynamics than atomic chains or molecular junctions, where
electrostatic gating is difficult to realize.
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APPENDIX: THE ORBITAL SHAPE, ORIENTATION,
AND ANGULAR MOMENTUM

Use r = [r1, r2]T to represent the gate- and bias-dependent
eigen vector, the time-dependent components are

r1(t ) = Ae−iωt ,

r2(t ) = Bei
�e−iωt . (A1)

Here A, B, and 
� are the length and relative phase of the
two components. With time evolution, the orbit encloses an
elliptical area as shown in the main text.

Choose the normalized eigen vector (A2 + B2 = 1) and use
r = |r| to represent the distance from a point in the orbit to the
center; then

r2 = (Re[r1])2 + (Re[r2])2 = 1
2 + α sin(2ωt + β ). (A2)

The maximum and minimum of r2 are 1
2 + α and 1

2 − α re-
spectively. Here, we define

α = 1
2 (1 − F 2)1/2, (A3)

F = 2AB | sin 
�|, (A4)

tan β = A2 + B2 cos 2
�

B2 sin 2
�
. (A5)

We see that the larger the parameter F is, the fatter the orbit
is. In particular, the orbit becomes circular when F = 1 and
collapses to a line when F = 0. We can show that the angular
momentum of the orbital is related to F through F = 2|L|/ω,
with ω the angular frequency of the mode.

The orientation of the orbit is characterized by the angle θ

between the longer axis of the orbit and the x axis. We have

tan θ = B cos
(

� + β

2 − π
4

)
A cos

(
β

2 − π
4

) . (A6)
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