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Electron diffusion induced valley Hall effect and nonlinear galvanodiffusive transport
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Diffusion currents are theoretically examined in two-dimensional Dirac materials, such as those of the
transition metal dichalcogenides (TMD) family. The transversal effects are analogues of the valley Hall (VHE)
and photogalvanic (PGE) transport phenomena in cases when the electron driving force is not an electric field
but a gradient of electron density distribution in the sample. The latter can be created by a finite-sized laser
spot or by the injection of electrons from other materials. We develop the theory of the diffusive VHE effect
assuming the anisotropic electron-short-range-impurity skew scattering. The electron PGE-like transport caused
by higher electron-density derivatives is analyzed assuming the trigonal warping anisotropy of electron valleys
in a TMD monolayer. The nonlinear responses on an electron-density gradient are studied as well. The isotropic
processes of electron scattering off the short-range and Coulomb centers are taken into account in the PGE-like
transport theory.
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I. INTRODUCTION

Hexagonal two-dimensional monolayer structures, in par-
ticular, graphene and transition metal dicholcogenides (TMD)
[1], are under active study nowadays. The research of their
physical properties occurs in two main directions: optical
properties [2,3] and transport phenomena [4–7]. Exceptional
optical properties of TMD based on a specific structure of ex-
citons and exciton-polaritons in TMDs have wide perspectives
in optoelectronics [2].

The transport properties of monolayer TMD materials
also demonstrate specific features due to their unique band
structure [8,9]. TMD monolayers have the hexagonal lattice
structure belonging to the D3h point group producing the two-
valley structure of their Brillouin zone having a strong valence
band spin-orbit splitting. The specific optical interband se-
lection rules, allowing for the driving of the valley degrees
of freedom of the charge carriers producing very specific
transport properties of these materials and the corresponding
research direction called valleytronics [10] in modern litera-
ture have recently arisen.

The transport response of TMD materials under study can
be split phenomenologically by the amplitude E of external
electromagnetic wave into a linear and second order current
density response. The linear transport phenomena, being first
order with respect to E, obey the relation jα = σαβEβ , where
jα are current density components and σαβ are kinetic co-
efficients being the components of generalized conductivity
tensor, and α, β run in-plain coordinates x, y. The most in-
triguing linear transport phenomena in TMDs is the existence
of valley Hall effect (VHE) [11–14]: the transverse current
density rose as a linear response to the in-plane static electric

field E and was determined by the nondiagonal components of
conductivity tensor as σH = σxy = σyx. The specific feature of
VHE is its valley-selective nature: the transverse VHE current
densities flow in opposite directions in different valleys in
such a way that the net transverse current, being summed over
two valleys, vanishes. This is due to the time-reversal symme-
try by which the valleys are coupled. The net VHE current can
be viewed when the time-reversal symmetry is destroyed. The
latter can be done either by the sample illumination by the
circularly polarized electromagnetic field or by the external
magnetic field. The experimental observation of VHE in a
TMD-based transistor structure was made by the first method
[13]. The microscopic mechanisms producing the VHE trans-
port were intensively studied theoretically. Initially, VHE was
predicted in Ref. [11], where the Berry-phase-induced anoma-
lous contribution to the electron velocity was considered as
the underlying microscopic mechanism of VHE [12]. Later
on, the key role of anomalous electron scattering processes
off the impurity potential in the theoretical understanding of
VHE was recognized [15–17].

Recently, a detailed theoretical description for VHE was
developed in Refs. [18,19] considering also the skew and side-
jump electron scattering off the impurities in dirty samples.
The authors considered also different electrons driving mech-
anisms, the standard one, due to the in-plane static electric
field E, and also due to the photon [20] and phonon elec-
tron dragging. It was shown that the dominant microscopic
mechanism of VHE in disordered samples is determined by
the skew-electron scattering off impurities. Later, the theo-
retical description of nonequilibrium VHE, including both
impurity scattering and the interband valley-selective illumi-
nation, was developed [21]. The regime of strong interband
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transitions, in the case of the Berry-phase-induced anomalous
velocity VHE mechanism, was also analyzed [22]. It was
shown that, in these cases, the skew-related electron scatter-
ing gives the dominant contribution to VHE, which made it
possible to explain some observations of the VHE transport
experiment [13].

The other transport phenomenon actively studied in TMD
materials is the nonlinear effect, say, the photogalvanic ef-
fect (PGE) [23–26]. The PGE is the appearance of stationary
(and also uniform in space) current density due to the exter-
nal alternating electromagnetic field with a normal incidence
to the TMD plane and, phenomenologically, can be written
as jα = χαβγ EβE∗

γ . The PGE effect is well known in 3D
semiconductor physics [23,24] and it was well understood
in conventional semiconductors [26–28]. In TMD materials,
PGE may arise both due to the trigonal symmetry of electron
valleys or also due to anomalous velocity (Berry-phase) and
electron-impurity scattering. The PGE in TMD monolayers
also has the valley-selective nature: the PGE current flow in
opposite directions in different valleys [29,30]. Destroying the
time-reversal symmetry produces the nonzero net PGE current
in the sample [29,30].

In all transport effects discussed above, the driving force
was the electric field: it is stationary in the plane field or an
alternative electric field of electromagnetic wave. From the
general point of view [31], any factor, which drives the system
from equilibrium state, may produce the current. Any such a
factor, called generalized force in statistical physics, may be a
scalar, vector or even a tensor. As a vector, a generalized force
may be an electric field, a temperature gradient, and particle
density gradients, whereas a scalar generalized force may be
a temperature difference [32] or particle concentration differ-
ence between different subsystems or their time derivatives.
The tensor generalized force may be constructed from the
second spatial derivatives of the scalar quantities, etc. Besides,
the current can be excited by the higher orders of the vector
forces together with their cross products. A general expression
for currents caused by scalar F , vector Fj , and tensor Fi j

forces is

ji = γ
(0)

i F + γ
(1)

i j ∂ jF + γ
(2)

i j Fj + γ
(3)

i jk FjFk + γ
(4)

i jk Fjk + . . .

Besides, the cross terms due to different forces are possible
in higher orders of generalized forces. The symmetry of the
system restricts the possibility of coefficients γ

(0)
i , γ

(1)
i j , γ

(3)
i jk ,

and γ
(4)

i jk . The quantity γ
(0)

i exists in pyroelectrics, the tensors

γ
(3)

i jk �= 0 or γ
(4)

i jk �= 0 demand the absence of reflection sym-
metry.

In case of vector generalized force, the general expression
for the current density may be written as

ji = αi jFj + βi jkFjFk + . . .

The aim of the present paper is the theoretical description
of VHE and PGE transport phenomena when electrons drive
a vector generalized force given by the nonuniform elec-
tron density distribution in the sample, the particle density
gradient, ∇ · n(r). The latter can be created by the sample
illumination with a finite-in-plane laser spot [13] or by an
injection of electrons from other materials [33]. From the
phenomenological point of view, the diffusive-induced VHE

reads as jα (r) = −eDαβ∇βn(r) with generalized diffusive co-
efficients, Dαβ (e is an electron charge). The VHE will be
given by their nondiagonal elements. The PGE-like current
can be written as a nonlinear response to the density gradient,
jα (r) = χαβγ ∇β∇γ n(r) + ζαβγ ∇βn(r)∇γ n(r).

The paper has the following structure. In the next section,
we derive the nondiagonal elements of Dαβ , considering the
electron-impurity skew scattering as the dominating mecha-
nism. The impurities are considered to be of the short-range
type. The later sections are devoted to the derivation of χαβγ

and ζαβγ tensors. As the microscopic mechanism of diffusive
PGE-like transport, we consider the trigonal warping of the
electron valley dispersion in TMDs; both short-range and
Coulomb impurities are analyzed in that sections.

II. VALLEY HALL EFFECT DUE
TO ELECTRON DIFFUSION

Here we consider the VHE effect due to the electron diffu-
sion based upon the Boltzmann transport equation approach.
We assume that the nonuniform electron density, which can
be excited by the external electromagnetic field (or injected
to the sample), acquires the fast energy relaxation and the
resulting electron density is characterized by the quasiequi-
librium Fermi distribution function with a chemical potential
being the arbitrary function of coordinates. It reads f (r) =
(1 + exp[ε(p) − μ(r)]/T )−1, where ε(p) is an electron dis-
persion in the given valley and μ(r) is an electron chemical
potential. Here and below we measure the temperature in
energy units, taking the Boltzmann factor kB = 1. We assume
that the spatial nonuniformity of the electron distribution
function (and corresponding electron density n(r)) is weak in
comparison with uniform electron density N in the sample,
|n(r) − N | � N . We assume also that uniform distribution
function f0 = (1 + exp[ε(p) − μ0]/T )−1 corresponds to the
uniform electron density value N in the sample. The Boltz-
mann transport equation in general form reads

∂ f

∂t
+ v

∂ f

∂r
+ F

∂ f

∂p
+ Q{ f } = 0, (1)

where v is an electron velocity in a given valley, F is a possible
external field, and Q is an electron-impurity collision integral.
We further analyze the static (∂t f = 0) nonuniform electron
density distribution in the absence of external fields F = 0 in
the sample. The nonuniform electric field will be considered
later on.

The diffusion-like VHE current arises due to the nonuni-
form electron distribution and is determined by the first
order correction f (1)(r) to the electron distribution function,
with respect to gradients, satisfying the following Boltzmann
equation:

v
∂ f (r)

∂r
+ Q{ f (1)(r)} = 0. (2)

Further in this section we derive all expressions for one
given valley. The electron dispersion is assumed in this sec-
tion to have the parabolic form ε(p) = p2/2m, and v = p/m,
respectively. Collision integral Q consists of two terms de-
scribing the isotropic Qs and anisotropic Qa electron-impurity
scattering. The isotropic scattering is approximated by the
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relaxation-time approach Q{ f (1)(r)} = f (1)(r)/τ . For sim-
plicity, we set τ to be independent of the electron energy.
The first order correction to the distribution function can be
also split into symmetric and antisymmetric contributions,
f (1) = f (1)

s + f (1)
a , with respect to the electron momentum.

The VHE current density is expressed via the antisymmetric
part as

jα = e
∫

d2p
(2π h̄)2

vα f (1)
a . (3)

Assuming the anisotropic scattering to be weak, the antisym-
metric contribution to the electron distribution function can
be found by a successive approximation. Thus we have the
following set of equations:

v
∂ f0

∂r
+ f (1)

s

τ
= 0 (4)

for the symmetric part and

f (1)
a

τ
+ Qa{ f (1)

s } = 0 (5)

for the antisymmetric one. Solving these equations, we find

jα (r) = eτ 2
∫

d2p
(2π h̄)2

vαQa{vβ∇β f (r)}. (6)

An asymmetric part of the collision integral responsible for
the skew scattering, Qa, for a TMD monolayer was found in
Ref. [18] and reads

Qa{F (p)} = W0

∑
p′

F (p′)[p × p′]zδ(εp − εp′ ), (7)

where F (p) is an arbitrary function of electron momentum.
Parameter W0 = 2πu0v

2/τ
2 is expressed via the short-
range impurity potential amplitude modelled by a Dirac delta
function as U (r) = u0δ(r), v is the TMD monolayer band
parameter having the velocity dimensionality, 
 is the TMD
band gap and τ is the electron momentum relaxation time due
to the electron-impurity scattering. A direct analysis based
upon Eqs. (6) and (7) yields

jy = 2eτ 2W0ρN〈ε〉
(

−∂μ

∂x

)
, (8)

where ρ = m/2π h̄2 is an electron density of states, N is an
equilibrium electron density, and

〈ε〉 = 1

N

∞∫
0

dερε f0 (9)

is an average electron energy. Taking into account the relation
between density and chemical potential gradients

∇n(r) = ∇μ(r)
∫

d2p
(2π h̄)2

(− f ′
0)

= ρ
(
1 − e− N

ρT
)∇μ(r), (10)

one finds a VHE diffusive coefficient

Dyx = 2τ 2W0N〈ε〉
1 − e− N

ρT

= 4πv2τ

1 − e− N
ρT

Nu0〈ε〉

2

. (11)

In Eq. (10), we used the following approximation ∂μ f (r) =
− f ′(r) ≈ − f ′

0, where prime means derivative, with respect to
the electron energy. A found expression Eq. (11) holds for a
given valley; in the other valley, it has opposite sign.

III. GENERAL EXPRESSIONS FOR PGE-LIKE
DIFFUSION CURRENTS

PGE-like current density, nonlinear with respect to electron
density gradients, is phenomenologically expressed as

jα (r) = χαβγ ∇β∇γ n(r) + ζαβγ ∇βn(r)∇γ n(r). (12)

One can see, the current density is determined by the third-
order tensors and, thus, it may occur in noncentrosymmetric
systems. The TMD monolayer structures are described by the
D3h point group which is of noncentrosymmetric class. In
the D3h point group, the nonzero elements of any third-order
tensor read

−χxxx = χxyy = χyxy = χyyx, (13)

whereas other component are zero. The same relation holds
for the ζαβγ tensor. Thus it is enough to consider χxxx and
ζxxx components only. We are interested in the PGE effect
produced by the warping of the electron spectrum in TMD
monolayers. Within the two-band model of electron disper-
sion of a TMD monolayer, the bare Hamiltonian accounting
for the trigonal warping of electron valleys reads

H0 = 


2
σz + v(ησx px + σy py) +

(
0 μp2

+
μp2

− 0

)
, (14)

where 
 is the TMD material bandgap, v = pcv/m0, μ is
the warping strength band parameter, p± = px ± ipy is an
electron momentum and η − ±1 is a valley index. In the
effective mass approximation, the conduction band electron
dispersion near K and −K points of the Brillouin zone can be
approximated as

εp = ε0
p + wp,

ε0
p = p2

2m
, wp = ηw

(
p3

x − 3px p2
y

)
, (15)

where wp is a warping correction to the electron dispersion
in the ηth valley, where its strength is w ∼ μ. It should
be emphasized that the cubic-in-momentum wp results from
the quadratic terms in the Hamiltonian, Eq. (14), see Ref. [8].
The electron distribution function now has to be found up to
the second order, with respect to electron density gradients.
Thus the simple analysis of Boltzmann equation results in the
PGE-like current density expression

jα = e
∫

dp
(2π h̄)2

vαQ̂−1(v∇ )Q̂−1(v∇ ) f w(r), (16)

where quasiequilibrium distribution function f w(r) contains
now the electron dispersion with a warping correction,
Eq. (15). The analytical theory can be developed assuming the
smallness of the warping term wp in the electron dispersion of
Eq. (15). Thus we will find the current by Eq. (16) in the first
order with respect to wp. The structure of Eq. (16) dictates
that the warping correction may come from (i) the electron
dispersion in distribution function f w(r), (ii) electron velocity
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vα and, finally, (iii) from the structure of collision operator Q̂
[29]. The energy dispersion acquiring the warping correction
in the first order is given by Eq. (15), the structure of the
electron velocity with the first order warping correction can
be easily found as

v = v0 + δv,

v0 = p
m

, δv = 3ηw
(
p2

x − p2
y,−2px py

)
, (17)

whereas the correction to the collision operator caused by the
warping term requires the careful analysis made below.

Now consider the warping correction to the collision oper-
ator Q̂. An electron-impurity collision operator acting to the
arbitrary function χp in the lowest Born approximation yields

Q̂{χp} = 2πni

h̄

∑
p′

|Mpp′ |2δ(εp − εp′ )(χp − χp′ ), (18)

where ni is a short-range impurities density, and Mpp′ is a
scattering matrix element of impurity potential. Following
Ref. [29], we neglect here the warping-induced corrections
to the scattering matrix elements, and thus, Q̂ acquires the
correction due to the presence of electron dispersion εp in the
energy conservation law at the electron-impurity scattering.
Thus one finds Q̂0 + Q̂w, where the action of bare collision
operator Q̂0 on the nth harmonic of the distribution function
reads

lim
α→0

(
α + Q̂0

)−1
einϕ = einϕ lim

α→0
(α + 1/τn)−1,

1

τn
= 2πni

h̄

∑
p′

|Mpp′ |2δ(ε0
p − ε0

p′
)

× (1 − cos nθ ), (19)

whereas the action of Q̂w is determined as

Q̂w{χp} = 2πni

h̄

∑
p′

|Mpp′ |2(wp − wp′ )

× δ′(ε0
p − ε0

p′
)
(χp − χp′ ). (20)

Here prime means derivative, with respect to delta-function
argument. Now express the inverse collision operator up to
the first order with respect to the warping term as

(Q̂0 + Q̂w )−1 ≈ Q̂−1
0 − Q̂−1

0 Q̂wQ̂−1
0 , (21)

the jx PGE-like current density expression can be split into
three contributions

jI
x = e

∫
dp

(2π h̄)2
vxQ̂−1

0 (vx∂x )Q̂−1
0 (vx∂x ) f w(r),

jII
x = −e

∫
dp

(2π h̄)2
vxQ̂−1

0 Q̂wQ̂−1
0 (vx∂x )Q̂−1

0 (vx∂x ) f w(r),

jIII
x = −e

∫
dp

(2π h̄)2
vxQ̂−1

0 (vx∂x )Q̂−1
0 Q̂wQ̂−1

0 (vx∂x ) f w(r).

(22)

These expressions give the PGE-like current density. Below
we analyze these expressions in case of electron scattering
off the neutral short-range and charged Coulomb impurities,
respectively.

A. PGE-like current density: short-range impurities

It is easy to show that if electrons scattered off the short-
range impurity potential, the operator Q̂w in Eq. (20) acting on
the arbitrary function of electron momentum χp, gives zero

Q̂w{χp} = 0. (23)

Thus both jII and jIII current contributions in Eq. (A1) vanish.
In the remaining term jI, expanding the distribution function
up to the first order, with respect to warping, is made with the
following equation

f w(r) = f (r) − wp∂μ f (r), (24)

where f (r) is a bare function with isotropic and parabolic ε0
p

electron dispersions. Keeping only wp-like first order terms,
the PGE-like current density can be expressed via chemical
potential gradients as

jα = Aαβγ ∇β∇γ μ(r) + Bαβγ ∇βμ(r)∇γ μ(r), (25)

where (for details, see Appendix)

Axxx = eηwN
[
6〈(ε2τ1τ2)′〉 + 3

〈(
ε2τ 2

1

)′〉 − 〈(ε3τ1τ2)′′〉],
Bxxx = eηwN

[
6〈(ε2τ1τ2)′′〉 + 3

〈(
ε2τ 2

1

)′′〉 − 〈(ε3τ1τ2)′′′〉],
(26)

and τn is an electron relaxation time of nth harmonics; prime
here means a derivative with respect to electron bare energy
ε ≡ ε0

p, and the spatially uniform energy distribution averag-
ing is determined by Eq. (9).

The relation between tensors Aαβγ , Bαβγ and χαβγ , ζαβγ

can be found in the general form for the arbitrary degeneracy
of electron gas. It can easily be shown that

χαβγ = Aαβγ∑
p(− f ′

0)
,

ζαβγ = Bαβγ

∑
p(− f ′

0) − Aαβγ

∑
p f ′′

0[ ∑
p(− f ′

0)
]3 , (27)

where ∑
p

(− f ′
0) = ρ

(
1 − e− N

ρT
)
,

∑
p

f ′′
0 = ρ

T
e− N

ρT
(
1 − e− N

ρT
)
. (28)

In systems where the electron dispersion is quadratic with
respect to electron momentum, the relaxation time corre-
sponding to the electron scattering off short-range impurities
does not depend on the electron energy, τ1 = τ2 = τ = const.
Thus Eqs. (27) give

χxxx = η
12ewNτ 2

ρ

〈ε〉
1 − e− N

ρT

,

ζxxx = η
12ewNτ 2

ρ2

1 − 〈ε〉
T e− N

ρT(
1 − e− N

ρT
)2 . (29)
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B. PGE-like current density: Coulomb impurities

Consider the PGE-like current in the case of electron
scattering off Coulomb impurities. Expression (18) is valid
with the matrix element given by the Fourier-transformed 2D
Coulomb potential

Mpp′ = 2πe2h̄

κ|p − p′| , (30)

where κ is the dielectric permittivity of surrounded media.
Expressions (26), corresponding to the jI

x current contribu-
tion, still hold with the only difference that now the electron
momentum relaxation time Eq. (18) depends on the electron
energy

1

τn
= |n|

τ (εp)
,

1

τ (εp)
= πe4nC

i

h̄κ2εp
, (31)

where nC
i is a concentration of Coulomb centers. The other

principal difference of the electron scattering off charged
Coulomb centers is the nonzero warping-induced correc-
tions to the collision integral Eq. (20) and the corresponding
nonzero contributions to the current density given by jII

x and
jIII
x in Eq. (A1). The direct calculations of these contributions

to the current density give (for details, see Appendix)

AC
xxx = 12eηwN

κ4

πe8
(
nC

i

)2 〈ε3〉,

BC
xxx = 36eηwN

κ4

πe8
(
nC

i

)2 〈ε2〉. (32)

Now calculating expressions (26), accounting for relations
(31), and combining the result with contributions (32), one
finally finds

χxxx = η
wNk4h̄2

π2e7
(
nC

i

)2

〈ε3〉(14 + 12π )

ρ
(
1 − e− N

ρT
) ,

ζxxx = η
wNk4h̄2

π2e7
(
nC

i

)2

〈ε2〉(42 + 36π ) − (14 + 12π ) 〈ε3〉
T e− N

ρT

ρ2
(
1 − e− N

ρT
)2 .

(33)

IV. NONUNIFORM ELECTRIC FIELD

Now consider the case when a nonuniform static electric
field characterized by the scalar potential φ(r) is present in the
sample. In equilibrium, the electrochemical potential μ(r) +
eφ(r) of the system must be constant and the current density
should vanish. Thus the current should depend on the spatial
derivatives of μ(r) + eφ(r) only. Expanding the current with
respect to the derivatives of electrochemical potential and its
second-order powers, one obtains

ji = ai j∇ j (μ + eφ)

+ bi jk∇ j (μ + eφ)∇k (μ + eφ) + ci jk∇ j∇k (μ + eφ).

(34)

The equality to zero of the total current in equilibrium fol-
lows from these relations at μ(r) + eφ(r) = const. Hence, the
system responses to the chemical potential μ(r) and to the

scalar potential eφ(r) are determined by the components of
the same tensors. Let us consider this statement for the linear
and nonlinear responses in details.

First consider the linear response, given by ai j tensor. If
the electric field −∂xφ and chemical potential gradient ∂xn
are directed along the x axis, then the nondiagonal com-
ponents axy = ayx = aH desribe the VHE effect. The VHE
transport being the response to the external static electric
field, jy = σH Ex, was studied in [18]. Coefficient aH can be
directly found by a comparison with expression Eq. (8). From
Eq. (34), one finds the relation between kinetic coefficients
describing the VHE under the electric field and chemical po-
tential gradient as e aH = −σH . The direct comparison of our
result Eq. (8) and σH expression derived in Ref. [18] supports
this relation as it should be. The relation between the linear
response coefficients in the case of the external potential force
and chemical potential gradient being applied to the VHE
effect was proven for the excitonic VHE in Ref. [34].

Consider now the nonlinear transport given by the tensors
bi jk and ci jk in Eq. (34). The tensor bi jk determines the PGE
effect and it is known for PGE caused by the electron valley
traigonal warping mechanism [29] and it should coincide with
the tensor Bi jk derived above, see Eq. (25). Let us prove
this equality directly for the simple model of τ = const mo-
mentum relaxation time. If φ = 0, substituting τ1 = τ2 = τ =
const into Eq. (26), one finds the Bxxx-related current for a
given valley

jx = 12eτ 2Nw(∇xμ)2 (35)

as a nonlinear response to the generalized force, ∇xμ. It is
constructive to compare this relation with the PGE current be-
ing the response to the electric field jx ∝ (−e∇xφ)2 = (eEx )2.
It can be found via the Boltzmann equation [35] and reads

jx = 2eτ 2(eEx )2
∫

dp
(2π )2

∂2vx

∂ p2
x

f0. (36)

Taking into account the velocity expression, Eq. (17), we
find the current for a given valley in the form jx =
12eτ 2Nw(eEx )2, with the same coefficient as in Eq. (35) as
it should be from the symmetry arguments.

The remaining tensor ci jk components determine the un-
conventional PGE effect (with respect to the nonuniform
electric field, ∇ j∇kφ(r) = −∇ jEk (r)) in TMD materials. The
corresponding tensor components are not known in literature,
to the best of our knowledge.

V. ANISOTROPIC DIFFUSION

To illustrate the effect of ci jk tensor components, consider
the interband illumination of the TMD monolayer by an ax-
ially symmetric light source with circular polarization and
study the charge spreading of photoexcited electrons. The
light is absorbed in a single valley. In the approximation taking
into account only ordinary diffusion, the diffusion spot will
stay axially symmetric also. However, the inclusion of higher
derivatives with respect to the electron density given by ci jk

tensor will result in the distortion of the spot. In our case, this
distortion should be triangular, in accordance with the trigonal
system symmetry. The luminescence from the illuminated
spot due to the interband electron recombination should also
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FIG. 1. The density plot of electron density distribution around
spot illuminated by circular-polarized light. The length unite is χ/D.
The distribution symmetry reflects the C3 symmetry of the active
valley.

repeat the trigonal symmetry diffusing electron spot. Let the
TMD plane is illuminated locally creating the initial electron
density distribution n0(r, t ), which reads

n0(r, t ) =
{

n1δ(r), for stationary illumination;
n2δ(r)δ(t ), for flash illumination. (37)

Then, the spatial and temporary distribution of diffusing elec-
trons yields

n(r, t ) =
∫

dr′
∫

dt ′g(r − r′; t − t ′)n0(r′, t ′), (38)

where the Green function satisfy the equation

[
∂

∂t
− D∇2 − χ

∂

∂x

(
∂2

∂x2
− 3

∂2

∂y2

)]
g(r − r′; t − t ′)

= δ(r − r′)δ(t − t ′). (39)

Here χ ≡ χxxx/e. Eq. (39) has C3 symmetry in accordance
with the valley symmetry. Thus, for the first case of Eq. (37),
one finds

n(r, t ) = n(0, t ) + n1

∫
d2q

(2π )2

eiqr − 1

Dq2 + iχq
, (40)

where χq = χq3 cos(3φq). Assuming, that χq � Dq2 is a
small correction, one can find the density correction to the
isotropic diffusion in analytical form as

δn(r, t ) = n1χ

2πD2

cos(3ϕr )

r
. (41)

Figure 1 illustrates the stationary electron density distribution
around the illuminated spot calculated numerically based on
Eq. (40) at arbitrary χq.

In the second case of Eq. (37), the electron density distri-
bution as a function of time and spatial coordinates reads

n(r, t ) = n2

∫
d2q

(2π )2
eiqr−(Dq2−iχq )t , (42)

where again for the case χq � Dq2, the density correction can
be easily found as

δn(r, t ) = −χ
n2t

2π

r3 cos(3ϕr )

(2Dt )4
e− r2

4Dt . (43)

This correction also have the C3 rotational symmetry. Thus we
show that the ci jk tensor components in Eq. (34) describe the
trigonal asymmetry of electron diffusion process in individu-
ally populated TMD valley.

VI. CONCLUSION

To conclude, here we report that the generalized forces
given by the electron density gradient (rather than external
electric field) lead to the transverse and longitudinal valley
linear and nonlinear transport in 2D Dirac monolayer systems
preserving the inversion center symmetry. We theoretically
demonstrate that the skew electron scattering of diffusive
electrons may result in the valley Hall transport as a first
order response to the electron density gradient. A theoretical
analysis of the second-order system response to the electron
density gradients developed here shows the existence of a
valley selective PGE-like transport due to the trigonal warping
of electron dispersion in the valleys considering the electron
scattering processes on both short-range and Coulomb-like
impurity centers.

The specific feature of the effects considered here is that
the experimental study of these effects does not require two
sources of external electromagnetic illuminations as it is
for the conventional VHE and PGE transport based on the
generalized force given by external electric field. The ex-
perimental observation of PGE or VHE transport requires
unequal valley populations by additional circularly polarized
light [13,21,29]. In case of the transport effect considered
here, the electromagnetic illumination producing the unequal
valley populations may simultaneously create the nonuniform
electron density distribution, thus, producing the VHE and
PGE-like current phenomena studied here.

The symmetry arguments being applied to the kinetic co-
efficients considered in the present paper and describing the
linear and nonlinear responses to the nonuniform distribution
of the electron density show that kinetic coefficients are di-
rectly coupled to the ones describing the linear and nonlinear
responses to the electric field (VHE and PGE effects). We
prove this directly and demonstrate this equivalence on the
simple models. We also derived the tensor coefficients dealing
with nonlinear (second-order) derivatives of electron chemical
potential. These corrections responsible for the anisotropic
electron diffusion processes of valley-selective photoexcited
electrons. We considered several particular situations and
demonstrated the presence of trigonal-symmetric diffusion in
these cases.
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APPENDIX: DERIVATION OF CURRENT COMPONENTS

To find the expressions (26) and (32), we will combine
Eqs. (16) and (21), this leads the current expression in the
form jx = jI

x + jII
x + jIII

x , where

jI
x = e

∫
dp

(2π h̄)2
vxQ̂−1

0 (vx∂x )Q̂−1
0 (vx∂x ) f w(r),

jII
x = −e

∫
dp

(2π h̄)2
vxQ̂−1

0 Q̂wQ̂−1
0 (vx∂x )Q̂−1

0 (vx∂x ) f w(r),

jIII
x = −e

∫
dp

(2π h̄)2
vxQ̂−1

0 (vx∂x )Q̂−1
0 Q̂wQ̂−1

0 (vx∂x ) f w(r).

(A1)

First, we consider the short-range impurities. In this case, the
action of the operator Q̂w on the equilibrium function gives
zero:

Q̂w{χp} = 0. (A2)

Thus one finds that jII
x = jIII

x = 0. Now, let’s expand the
distribution function up to the first order with respect
to warping term as f w(r) = f (r) − wp∂μ f (r). Using the
relation ∂x f (r) = ∂μ f (r)∂xμ, we can write the expression for
jI
x as

jI
x = e

∫
dp

(2π h̄)2
vxQ̂−1

0 (vx∂x )Q̂−1
0 vx∂x( f (r) − wp∂μ f (r))

(A3)

= e
∫

dp
(2π h̄)2

vxQ̂−1
0 (vx∂x )Q̂−1

0 vx∂x( f (r) − wp∂μ f (r))

(A4)

= e
∫

dp
(2π h̄)2

vxQ̂−1
0 vxQ̂−1

0 vx
(
∂μ f0 − wp∂

2
μ f0

)
︸ ︷︷ ︸

Axxx

∇x∇xμ

+ e
∫

dp
(2π h̄)2

vxQ̂−1
0 vxQ̂−1

0 vx
∂

∂μ

(
∂μ f0 − wp∂

2
μ f0

)
︸ ︷︷ ︸

Bxxx

×∇xμ∇xμ. (A5)

Here we used the designations Axxx and Bxxx from Eq. (25).
Taking into account the expression for the electron velocity
vx = ∂ε

∂ px
= p cos φ

m + 3ηwp2 cos 2φ, we get

Axxx = ηw

∫
dp

(2π h̄)2

(
p4

4m2
∂μ f0

(
6τ1τ2 + 3τ 2

1

) − p6τ1τ2

8m3
∂2
μ f0

)

= ηwN (6〈(ε2τ1τ2)′〉 + 3
〈(
ε2τ 2

1

)′〉 − 〈(ε3τ1τ2)′′〉) (A6)

and

Bxxx = ηw

∫
dp

(2π h̄)2

(
p4

4m2
∂2
μ f0

(
6τ1τ2 + 3τ 2

1

) − p6τ1τ2

8m3
∂3
μ f0

)

= ηwN (6〈(ε2τ1τ2)′′〉 + 3
〈(
ε2τ 2

1

)′′〉 − 〈(ε3τ1τ2)′′′〉). (A7)

Now we will evaluate anisotropic diffusion currents for the Coulomb impurities. Firs, let’s calculate jI
x, which has no explicit

dependence of the matrix element Mpp′ , and thus the expressions for Axxx and Bxxx have the same form as Eqs. (A6) and (A7)
with the followoing relaxation times:

1

τn
= |n|

τ (εp)
,

1

τ (εp)
= πe4nC

i

h̄κ2εp
. (A8)

The expression for jII
x reads

jII
x = −e

∫
dp

(2π h̄)2
vxQ̂−1

0 Q̂wQ̂−1
0 vxQ̂−1

0 vx(∂μ f0)︸ ︷︷ ︸
AC,II

xxx

∇x∇xμ−e
∫

dp
(2π h̄)2

vxQ̂−1
0 Q̂wQ̂−1

0 vxQ̂−1
0 vx

(
∂2
μ f0

)
︸ ︷︷ ︸

BC,II
xxx

∇xμ∇xμ. (A9)

After a few transformations, one finds

AC,II
xxx = −e

∫
dp

(2π h̄)2
vxQ̂−1

0 Q̂w

[
p2τ1τ2 cos 2φ

2m2
∂μ f0

]
. (A10)

To calculate this integral one needs to evaluate Q̂w[p2τ1τ2 cos 2φ∂μ f0]. Because τ ∝ ε = p2/2m, this leads to
Q̂w[p6 cos 2φ∂μ f0]. Let’s write the action of this operator explicitly:

Q̂w[p6 cos 2φ∂μ f0(p)] = 4πe4ηwm2nC
i

k2h̄p

2π∫
0

dφ′ d

d p′

[
(p6 cos 2φ∂μ f0(p) − p′6 cos 2φ′∂μ f0(p′))

p3 cos 3φ − p′3 cos 3φ′

p2 + p′2 − 2pp′ cos (φ − φ′)

]
p′=p

.

(A11)
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Simple, but cumbersome analysis allows us to transform Eq. (A12) to the following expression:

Q̂w[p6 cos 2φ∂μ f0(p)] = −4πe4ηwm2nC
i

k2 h̄p

1

2
cos 3φ cos 2φ

⎡
⎣(

5p6∂μ f0 − p8

m
∂2
μ f0

) 2π∫
0

dθ
(1 − cos 3θ ) cos 2θ

1 − cos θ

+3p6∂μ f0

2π∫
0

dθ
(1 − cos 2θ ) cos 3θ

1 − cos θ
+ p6∂μ f0

2π∫
0

dθ
1 − cos 3θ

1 − cos θ

⎤
⎦

+ 4πe4ηwm2nC
i

k2h̄p

1

2

(
8p6∂μ f0 − p8

m
∂2
μ f0

) 2π∫
0

dθ
sin 3θ sin 2θ

1 − cos θ
sin 3φ sin 2φ. (A12)

Substituting Eq. (A12) into Eq. (A10), one finds that only
terms with cos φ contribute to the current and thus

AC,II
xxx = e

ηwκ2

h̄e4nC
i

∫
dp

(2π h̄)2
τ1

(
4ε3∂μ f0 − ε4∂2

μ f0
)

= e
ηwκ2N

h̄e4nC
i

(−4〈(τ1ε
3)′〉 − 〈(τ1ε

4)′′〉) (A13)

As we can see from Eq. (A9), the expression for BC,II
xxx will be

the same, but with ∂2
μ f0 instead of ∂μ f0:

BC,II
xxx = e

ηwκ2N

h̄e4nC
i

(4〈(τ1ε
3)′′〉 − 〈(τ1ε

4)′′′〉). (A14)

The same procedure can be applied to jIII
x . The final result

reads

AC,III
xxx = e

2πηwN

h̄2 (−〈(τ1τ2ε
2)′〉 + 〈τ1τ2ε

3)′′〉),

BC,III
xxx = e

2πηwN

h̄2 (−〈(τ1τ2ε
2)′′〉 + 〈(τ1τ2ε

3)′′′〉). (A15)

Combining all contributions, one finds AC
xxx = AC,II

xxx + AC,III
xxx

and BC
xxx = BC,II

xxx + BC,III
xxx , where

AC
xxx = 12eηwN

κ4

πe8
(
nC

i

)2 〈ε3〉,

BC
xxx = 36eηwN

κ4

πe8
(
nC

i

)2 〈ε2〉. (A16)
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