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Probing topological signatures in an optically driven α-T3 lattice
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The α-T3 lattice, an interpolation model between the honeycomb lattice of graphene (α = 0) and the dice
lattice (α = 1), undergoes a topological phase transition across α = 1/

√
2 when exposed to a circularly polarized

off-resonant light. In this work, several features of the topological transition have been captured via various
Berry phase mediated magnetic and thermoelectric effects. For instance, both the Berry curvature and the orbital
magnetic moment associated with the flat band change their respective signs across α = 1/

√
2. The orbital

magnetization varies linearly with the chemical potential in the forbidden gaps of the quasienergy spectrum. The
slope of the orbital magnetization in the gap changes by one unit of e/h as soon as α crosses the value 1/

√
2

which is a direct manifestation of the corresponding change in Chern number by one unit. While the anomalous
Nernst coefficient vanishes in the gaps, the anomalous Hall conductivity, however, gets quantized in a different
manner on either side of α = 1/

√
2. The broken particle-hole symmetry for 0 < α < 1 offers valley-contrasting

features in the thermoelectric coefficients as well as in the orbital magnetization which further open up the
possibility to use the underlying driven system in the valley caloritronic applications.

DOI: 10.1103/PhysRevB.107.085408

I. INTRODUCTION

Based on the Berry phase effect [1], a new paradigm in
condensed matter physics has been developed over last few
decades. The Berry phase [2] is a global phase acquired by a
Bloch electron while its adiabatic expedition along a closed
path in momentum space. It is expressed as a line integral of
the Berry connection: A(k) = i〈u(k)|∇k|u(k)〉 over a closed
contour in momentum space, where |u(k)〉 is the periodic part
of Bloch wave function. The Berry curvature: �(k) = ∇k ×
A(k) plays an analogous role of magnetic field in momentum
space. In the modern theory of condensed matter physics, the
Berry phase effect has been regarded as a unifying concept in
order to understand a wide variety of intriguing phenomena
such as the topological origin of the quantum Hall effect
[3], quantized adiabatic pumping [4], the anomalous Hall
effect [5–8], electric polarization [9], orbital Magnetization
[10–13], spin transport [14,15], the valley Hall effect [16,17],
etc. The topological thermoelectric phenomena [18] mediated
by the Berry phase has gained considerable interest over the
years. Several systems, such as a spin-chiral ferromagnetic
Kagome lattice [19], graphene [20], spin-orbit coupled elec-
tron/hole doped two-dimensional (2D) semiconductors [21],
transition metal dichalcogenides [22,23], topological insula-
tor [24], Weyl semimetals [25–27], etc. exhibit topological
signatures in their thermoelectric response, especially in the
Nernst coefficients. It is revealed that a gap in the low-energy
spectrum despite of its origin is an essential ingredient to
observe the topological Nernst effect, especially in the 2D
systems. The Nernst effect provides an experimental platform
to investigate a wide variety of phenomena such as the detec-
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tion of vortexlike excitations [28] and charge density waves
[29] in cuprate superconductors, anomalous thermoelectric
response of graphene [30–32], large Berry curvatures in Dirac
semimetals [33], etc. In addition, the Nernst effect has poten-
tial technological application in the field of spin caloritronics
[34].

The possibility of tuning the low-energy properties of
electronic systems dynamically with the help of an exter-
nal time periodic radiation has opened a new pathway in
condensed matter physics nowadays. The notion “Floquet
systems” is used synonymously with the periodically driven
systems because the nonequilibrium dynamics of the underly-
ing systems are well understood within the framework of the
Floquet theory [35]. The radiation-matter interaction in such
systems has enormous consequence in the sense that it can
induce nontrivial topology in the band structure. The study
on light-induced Hall effect in graphene by Oka et al. [36]
triggered a number of subsequent investigations aiming to
probe topological phase transition [37–48], Floquet spin states
[49], pseudospin effects [50], dynamical localization [51,52],
chiral interfacial modes [53], spin-Hall resonance without a
magnetic field [54], etc. in several irradiated systems. More
specifically, a circularly polarized light of frequency lying
in the off-resonant regime (frequency is high enough com-
pared to any other relevant frequency scale of the system)
is able to renormalize the band structure through a second-
order virtual photon emission-absorption process. Finally, one
gets an effective static Hamiltonian with a gap term whose
nature entirely depends on the properties of the external ra-
diation, e.g., intensity, frequency and polarization state. This
tunable gap is the central reason behind all photoengineered
topological phases as mentioned in the above references. For
example, the semimetallic graphene can be transformed into
a Chern insulator when illuminated by off-resonant light of
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appropriate frequency [36]. To check how these externally
induced topological flavors essentially control the transport
properties, a plethora of investigations have been performed
on several irradiated systems [40,55–68] in recent years.

In this work, we extract some topological flavors of an
irradiated α-T3 lattice by analyzing the Berry phase medi-
ated magnetic and thermoelectric transport properties. The
α-T3 lattice is identical to a honeycomb lattice or a dice
lattice [69–71] when the variable α ∈ [0, 1] becomes α = 0
or α = 1, respectively. Several schemes [72–74] have been
proposed for a possible experimental realization of the α-T3

lattice. It is a fast evolving topic of current research as it
hosts quasiparticles having pseudospin larger than S = 1/2.
The Berry phase associated with the adiabatic evolution of
the eigenstates depends on α explicitly. This fact is itself
manifested in a number of fascinating phenomena including
orbital magnetic susceptibility [75], Hall quantization [76,77],
Klein tunneling [78,79], Weiss oscillations [80], zitterbe-
wegung [81], plasmons [82–85], peculiar magneto-optical
effects [86–89], Ruderman-Kittel-Kasuya-Yosida interaction
[90,91], minimal conductivity [92], unconventional topology
[93], spin-Hall phase transition [94], etc. When exposed to a
time periodic external radiation, the α-T3 lattice exhibits rich
physical phenomena which are reported in a series of recent
works [95–99]. In particular, the irradiated system supports
a topological phase transition across α = 1/

√
2 [96]. Given

this background, it is therefore tempting to investigate the
transport properties of an irradiated α-T3 lattice aiming to
extract some topological signatures therein. Very recently, Niu
and Wang [100] numerically studied the behavior of the valley
polarized current in a circularly polarized light irradiated α-T3

lattice using the nonequilibrium Green’s function formalism.
However, the topological aspects of the valley current went
largely unaddressed. Here, we study the explicit behaviors
of the Berry curvature, the orbital magnetic moment, the
orbital magnetization, and anomalous thermoelectric coef-
ficients such as the Nernst coefficient, the anomalous Hall
conductivity and the thermal Hall conductivity. It is revealed
that all the aforesaid quantities exhibit distinct topological sig-
natures. For example, both the Berry curvature and the orbital
magnetic moment associated with the flat band exhibit sign
change across α = 1/

√
2. The linear variation of the orbital

magnetization and the vanishing anomalous Nernst coefficient
when the chemical potential encounters the forbidden gaps are
indeed direct topological signatures. The slopes of the linear
regions in the orbital magnetization are directly related to the
Chern numbers on either side of α = 1/

√
2. Interestingly, we

find that the slope of the orbital magnetization for α > 1/
√

2
differs that for α < 1/

√
2 by one unit of e/h, where e is the

electronic charge and h is the Planck’s constant. This clearly
mimics the corresponding change in Chern number by one
unit across α = 1/

√
2 to describe the topological transition.

The anomalous Hall conductivity also exhibits topological
features when the chemical potential is varied in the forbidden
gap(s). We also find valley-contrasting features in the observ-
ables for 0 < α < 1 as a direct consequence of the broken
particle-hole symmetry. In addition, we obtain some analytical
results in the case of an irradiated dice lattice. We find that
the undistorted flat band of the driven dice lattice contributes
nothing to the Berry curvature. However, the flat band gives

FIG. 1. (a) The bulk portion of the irradiated α-T3 lattice is
schematically shown here. A circularly polarized light is incident on
the lattice (located in the x-y plane) normally. The system is subjected
to a weak temperature gradient −∇T along the x direction. (b) The
geometry of the α-T3 lattice is sketched here. (c) The first Brillouin
zone of the α-T3 lattice. Here, K and K ′ are the valleys.

rise to a finite orbital magnetic moment which is the sum of
the contributions due to the conduction and the valence band.
Our results are experimentally detectable and have potential
applications in the field of valley caloritronics.

The rest of the paper is organized as follows. In Sec. II,
we outline the basic formalism and discuss general features
of the quasienergy band structures, the Berry curvature, the
orbital magnetic moment, and the orbital magnetization asso-
ciated with the irradiated α-T3 lattice. Various aspects of the
topological thermoelectric transport are discussed in Sec. III.
This paper ends with a summary given in Sec. IV.

II. FORMALISM

We consider the α-T3 lattice being exposed to a circularly
polarized light as shown in Fig. 1(a). We start our discussion
by reviewing the essential features [96] of its quasienergy
dispersions. We, then, systematically discuss various charac-
teristics of the Berry curvature, the orbital magnetic moment,
and the orbital magnetization.

A. Quasienergy

As shown in Fig. 1(b), a unit cell of the α-T3 lattice
includes three inequivalent lattice sites, namely, A, B, and
C. The site C, at the center of each hexagon in the hon-
eycomb structure formed by A and B sites, is connected to
three A sites only. The lattice translational vectors are given
by a1 = (3/2,

√
3/2)a and a2 = (3/2,−√

3/2)a, where a is
the intersite distance. An electron at site B (C) can hop to
the site A with an energy cost γ (αγ ), where α ∈ [0, 1]. There-
fore α = 0 (α = 1) corresponds to the case of graphene (dice
lattice). Within the nearest-neighbor tight-binding scenario,
the static α-T3 model supports a zero-energy flat band on
which the conduction and the valence band touch each other
at six Dirac points. Only two of them are independent which
represent, furthermore, the valleys K and K ′ as shown in
Fig. 1(c). The low-energy excitations near a Dirac point in
a particular valley are governed by the Hamiltonian

H τ
0 (k) =

⎛
⎜⎝

0 f τ
k cos φ 0

f τ ∗
k cos φ 0 f τ

k sin φ

0 f τ ∗
k sin φ 0

⎞
⎟⎠, (1)
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where f τ
k = h̄vF (τkx − iky) with vF = 3γ a/(2h̄) being the

Fermi velocity, τ = ±1 is the valley index and φ = tan−1(α).
We consider a circularly polarized light of frequency ω

described by the vector potential A(t ) = A0(l cos ωt, sin ωt )
is incident normally on the α-T3 lattice. Here, A0 is the am-
plitude and l represents the polarization of the light. Now,
the minimal coupling between the external radiation and the
system modifies the Hamiltonian further as

H τ (k, t ) =

⎛
⎜⎝

0 f τ
k (t ) cos φ 0

f τ ∗
k (t ) cos φ 0 f τ

k (t ) sin φ

0 f τ ∗
k (t ) sin φ 0

⎞
⎟⎠, (2)

where f τ
k (t ) is obtained from f τ

k via Pierl’s substitution:
k → k + eA(t )/h̄. The modified Hamiltonian H τ (k, t ) has
the same periodicity T = 2π/ω as A(t ). The Floquet theory
perhaps is the appropriate tool to deal with such time-
periodic problem. We consider the so-called off-resonant
regime where the frequency of the radiation is much larger
than the band width and/or other energy scales of the system
under consideration. In this case, one can obtain the following
time-independent effective Hamiltonian [101]

H τ
eff (k) = H τ

0 (k) + 1

h̄ω
[H τ

−(k), H τ
+(k)] + O(1/ω2), (3)

where H τ
±(k) = (1/T )

∫ T
0 e∓iωt H τ (k, t ) dt . The second term

in Eq. (3) is responsible for the virtual photon emission-
absorption process which effectively alters the static band
structure. Considering terms up to O(1/ω), it is straightfor-
ward to find the effective Hamiltonian as

H τ
eff (k) =

⎛
⎜⎝

�τ cos2 φ f τ
k cos φ 0

f τ ∗
k cos φ −�τ cos 2φ f τ

k sin φ

0 f τ ∗
k sin φ −�τ sin2 φ

⎞
⎟⎠, (4)

where �τ = τ l� with � = e2A2
0v

2
F /h̄ω is the Haldane-type

mass term induced by the off-resonant light. It breaks the
time-reversal symmetry and has opposite signs in the two
valleys. Diagonalization of H τ

eff (k) provides the quasienergies
as

E τ
λ (k) = 2

√−p

3
cos

[
1

3
cos−1

(
3q

2p

√
−3

p

)
− 2πλ

3

]
, (5)

where

p = −
[
| fk|2 + �2

(
cos2 2φ + sin2 2φ

4

)]
,

q = −τ l
�3 sin2 2φ cos 2φ

4
.

Here, λ = 0, 1, and 2 are assigned to denote the conduc-
tion, the flat, and the valence quasienergy bands, respectively.
Equation (5) infers that the application of an off-resonant
radiation makes the effective quasienergy dispersion α depen-
dent. The nature of the quasienergy dispersion at the K valley
for different values of α are depicted in Fig. 2. We consider
the system is being exposed to a right circularly polarized
radiation (l = +1) and this choice is followed throughout this
paper. The effect of the circularly polarized radiation on the
band structure of the system is mainly twofold. Firstly, it

FIG. 2. Quasienergy dispersion at the K valley for different val-
ues of α. Here, we consider � = 50 meV. It is understood that an
external time periodic radiation lifts the degeneracy at k = 0 for
all values of α except α = 1/

√
2. At this particular value of α, the

valence band touches the distorted flat band.

breaks the time-reversal symmetry. Therefore the threefold
degeneracy at the Dirac point (k = 0) is lifted by opening
a gap. However, the scenario corresponding to α = 1/

√
2

is different. Here, the valence band touches the flat band.
More specifically, a topological phase transition occurs at α =
1/

√
2 [96]. Secondly, the radiation distorts the flat band in the

vicinity of the Dirac point for an intermediate α (0 < α < 1).
As a result, the particle-hole symmetry is broken. However,
the aforesaid symmetry is still preserved for graphene (α =
0) as well as for the dice lattice (α = 1). For instance, the
quasienergy spectrum for an illuminated dice lattice becomes :
Ed

±(k) = ±(ε2
k + �̃2)1/2, Ed

0 = 0, where εk = h̄vF k and �̃ =
�/2. In other words, the “flatness” of the flat band of a dice
lattice is protected against the application of high-frequency
radiation. We mention, here, that the particle-hole transfor-
mation is associated with the replacement of an electron with
wave vector k by a hole with wave vector k.

In the quasienergy spectrum corresponding to the K ′ valley
(not shown here), the conduction band touches the distorted
flat band at α = 1/

√
2. This feature can also be realized in the

K valley by reversing the polarization of radiation (l = −1).

B. Berry curvature

The Berry curvature corresponding to a particular Bloch
band can be viewed as a kind of “residual” interaction [1] of
other nearby bands as the dynamics of the system is locked
to a single energy band within the description of the quantum
adiabatic theorem. It is well known that the Berry curvature
for a two-dimensional system is always directed along the
transverse direction. Its gauge-invariant form corresponding
to a Bloch band characterized by the indices λ and τ is given
by

�τ
λ(k) = −2h̄2 Im

∑
λ′ 
=λ

〈
uτ

λ

∣∣vx

∣∣uτ
λ′
〉〈

uτ
λ′
∣∣vy

∣∣uτ
λ

〉
[
E τ

λ (k) − E τ
λ′ (k)

]2 , (6)

where uτ
λ ≡ |uτ

λ(k)〉 = √
Se−ik·r|�τ

λ (k)〉 is the periodic part
of the Bloch state |�τ

λ (k)〉 with S as the sample area
and vi = h̄−1∇ki H

τ
eff is the effective velocity operator along

a particular direction i = x, y. It is evident from Eq. (6)
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FIG. 3. The distributions of the Berry curvature �(k) near the K
valley for different values of α, namely, (i) α = 0, (ii) 0.4, (iii) 0.8,
and (iv) 1 are shown.

that the Berry curvature becomes singular when there is
a degeneracy in the energy spectrum. Under the spatial
inversion (I), the particle-hole (P), and the time-reversal (T )
operations, the Berry curvature behaves in the following
way: I−1�λ(k)I = �λ(−k), P−1�λ̄(k)P = −�λ(−k), and
T −1�λ(k)T = −�λ(−k), respectively. Here, the index λ̄ cor-
responds to the band with quasienergy −Eλ. A nonvanishing
�(k), therefore, demands the breaking of at least one of
above mentioned discrete symmetries. For the irradiated α-T3

lattice, the behavior of the Berry curvature around the K
valley is shown in Fig. 3 considering � = 50 meV. The
Berry curvature for an individual band becomes nonvanishing
as a consequence of broken time-reversal symmetry for all
values of α. In all cases, �(k) is mostly concentrated near
the valley extremum. The Berry curvature for the conduction
band is negative for all values of α. It is hard to comment
on the topological features from the behavior of �(k) for
the conduction band. The Berry curvature for the valence
band, however, exhibit nonmonotonic behavior. For α = 0, it
is positive and peaked at k = 0. A “cusplike” structure with a
negative peak value appears when α becomes 0.4. For α = 0.6
(not shown here) the Berry curvature becomes negative. The
Berry curvature is strongly enhanced and becomes positive
when α = 0.8. It is still positive if one increases α further
to α = 1. Here, �(k) changes the sign around α = 1/

√
2

which might be considered as a topological signature. For
0 < α < 1, the Berry curvature corresponding to the flat band
is nonvanishing as a consequence of the particle-hole sym-
metry breaking. Interestingly, �(k) for the flat band exhibits a
sign change across α = 1/

√
2. For the dice lattice (α = 1), the

contribution of the flat band in �(k) vanishes as the external
radiation is unable to break the particle-hole symmetry. It is
possible to obtain following analytical expression of �(k) for
α = 1 as

�τ
λ(k) = (λ − 1)

h̄2v2
F �̃(

ε2
k + �̃2

)3/2 . (7)

It is also clear that, at a given k, the total Berry curvature,
i.e., the sum of the individual contributions from different
bands, vanishes. This is usually known as local conservation
of the Berry curvature. In Fig. 4(i) (4(ii)), the peak value of
�(k) at k = 0 is depicted over the entire range of α for the
K (K ′) valley. For the K valley, the Berry curvatures corre-

FIG. 4. The peak value of �(k) at k = 0 is plotted as a function
of α for the (i) K and (ii) K ′ valleys. In the K (K ′) valley, �(k = 0)
for the flat (conduction) band and the valence (flat) band change
signs discontinuously across α = 1/

√
2 whereas �(k = 0) for the

conduction (valence) band decreases (increases) monotonically as
depicted in the inset. The sign change of the Berry curvature across
α = 1/

√
2 might be considered as a topological signature.

sponding to the flat band and the valence band diverge at
α = 1/

√
2 while the Berry curvature for the conduction band

is finite (as shown in the inset). This divergence is a direct
consequence of the fact that the valence band and the flat
band touch each other at k = 0 when α becomes 1/

√
2 as

shown in Fig. 2(iii). As mentioned earlier, �(k = 0) for the
flat (valence) band changes sign from + (−) to − (+) as α is
varied across α = 1/

√
2, thus exhibiting a prominent signa-

ture of the topological transition. For the K ′ valley, �(k = 0)
is finite for the valence band while that corresponding to the
conduction band and the flat band encounter divergence at
α = 1/

√
2 because the conduction band and the flat band

become degenerate at k = 0. The Berry curvatures for the
conduction band and the flat band change their respective
signs across α = 1/

√
2 as depicted in Fig. 4(ii).

C. Orbital magnetic moment

Another interesting quantity associated with the Bloch
band of a given system is the orbital magnetic moment
(OMM). The self rotation of an electronic wave packet about
the center of mass gives rise to the OMM. The OMM exhibits
analogous behavior as the electron spin. In principle, it can be
treated as a physical observable because various informations
about it can be extracted by studying the magnetic circular
dichroism spectrum [102,103]. Generally, it is expressed as

mτ
λ(k) = − ie

2h̄

〈∇kuτ
λ

∣∣ × [
H τ

eff (k) − E τ
λ (k)

]∣∣∇kuτ
λ

〉
. (8)

The z component of the OMM, however, can be obtained
as

mτ
λ(k) = −h̄e Im

∑
λ′

(λ 
=λ′ )

〈
uτ

λ

∣∣vx

∣∣uτ
λ′
〉〈

uτ
λ′
∣∣vy

∣∣uτ
λ

〉
[
E τ

λ (k) − E τ
λ′ (k)

] . (9)

The symmetry properties of the OMM are as fol-
lows: I−1mλ(k)I = mλ(−k), P−1mλ̄(k)P = mλ(−k), and
T −1mλ(k)T = −mλ(−k). The distribution of the OMM is
shown in Fig. 5 for the K valley. The broken time-reversal
symmetry gives rise to a nonzero OMM. The OMM is largely
concentrated around the valley extremum (i.e., k ≈ 0) like the
Berry curvature. However, it exhibits some distinct features
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FIG. 5. The distribution of the OMM around the K valley for dif-
ferent values of α considering � = 50 meV. For α = 1, the flat-band
contribution to the OMM does not vanish. Moreover, it is exactly
equal to the sum of the individual contributions of the conduction
and valence bands.

which are absent in the distribution of the Berry curvature.
The OMMs associated with the conduction band and the va-
lence band are negative and they coincide with each other
owing to the particle-hole symmetry for both α = 0 and
α = 1. For the dice lattice (α = 1), we find that the OMM
associated with the flat band is nonvanishing unlike the Berry
curvature and it is exactly equal to the sum of the individual
contributions from the conduction band and the valence band.
This is indeed an interesting result. We find the OMM analyt-
ically for α = 1 as

mτ
λ(k) = − h̄ev2

F �̃

2
(
ε2

k + �̃2
) (δλ0 + 2δλ1 + δλ2). (10)

For an intermediate value of α, i.e., 0 < α < 1, the break-
ing of the inversion, the particle-hole, and the time-reversal
symmetries result in different values of the OMM associated
with individual bands. To explore the topological features of
the OMM, we show the variation of mτ

λ(k = 0) with α for
both valleys in Fig. 6. At K valley, the OMMs corresponding
to the flat band and the valence band change their respective
signs across α = 1/

√
2 while that due to the conduction band

decreases monotonically with α. The role of the valence band

FIG. 6. The peak value of m(k) at k = 0 is plotted as a function
of α. (i) In the K valley, the OMMs due to the flat band and the
valence band discontinuously change their signs across α = 1/

√
2

whereas that due to the conduction band decreases monotonically
with α (as shown in the inset). (ii) The role played by the conduction
band in (i) is replaced by the valence band in case of the K ′ valley.

at K valley is replaced by that of the conduction band at K ′
valley and vice versa.

D. Orbital magnetization

The orbital magnetization is an interesting bulk property
of crystalline materials in which the time-reversal symmetry
is broken. In its modern understanding based on either the
semiclassical wave packet dynamics of Bloch electrons [10]
or the Wannier function approach [11,12] or the perturbation
theory [13], it is revealed that the orbital magnetization is
comprised of two contributions due to the OMM and the
Berry curvature, separately. The free energy of the system in
presence of a weak magnetic field B is given by

F τ = − 1

β

∑
λ,k

ln[1 + e−β(ετ
λ (k)−μ)]. (11)

Here, β = 1/(kBT ), kB is the Boltzmann constant, T is the
temperature, and μ is the chemical potential. Note that the
band energy E τ

λ is modified to ετ
λ (k) = E τ

λ − mτ
λ · B as a result

of the coupling between the OMM and the magnetic field.
In presence of the Berry curvature, the summation over k

can be converted into an integral as [10]∑
k

−→ 1

(2π )2

∫ (
1 + eB · �τ

λ(k)

h̄

)
d2k. (12)

The Berry curvature essentially modifies the phase-space den-
sity of states [the second term in Eq. (12)] as a consequence
of the violation of Liouville’s theorem in connection with the
conservation of the phase-space volume [10].

The orbital magnetization for a particular valley is given
by Mτ

orb = −(∂F τ /∂B)μ,T which can be further obtained as
Mτ

orb = Mτ
avg + Mτ

com, where

Mτ
avg = 1

(2π )2

∑
λ

∫
mτ

λ(k) f τ
λ (k)d2k, (13)

Mτ
com = e

2πβh

∑
λ

∫
�τ

λ(k) ln[1 + eβ(μ−E τ
λ (k))]d2k. (14)

Here, f τ
λ (k) = {1 + exp[β(E τ

λ (k) − μ)]}−1 is the Fermi-
Dirac distribution function and the integrations in Eqs. (13)
and (14) are over the states below the chemical potential μ.
Note that Mavg is just the thermodynamic average of the OMM
and Mcom is the Berry phase mediated extra term associated
with the center of mass motion of the wave packet.

It is possible to find analytical expressions of the orbital
magnetization in the case of the irradiated dice lattice (α = 1)
at very low temperatures. In the limit T → 0, when μ stays in
the conduction(+)/valence(−) band, we obtain Morb as

M±
orb = ∓eμ

h

(
1 − �̃√

μ2 + �̃2

)
+ e�̃

4h
ln

∣∣∣∣μ2 + �̃2

�̃2

∣∣∣∣. (15)

For an intermediate α, i.e., 0 < α < 1, however, the k
integrations in Eqs. (13) and (14) are evaluated numerically
to understand the behavior of Morb. In Fig. 7, the variation
of Morb with the chemical potential μ are shown for various
values of α, namely, α = 0, 0.4, 0.8, and 1 at T = 100 K. We
consider two values of the light induced energy gap, namely,
� = 50 meV and � = 100 meV. A higher � enhances the
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FIG. 7. The orbital magnetization at the K valley as a function
of the chemical potential for various values of α considering T =
100 K. Morb behaves in antisymmetric manner with μ when α = 0
and 1. For 0 < α < 1, the broken particle-hole symmetry causes a
deviation from this behavior.

magnitude of Morb significantly for all values of α. For α = 0
[Fig. 7(i)] and α = 1 [Fig. 7(iv)], Morb changes antisymmetri-
cally with μ despite of completely different μ dependencies.
For example, Morb switches from a negative (positive) value
to a positive (negative) value around μ = 0 when α = 0 (1).
These antisymmetric natures are absent in the cases of α =
0.4 [Fig. 7(ii)] and α = 0.8 [Fig. 7(iii)] as a consequence of
broken particle-hole symmetry.

To extract the topological flavors, we show the μ depen-
dence of the total orbital magnetization which is the sum of
contributions from both valleys in the left panel of Fig. 8. We
choose lower temperature and higher �, namely, T = 15 K
and � = 100 meV in order to visualize the topological sig-
natures in the orbital magnetization. The left panel of Fig. 8
reveals that M tot

orb varies linearly with μ in two well separated
“windows” �1 and �2 of equal width. Interestingly, �1 is the
energy gap between the flat band and the valence band at the
K valley, whereas �2 is the band gap between the conduction
band and the flat band at the K ′ valley as depicted in the right
panel of Fig. 8. Note that the widths of the “windows” strongly
depend on α. We find �1 = 58.62 meV when α = 0.4 and
�1 = 34.25 meV for α = 0.9. The linear portions of M tot

orb
are determined by the Berry phase mediated term M tot

com. We

FIG. 8. (Left) The μ-dependence of the total orbital magnetiza-
tion, i.e., sum of the contributions from both valleys for (i) α = 0.4
and (ii) α = 0.9. (Right) Quasienergy dispersion for both valleys
when α = 0.4. Here, we consider T = 15 K and � = 100 meV.
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FIG. 9. Slope of the orbital magnetization (in units of e/h) in the
band gap for the entire range of α. The values of the parameters are
chosen same as in Fig. 8. It is clear that the slope changes by one unit
of e/h across α = 1/

√
2.

have checked that (not shown here) M tot
avg exhibits plateaus of

different heights when μ encounters the band gaps. The linear
variation of M tot

orb with μ in the forbidden gap(s) is indeed
a topological signature which can be understood from the
following relation [12]:

dM tot
orb

dμ
= e

h

occ∑
λ

Cλ, (16)

where the summation is over the occupied bands and Cλ is the
Chern number corresponding to the quasienergy band index
λ. As mentioned earlier, an irradiated α-T3 lattice undergoes a
topological phase transition across α = 1/

√
2 [96], which is

characterized by a change in the Chern number by one unit
from (C0,C1,C2) = (−1, 0, 1) to (C0,C1,C2) = (−2, 0, 2).
This fact is reflected in the corresponding change in the slope
of the orbital magnetization in the band gaps. As estimated
from Fig. 8, the slope of M tot

orb for α = 0.9 differs from that for
α = 0.4 by one unit of e/h. It is noteworthy that the slopes of
the linear regions in �1 and �2 are same for both values of α.
This can be explained as follows. For instance, for α = 0.4,
when μ is varied in �1, only the valence band is occupied
for which the Chern number is 1. Then, Eq. (16) confirms
the linear variation of M tot

orb with μ in the energy gap �1. On
the other hand, when μ is tuned in the gap �2, both the flat
and the valence bands are occupied. As the Chern number
corresponding to the flat band is 0, it is easy to conclude that
M tot

orb should vary linearly with μ with the same slope as that
in �1. Similar argument will also hold in the case of α = 0.9.
The peculiar behavior of M tot

orb when μ is tuned in the region
between the “windows” �1 and �2 is entirely attributed to
the distorted flat band. In addition, we extract the slope of
the orbital magnetization in the band gap over a full range
of α as shown in Fig. 9. The change in slope by one unit of
e/h across α = 1/

√
2 is a clear indication of the topological

transition. In Fig. 10, we show the dependence of Morb on
μ for both valleys. For α = 0 and 1, we find that Morb at
the K valley coincides with that at the K ′ valley as a result
of the particle-hole symmetry. However, for 0 < α < 1, the
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FIG. 10. Orbital magnetization as function of μ for both valleys
considering � = 50 meV and T = 100 K. The valleys contribute
identically to Morb for both α = 0 and α = 1 owing to the particle-
hole symmetry. However, breaking of that symmetry introduces the
valley-contrasting features in Morb when 0 < α < 1.

breaking of both particle-hole and time-reversal symmetries
lead to a valley-contrasting Morb as shown in Figs. 10(ii) and
10(iii).

III. ANOMALOUS THERMOELECTRIC COEFFICIENTS

In this Sec., we intend to study the Berry phase me-
diated Nernst-Ettinghausen and Righi-Leduc effects in an
irradiated α-T3 lattice. We focus on the behavior of relevant
thermoelectric coefficients, mainly the Nernst and the thermal
conductivity tensors ←→α and ←→κ , respectively. The conven-
tional Nernst effect is associated with the generation of a
transverse voltage in the presence of a temperature gradi-
ent and an external magnetic field. However, it is possible
to detect the Nernst signal in the absence of a magnetic
field. This is usually known as the anomalous Nernst effect
(ANE). Here, a nontrivial Berry curvature plays a role of an
effective magnetic field in the reciprocal space so that the
charge carrier gets a transverse anomalous velocity. One can
manipulate the finite spread of a wave packet representing a
charge carrier to develop a semiclassical theory of anomalous
thermoelectric transport phenomena. It is demonstrated that a
Berry-phase correction term in the orbital magnetization plays
an important role in the ANE [18]. For a particular valley, the
expressions for the anomalous Nernst coefficient (ANC), and
the thermal Hall conductivity (THC), are, respectively, given
by [18,104]

ατ
xy = −kBe

h

∑
λ

∫
d2k

(2π )2
�τ

λ(k)
{
β
(
E τ

λ − μ
)

f τ
λ (k)

+ ln
[
1 − f τ

λ (k)
]}

(17)

and

κτ
xy = k2

BT

h

∑
λ

∫
d2k

(2π )2
�τ

λ(k)

{
π2

3
+ β2

(
E τ

λ − μ
)2

f τ
λ (k)

− 2Li2
[
1 − f τ

λ (k)
] − [

ln
(
1 + e−β(E τ

λ −μ))]2
}
. (18)

Here, Li2(z) is the polylogarithmic function. The quantity
within the curly bracket in Eq. (17) can be identified as
the entropy density Sτ

λ (k) = − f τ
λ (k) ln[ f τ

λ (k)] − [1 − f τ
λ (k)]

FIG. 11. The variation of αxy as a function of μ for various
values of α at the K valley considering T = 100 K. αxy exhibits
antisymmetric variation with μ for α = 0, 1. However, there is a
significant deviation from this behavior when 0 < α < 1 as a result
of the broken particle-hole symmetry.

ln[1 − f τ
λ (k)]. An entropy generation around the Fermi sur-

face and the Berry curvature both can control the behavior
of αxy. Therefore αxy becomes very much sensitive to any
changes in the Fermi surface properties such as the Fermi
energy, temperature, etc. However, the Berry curvature alone
determines the anomalous Hall conductivity(AHC) as given
by [5,105]

σ τ
xy = e2

h̄

∑
λ

∫
d2k

(2π )2
�τ

λ(k) f τ
λ (k). (19)

In the T → 0 limit, Eqs. (17) and (18) reduce to the fol-
lowing Mott relation and Widemann-Franz law, respectively:

ατ
xy = −π2k2

BT

3e

dσ τ
xy

dμ
(20)

and

κτ
xy = π2k2

BT

3e2
σ τ

xy. (21)

Before discussing the numerical results, we now focus on
some analytical results for the irradiated dice lattice (α = 1)
obtained at very low temperature. When the chemical poten-
tial lies in the conduction band (+)/valence band (−), we find

σ±
xy = ∓e2

h

(
1 − �̃√

μ2 + �̃2

)
. (22)

When μ falls in the band gap, the AHC becomes σ 0
xy = e2

h .
When μ lies within either conduction band or valence band,
we find α±

xy = ±πkBeT �̃
6hμ2 , and αxy = 0 otherwise.

The ANC αxy is evaluated numerically from Eq. (17) and
its dependence on the chemical potential μ at T = 100 K is
depicted in Fig. 11 for the K valley. A higher � reduces the
magnitude of αxy for all values of α. It also causes a shift in the
position of the peak towards higher values of μ. It is evident
from Figs. 11(i) and 11(iv), as μ is varied from the valence
band to the conduction band, αxy shows the antisymmetric
behavior with a zero value plateau in the band gap for α = 0
and α = 1, respectively. However, the plateau corresponding
to � = 50 meV and α = 1 is not visible [Fig. 11(iv)] because
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FIG. 12. Plot of αtot
xy vs μ at T = 20 K for the K valley consid-

ering � = 100 meV. αtot
xy vanishes in the forbidden gaps �1 and �2.

For α = 0.4, αtot
xy changes sign once from negative to positive when

μ is varied in the region between �1 and �2. However, αtot
xy changes

its sign several times when α = 0.9.

the higher thermal energy washes away it in this particu-
lar case. These plateaus would be more noticeable at lower
temperatures. The width of the plateau is proportional to the
photoinduced band gap. The width of the plateau for α = 1
becomes half of that for α = 0. This is due to the fact that
the photoinduced band gap for the dice lattice is exactly half
of that for an irradiated graphene. The vanishing of αxy in the
forbidden gap is connected with both the entropy density S(k)
and the Berry curvature �(k). As depicted in Fig. 3, �(k) is
mostly concentrated in the band gap at k = 0 and dying out
on either side. On the other hand, at very low temperature,
S(k) is sharply peaked at the Fermi surface and vanishes for
completely filled and completely empty bands. For μ slightly
above and below, the band gap, the intersection of the Fermi
surface and the states with nonzero Berry curvature yield a
finite contribution to αxy which differs in a sign for μ below
and above the band gap due to the sign change of the Berry
curvature. As one approaches the band gap from either side,
the Berry curvature starts growing and attains a sharp peak in
the band gap near k = 0, however, the entropy density carries
no weight resulting in a vanishing αxy in the band gap.

The broken particle-hole symmetry corresponding to an
intermediate α( 
= 0, 1) makes the scenario more interesting.
In this case, additional peaks/dips appear in αxy as μ scans
the energy bands [see Figs. 11(ii) and 11(iii)]. The plateau(s)
in the band gap(s) will be prominent at higher � and lower
temperature. In Fig. 12, we show the μ dependence of total
ANC αtot

xy i.e., sum of individual contributions from both val-
leys for (i) α = 0.4 and (ii) 0.9 considering T = 20 K and
� = 100 meV. In Fig. 12(i), we notice that αtot

xy remains at
zero in two distinct “windows” of μ. As mentioned in the
discussion of the orbital magnetization, these windows are
basically �1 and �2. Near the edges of each window, the
plateaus in αtot

xy are smeared out due to finite temperature.

FIG. 13. Plot of αxy vs μ at T = 50 K for both valleys con-
sidering � = 50 meV. αxy exhibits valley-contrasting physics at
an intermediate α, i.e., 0 < α < 1 due to broken particle-hole
symmetry.

The behavior of αtot
xy in the region between the windows for

α = 0.4 and 0.9 are completely different. For α = 0.4, αtot
xy

changes its sign once from negative to positive. On the other
hand, it changes several times when α = 0.9.

The μ dependence of αxy is shown for both valleys in
Fig. 13 considering � = 50 meV and T = 50 K. As depicted
in Figs. 13(i) and 13(iv), the Nernst coefficient is independent
of the valley index τ for α = 0 and 1. This can be readily
understood from Eq. (17) with the aid of Eq. (7) for α = 1.
This is a direct consequence of the particle-hole symmetry and
valley degeneracy. However, the valley-contrasting behavior
of αxy is revealed for 0 < α < 1 [Figs. 13(ii) and 13(iii)] as a
result of broken particle-hole and valley symmetry.

The AHC σxy is calculated numerically from Eq. (19) and
its variation with the chemical potential at T = 50 K is shown
in Fig. 14. Since the inversion as well as the particle-hole sym-
metry is preserved for both graphene and the dice lattice, we
find that the Hall conductivities for both the valleys coincide
when α = 0 and α = 1. As μ is varied in the band gap, in both
cases, all the occupied states in the valence band contribute
to σxy which results in a plateau of width proportional to the
gap. Note that the flat band contributes nothing to σxy be-
cause the corresponding Berry curvature vanishes. The height
of the plateau for α = 1 is twice of that corresponding to
α = 0. For α 
= 0, 1, the system does not possess the inversion
and the particle-hole symmetry, resulting in valley-contrasting
features in the behavior of σxy. In this case, the “two-plateau”

FIG. 14. Plot of σxy vs μ at T = 50 K for both valleys consider-
ing � = 50 meV. Valley-contrasting features in σxy are realized for
0 < α < 1.

085408-8



PROBING TOPOLOGICAL SIGNATURES IN AN … PHYSICAL REVIEW B 107, 085408 (2023)

FIG. 15. Plot of κxy vs μ at T = 100 K for both valleys con-
sidering � = 50 meV. The valley-contrasting features appear in κxy

only when 0 < α < 1 as a consequence of the broken particle-hole
symmetry.

structure is observed as a result of the existence of two
band gaps of unequal size in the quasienergy spectrum at
each valley. These features will be more noticeable at lower
temperature and higher �. The total AHC, i.e., sum of the
individual contributions from each valley, however, would
display interesting features (not shown here explicitly). As
evident from Fig. 14, the total AHC would approach the
quantized value e2/h (2e2/h) approximately in the band gaps
�1 and �2 when α < 1/

√
2 (α > 1/

√
2), thus validating a

topological phase transition across α = 1/
√

2. This quantized
nature of σxy leads to a vanishing αxy in the band gap as evident
using Eq. (20).

Using Eq. (18), we calculate the THC κxy numerically. Its
variation with μ at both valleys are shown in Fig. 15 consid-
ering T = 100 K and � = 50 meV. For α = 0, 1, κxy behaves
as an even function of μ unlike αxy, owing to the particle-hole
symmetry. The THC exhibits similar features as σxy and this
similarity would be more prominent at lower temperatures as
a validation of the Mott relation. However, κxy vanishes away
from the band gap regions, i.e., deep in the valence band or
the conduction band. For 0 < α < 1, the valley-contrasting
features are also available in κxy.

IV. SUMMARY

In summary, we have explored the topological signatures of
the irradiated α-T3 lattice via various Berry phase effects. Ex-

plicitly, we calculate the Berry curvature, the orbital magnetic
moment, the orbital magnetization and the anomalous ther-
moelectric coefficients. All these quantities display distinct
topological characteristics which can be captured experimen-
tally. The Berry curvature as well as the orbital magnetic
moment associated with the flat band display a sign-change
across α = 1/

√
2. The light induced distortion of the flat

band near the Dirac points essentially introduces two well
separated α-dependent forbidden gaps of equal width. The
orbital magnetization exhibits linear dependence on the chem-
ical potential in the forbidden gaps. The slope of the orbital
magnetization in the band gap changes by one unit of e/h
across α = 1/

√
2 which can be considered as a direct man-

ifestation of the change in the Chern number by one unit. The
anomalous Nernst coefficient, however, vanishes when the
chemical potential is varied in the band gaps. The anomalous
Hall conductivity attains a plateau whenever the chemical
potential falls in the band gap. For 0 < α < 1, a “two-plateau”
structure in the Hall conductivity is observed at individual
valleys. However, the total anomalous Hall conductivity in
the band gaps approaches e2/h and 2e2/h, approximately
when α < 1/

√
2 and α > 1/

√
2, respectively. The thermal

Hall conductivity follows the anomalous Hall conductivity
in a similar way. For 0 < α < 1, the broken particle-hole
symmetry introduces the valley-contrasting features in the or-
bital magnetization and the thermoelectric coefficients. These
features essentially suggest that the driven α-T3 lattice could
be used as a potential ingredient in valley caloritronic de-
vices. We obtain closed analytical expressions of the above
mentioned quantities in the case of the irradiated dice lattice
(α = 1). The analytical results are valley independent owing
to the particle-hole as well as the inversion symmetry. The
Berry curvature associated with the flat band vanishes whereas
the flat band contributes a significant amount to the orbital
magnetic moment. Moreover, the contribution of the flat band
in the orbital magnetic moment is the sum of individual con-
tributions coming from the conduction and the valence bands.
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