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Bound states at sharp corners have been widely viewed as the hallmark of two-dimensional second-order
topological insulators and superconductors. In this paper, we show that the existence of sublattice degrees
of freedom can enrich the tunability of bound states on the boundary and hence lift the constraint on their
locations. We take the Kane-Mele model with honeycomb-lattice structure to illustrate the underlying physics.
With the introduction of an in-plane exchange field to the model, we find that the boundary Dirac mass induced
by the exchange field has a sensitive dependence on the boundary sublattice termination. We find that the
sensitive sublattice dependence can lead bound states to emerge at a specific type of boundary defects named
as sublattice domain walls if the exchange field is of ferromagnetic nature, even in the absence of any sharp
corner on the boundary. Remarkably, this sensitive dependence of the boundary Dirac mass on the boundary
sublattice termination allows the positions of bound states to be manipulated to any place on the boundary for
an appropriately-designed sample. With a further introduction of conventional s-wave superconductivity to the
model, we find that, no matter whether the exchange field is ferromagnetic, antiferromagnetic, or ferrimagnetic,
highly controllable Majorana zero modes can be achieved at the sublattice domain walls. Our paper reshapes the
understanding of boundary physics in second-order topological phases, and meanwhile opens potential avenues
to realize highly controllable bound states for potential applications.
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I. INTRODUCTION

Since the discovery of two-dimensional (2D) topological
insulators (TIs) [1–5], an enduring and intensive exploration
of topological phases in quantum materials as well as various
classical systems has been witnessed [6–9]. A hallmark of
topological phases is the existence of gapless states on the
boundary enforced by the bulk topological invariant [10].
Conventionally, the gapless states are known to be distributed
on the boundary with the dimension lower than the bulk by
one. In other words, the gapless boundary states have codi-
mension dc = 1. Recently, it has been uncovered that there in
fact exists a large class of topological phases whose gapless
boundary states have dc � 2 [11–31]. For distinction, now
a topological phase is dubbed as an nth-order topological
phase if it only supports gapless boundary states with dc = n
[32–34].

Different orders of topological phases have a hierarchy
connection [35]. In principle, an nth-order topological phase
could be descended from an (n − 1)th-order topological phase
by appropriately lifting the protecting symmetry. A paradig-
matic example is the realization of a second-order TI by lifting
the time-reversal symmetry of a first-order TI [11,12,36–38].
The physics behind such a transition can be intuitively un-
derstood via the Jackiw-Rebbi theory based on low-energy
boundary Dirac-Hamiltonians [32,33,39]. That is, the break-
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ing of time-reversal symmetry, e.g., by applying a magnetic
field, will introduce a boundary Dirac mass to gap out the
helical boundary (surface or edge) states, leading to a trivi-
alization of the first-order topological insulating phase [40].
Interestingly, the induced Dirac mass generally shows a de-
pendence on the orientation of the boundary and may change
sign across some direction [21]. When the Dirac masses
on two boundaries with different orientations have opposite
signs, a Dirac-mass domain wall harboring gapless states with
dc = 2 will be formed at their intersection [39], a corner in
2D [36–38,41,42], or a hinge in 3D [11,12,43–45]. Because
of the generality of this domain-wall picture, bound states
positioned at corners in 2D systems [46–52] and chiral or
helical states propagating along hinges in 3D systems [53–58]
have been widely taken as the defining boundary characteristic
of second-order topology.

When the sign of the boundary Dirac mass for a given
system is only sensitive to the orientation of the boundary,
e.g., a higher-order topological phase enforced by mirror sym-
metry [17,20], it is true that the bound states will be strongly
bounded at sharp corners or hinges where the orientation of
the boundary has a dramatic change. However, if the boundary
Dirac mass is also sensitive to other factors on the boundary,
then it is possible that the bound states are not necessarily
pinned at sharp corners or hinges, but instead are allowed
to be positioned anywhere on the boundary. Obviously, the
tunability of bound states could make the observation of
many interesting phenomena possible, such as the creation
of additional bound states or the annihilation of bound states.
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FIG. 1. A schematic diagram of the sublattice domain walls and
the dependence of boundary Dirac mass (m) on the sublattice ter-
mination. The upper boundary consists of two parts, with one part
being a zigzag edge (top left-hand side in each panel) and the other
being a beard edge (top right-hand side in each panel), leading to
the formation of sublattice domain walls at their intersections. The
blue and green parabolas represent massive Dirac energy spectra
of the gapped edge states. Different color patterns are just used to
intuitively illustrate whether the signs of Dirac masses on the two
sides of the sublattice domain wall are the same (a) or opposite (b).
On each site, the red arrow denotes the direction of the exchange
field. (a) When the exchange field is antiferromagnetic, the boundary
Dirac masses on the upper zigzag and beard edges have the same
sign, accordingly, the sublattice domain wall is not a Dirac-mass
domain wall and hence does not harbor any bound states. (b) When
the exchange field is ferromagnetic, the boundary Dirac masses on
the upper zigzag and beard edges have opposite signs, hence the sub-
lattice domain wall is a Dirac-mass domain wall supporting bound
state illustrated by the black star.

Recently, we did find that the sign of boundary Dirac mass
in systems with sublattice degrees of freedom can have a
sensitive dependence on the boundary sublattice termination
in the context of second-order topological superconductors
(TSCs) [59,60]. Concretely, we found that when a 2D first-
order TI with honeycomb [59] or kagome lattice structure [60]
is placed on an unconventional superconductor, e.g., a d-wave
superconductor, the Dirac mass induced by superconductivity
gapping out the helical edge states exhibits a sensitive depen-
dence on the type of terminating sublattices on the boundary.
This property allows the realization of Majorana Kramers
pairs (a Majorana Kramers pair corresponds to two Majorana
zero modes (MZMs) related by time-reversal symmetry [61])
at the so-called sublattice domain walls, a type of boundary
defects corresponding to the intersection of two edges with the
same orientation but with different sublattice terminations, see
illustration in Fig. 1. Remarkably, the Majorana Kramers pairs
with dc = 2 can emerge even without the existence of sharp
corners (e.g., a cylindrical geometry with one direction being
periodic) [59], and their positions can be manipulated by

tuning the sublattice terminations [59,60], which may benefit
the future application of Majorana bound states in topological
quantum computation [62–65].

It is known that when the time-reversal symmetry is bro-
ken, the helical boundary states of a first-order TI would
be gapped out [7,66]. The time-reversal symmetry could be
broken by an exchange field, which itself could be induced
by an emergent intrinsic magnetic order or magnetic prox-
imity effect from a substrate magnetic insulator. As Dirac
domain walls can exist in both superconductors and insula-
tors, it is natural to expect that the Dirac mass induced by
exchange field may also have similar sensitive dependence
on the sublattice termination, and the realization of bound
states at sublattice domain walls may also occur in the context
of second-order TIs. In this paper, we take the paradigmatic
Kane-Mele model with honeycomb lattice structure to demon-
strate this expectation [1,2]. The Kane-Mele model is known
to support first-order topological insulating phase, and the
honeycomb lattice contains only two sublattice degrees of
freedom (labeled as A and B for discussion). Following pre-
vious works, we consider that the exchange field lies in the
lattice plane [36,37], and for generality we consider that the
collinear magnetic moments on the two types of sublattices
satisfy MA = γ MB with −1 � γ � 1. Correspondingly, 0 �
γ � 1 refers to a ferromagnetic order, γ = −1 refers to an
antiferromagnetic order, and −1 < γ < 0 refers to a ferri-
magnetic order. Based on the low-energy edge theory [22,59],
we determine the boundary Dirac masses on the two types of
edges whose terminations contain only one type of sublattices
(commonly dubbed zigzag and beard edges [67]).

Our main findings can be briefly summarized as follows.
First, we find that, for the zigzag and beard edges with the
same orientation, whether the values or signs of the Dirac
masses on them are the same or not depends on the value of γ .
Somewhat counterintuitively, we find that, for an antiferro-
magnetic or ferrimagnetic exchange field, i.e., −1 � γ < 0,
the Dirac masses on them take the same sign, even though
the directions of the exchange field are opposite on the out-
ermost terminating sublattices for these two kinds of edges,
as depicted in Fig. 1(a). On the contrary, for a ferromagnetic
exchange field, we find that the Dirac masses on them take op-
posite signs, even though the directions of the exchange field
are the same on the outermost terminating sublattices for these
two kinds of edges, as depicted in Fig. 1(b). Because of the
sign difference in Dirac masses, we find that the ferromagnetic
exchange field can induce highly controllable bound states at
the sublattice domain walls corresponding to the intersection
of zigzag and beard edges. As an important consequence,
bound states can be achieved even in the absence of any
sharp corner on the boundary. As the boundary Dirac mass
induced by exchange field and the effective chemical potential
on the boundary turn out to have a sensitive dependence on the
sublattice terminations, we show that these properties allows
the realization of MZMs at the sublattice domain walls even
one considers conventional s-wave superconductivity, which,
in the absence of exchange field, will introduce a uniform
boundary Dirac mass [59]. Our findings suggest that the ubiq-
uitous sublattice degrees of freedom in materials provide a
knob to control and manipulate the positions of bound states
in second-order topological phases.
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This paper is organized as follows. In Sec. II, we introduce
the Hamiltonian describing a first-order TI subjected to an in-
plane exchange field. In Sec. III, we establish a theory distinct
from the one developed by Ren et al. [36] to understand the
robustness of helical edge states on the armchair edges, and
show that the helical edge states on the armchair edges will
be gapped out once the exchange fields on the two sublattices
are different, leading to the presence of corner bound states in
samples with geometries different from the one with diamond
shape considered in Ref. [36]. In Sec. IV, we derive the low-
energy boundary Hamiltonians on the beard and zigzag edges,
and show explicitly the dependence of boundary Dirac masses
on the sublattice terminations. The presence of bound states at
the sublattice domain walls is also numerically demonstrated.
In Sec. V, we further consider the introduction of s-wave
superconductivity to the system and show the presence of
MZMs at the sublattice domain walls. We discuss the results
and conclude the paper in Sec. VI. Some calculating details
of the low-energy boundary Hamiltonians are relegated to
appendices.

II. KANE-MELE MODEL WITH AN IN-PLANE
EXCHANGE FIELD

We start with the Hamiltonian [1,2]

H = t
∑
〈i j〉,α

c†
i,αc j,α + iλso

∑
〈〈i j〉〉,α,β

νi jc
†
i,α (sz )αβc j,β

+ λν

∑
i,α

ξic
†
i,αci,α +

∑
i,α,β

c†
i,α (Mi · s)αβci,β , (1)

where c†
i,α (ci,α ) refers to a fermion creation (annihilation)

operator at site i, the subscripts α and β refer to spin indices,
t denotes the hopping energy, λso characterizes the strength
of intrinsic spin-orbit coupling, νi j = 1(−1) for a clockwise
(anticlockwise) path along which the electrons hop from site
j to site i, λν characterizes the staggered sublattice poten-
tial (ξi = ±1), and the last term describes the exchange field
induced by certain collinear magnetic order (the involving g
factor and h̄ are made implicity for notational simplicity). The
notations 〈i j〉 and 〈〈i j〉〉 mean that the sum is over nearest-
neighbor sites and next-nearest-neighbor sites, respectively.
As in this paper we are interested in second-order topology,
the collinear magnetic order will be assumed to lie in the
lattice plane, i.e., M i∈A = M = (Mx, My, 0), and for gener-
ality we consider Mi∈B = γ M with −1 � γ � 1 to take all
possible in-plane collinear magnetic orders into account.

By performing a Fourier transformation and choosing the
basis to be ψk = (ck,A,↑, ck,B,↑, ck,A,↓, ck,B,↓)T , the Hamilto-
nian in momentum space reads

H(k) = t
3∑

i=1

[cos(k · ai )s0σx + sin(k · ai )s0σy]

+ 2λso

3∑
i=1

sin(k · bi )szσz + λνs0σz

+ 1 + γ

2
(M · s)σ0 + 1 − γ

2
(M · s)σz, (2)

where the Pauli matrices si and σi, and the identity matri-
ces s0 and σ0, act on the spin (↑,↓) and sublattice (A,B)
degrees of freedom, respectively. ai refers to the nearest-
neighbor vectors, with a1 = a(0, 1), a2 = a

2 (
√

3,−1), a3 =
a
2 (−√

3,−1) (throughout the paper we set the lattice constant
a = 1 for notational simplicity). The next-nearest-neighbor
vectors b1 = a2 − a3, b2 = a3 − a1 and b3 = a1 − a2 [68].
The last line in (2) means that a general collinear exchange
field can be decomposed as the sum of a uniform ferromag-
netic exchange field and an antiferromagnetic one. Without
the two time-reversal-symmetry-breaking terms in the last
line, the Hamiltonian describes a first-order TI when |λν | <

3
√

3|λso| [2].

III. HELICAL EDGE STATES AND CORNER BOUND
STATES ON THE BOUNDARY

Considering the Kane-Mele model with only the ferro-
magnetic term, Ren et al. showed that the helical edge states
would be gapped out on the zigzag edges, but remain gapless
on the armchair edges [36], irrespective of the direction of
the in-plane ferromagnetic exchange field. In order to avoid
gapless edge states with codimension dc = 1 and only have
bound states with dc = 2 on the boundary, Ren et al. suggested
a diamond-shaped nanoflake with only zigzag boundaries. For
such a geometry, they showed that helical edge states are
gapped out on all edges, while bound states show up at half
of the corners [36]. By a close look of the Fig. 1 therein, one
can notice that these corners hosting bound states correspond
to the intersections of two adjacent zigzag edges with different
orientations as well as distinct sublattice terminations.

In Ref. [36], the reason that the helical edge states are
stable against the in-plane exchange field (corresponding to
γ = 1) was attributed to the existence of an additional mirror
symmetry on the armchair edges, which provides a further
protection. In more detail, it is known that ky remains a good
quantum number on the armchair edges if periodic bound-
ary conditions are imposed in the y direction. In Ref. [36],
the authors considered the limit without the staggered sub-
lattice potential, i.e., λν = 0, and found that the reduced
Hamiltonian H(kx, ky = 0) has a mirror symmetry, with the
symmetry operator taking the general form Mn = i(n̂ · s)σx,
where n̂ denotes the direction of the magnetic moment. As
[H(kx, 0),Mn] = 0, H(kx, 0) can be decomposed as a direct
sum of two sectors for any kx according to the two eigenvalues
(±i) of the mirror operator, and it turns out that the two sectors
carry opposite winding numbers, ω±i = ±1. Although this
explanation is valid in the limit with λν = 0, it is in fact not
essential. To see this, we would like to point out that the
helical edge states in fact remain gapless when λν �= 0, as
long as the exchange field has the same value on the two types
of sublattices, i.e., γ = 1, as shown in Figs. 2(a) and 2(b).
However, once λν �= 0, the aforementioned mirror symme-
try is explicitly broken by the staggered sublattice potential
(note [λνs0σz,Mn] �= 0). Accordingly, the Hamiltonian can
no longer be decomposed into two mirror sectors, and the
topological analysis based on the mirror-graded winding num-
bers in Ref. [36] breaks down. Nevertheless, the robustness
of the crossing at ky = 0 on the armchair edges even when
λν �= 0 suggests the existence of a topological protection.
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FIG. 2. Energy spectra for a ribbon with armchair edges. The
ribbon has open boundary conditions in the x direction and periodic
boundary conditions in the y direction. Chosen parameters are t = 1,
λso = 0.1, Mx = My = 0.2. (a) λν = 0, γ = 1, (b) λν = 0.1, γ = 1,
(c) λν = 0, γ = 0.5, and (d) λν = 0.1, γ = 0.5.

Viewing H(kx, 0) as a one-dimensional Hamiltonian, the dou-
ble degeneracy of the crossing on one armchair edge suggests
the existence of two zero-energy bound states at each end
of the one-dimensional system. As the spinful time-reversal
symmetry is explicitly broken by the exchange field, it is
known that in one dimension only chiral symmetry can protect
the existence of two degenerate bound states at the same end
[69,70]. We find that the chiral symmetry operator for the
one-dimensional Hamiltonian H(kx, 0) has the form C = szσy.
Accordingly, one can define a winding number to characterize
the full Hamiltonian H(kx, 0). The winding number is given
by [71]

ω = 1

2π i

∫
BZ

dkxTr[Q−1(kx )∂kx Q(kx )], (3)

where “BZ” stands for Brillouin zone, “Tr” stands for the
trace operation, and Q(kx ) is related to the Hamiltonian and
determined by rewriting the Hamiltonian into a new basis
under which the chiral symmetry operator is diagonal, i.e.,
C̃ = diag{1, 1,−1,−1}, correspondingly,

H̃(kx, 0) =
(

0 Q(kx )
Q†(kx ) 0

)
. (4)

Here the explicit form of Q(kx ) is

Q(kx ) =
(

Mx − iMy F (kx ) − iλν

F (kx ) + iλν Mx + iMy

)
, (5)

where F (kx ) = t[2 cos(
√

3
2 kx ) + 1] − i2λso[sin(

√
3kx ) −

2 sin(
√

3
2 kx )]. Since the chiral symmetry is preserved even

when λν , Mx, and My are all nonzero, the topological
invariant will hold its value as long as the bulk energy gap of
H(kx, 0) remains open, therefore, the winding number can be
determined by considering the limit with λν = Mx = My = 0.
Accordingly, it is easy to find that

ω = 1

2π i

∫
BZ

dkx2F−1(kx )∂kx F (kx ) = 2. (6)

The chiral symmetry and the value of the winding number
explain the robustness of the doubly-degenerate crossing of

FIG. 3. Corner bound states in a rectangular sample with both x
and y directions taking open boundary conditions. Chosen param-
eters are t = 1, λso = 0.1, Mx = My = 0.2, γ = 0.3, λν = 0, and
Nx = Ny = 28. The geometries of the samples are depicted in (a2)
and (b2), and a few corresponding eigenenergies near zero energy
are shown in (a1) and (b1). The red dots in (a1) and (b1) correspond
to the eigenenergies of the corner bound states. The shade of the red
color on the lattice sites in (a2) and (b2) reflects the weight of the
probability density of the corner bound states.

the helical edge states on the armchair edges even when
λν �= 0.

When γ �= 1, it is easy to find that the antiferromagnetic
term in Hamiltonian (2) commutes with the chiral symmetry
operator, i.e., [(M · s)σz, C] = 0, indicating that the antiferro-
magnetic term breaks the chiral symmetry of H(kx, 0). As a
result, the protection of the crossing at ky = 0 from the chiral
symmetry is lifted and the helical edge states on the armchair
edges would be gapped out by the antiferromagnetic term. As
shown in Figs. 2(c) and 2(d), the numerical results confirm
this expectation, reflecting the correctness of our analysis.

The opening of an energy gap to the helical edge states on
the armchair edges implies an important consequence: One
no longer needs to avoid the armchair edges to achieve corner
bound states. Now bound states are also possible to emerge
at the corners corresponding to the intersections of armchair
edges and other types of edges, such as zigzag or beard edges.
By numerical calculations, we confirm this expectation, as
shown in Fig. 3. According to the numerical results shown
in Figs. 3(a1) and 3(a2), one can see that the two bound states
are localized around the two bottom corners for a rectangular
sample with armchair edges in the x direction and beard edges
in the y direction. Interestingly, when the beard edges are
modified to zigzag edges by changing only the outermost
sublattices of the y-normal edges, the positions of the two
bound states are found to shift dramatically to the two top
corners, as illustrated in Figs. 3(b1) and 3(b2). We will adopt
the edge theory to show in the next section that this is because
the boundary Dirac mass has a sensitive dependence on the
boundary sublattice termination, and can switch its sign when
the boundary sublattice termination is changed from one type
to the other.

It is worth pointing out that here the antiferromagnetic
or ferrimagnetic exchange field does not favor the real-
ization of corner bound states. This can be proven by
numerical calculations or simply inferred by noting that in
the limit λν = 0 and γ = −1, the momentum-independent
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FIG. 4. Energy spectra for a ribbon with periodic boundary con-
ditions in the x direction and beard edges in the y direction. Chosen
parameters are t = 1, λso = 0.1, Mx = My = 0.2, λν = 0, and Ny =
100. (a) A schematic diagram of a sample with beard edges in the
y direction. Blue and red sites correspond to A-type and B-type
sublattices, respectively. The red-solid lines in (b)–(d) denote energy
spectra of the edge states on the beard edges. (b) γ = 1, the helical
edge states on the upper and lower beard edges are gapped out.
(c) γ = 0, the helical edge states on the upper beard edge are gapped
out, while the helical edge states on the lower beard edge remain
almost gapless. (d) γ = −1, the helical edge states on the upper and
lower beard edges are gapped out.

antiferromagnetic exchange field anticommutes with all other
terms in the Hamiltonian (2). Since this implies that the anti-
ferromagnetic term will introduce a constant gap to the energy
spectrum, which cannot be closed by tuning the parameters
of all other terms, the resulting gapped phase is topologically
connected to an atomic trivial insulator without any types of
topological mid-gap states on the boundary.

IV. BOUND STATES AT SUBLATTICE DOMAIN WALLS

In the following, we are going to show that bound states can
also be achieved even without the existence of sharp corners,
and their locations can be freely tuned by taking advantage
of the sublattice degrees of freedom. In a previous paper, we
have revealed that for the Kane-Mele model, the boundary
sublattice terminations have a strong impact on the helical
edge states, such as the shift of the boundary Dirac points (the
crossing point of the energy spectra for helical edge states)
from one time-reversal invariant momentum to the other in
the boundary Brillouin zone [59]. In addition, the sublat-
tice terminations can also strongly affect the boundary Dirac
mass induced by superconductivity and hence the formation
of Dirac-mass domain walls supporting Majorana Kramers
pairs [59].

To explore the impact of sublattice terminations on the
boundary Dirac mass induced by exchange field, we first
numerically calculate the energy spectra for a ribbon with
the x direction taking periodic boundary conditions and the
y direction having only beard or zigzag edges, as illustrated
in Figs. 4(a) and 5(a). According to the results presented in
Figs. 4(b)–4(d) and 5(b)–5(d), one can infer that the boundary
energy spectra (red solid lines) for the upper and lower beard
or zigzag edges are degenerate when γ = ±1, suggesting that

FIG. 5. Energy spectra for a ribbon with periodic boundary
conditions in the x direction and zigzag edges in the y direction.
Chosen parameters are t = 1, λso = 0.1, Mx = My = 0.2, λν = 0,
and Ny = 100. (a) A schematic diagram of a sample with zigzag
edges in the y direction. The red-solid lines in (b)–(d) denote energy
spectra of the edge states on the zigzag edges. (b) γ = 1, the helical
edge states on the upper and lower zigzag edges are gapped out.
(c) γ = 0, the helical edge states on the upper zigzag edge remain
almost gapless, while the helical edge states on the lower zigzag edge
are gapped out. (d) γ = −1, the helical edge states on the upper and
lower zigzag edges are gapped out.

the Dirac masses induced by the exchange field on the upper
and lower beard or zigzag edges have the same magnitude for
these two limiting cases. On the other hand, the results for
γ = 0 clearly reveal that the boundary Dirac mass strongly
depends on the sublattice termination for a given boundary. To
be specific, let us focus on the upper y-normal boundary for a
more detailed discussion. When γ = 0, based on the edges at
which the mid-gap states are localized, we find that the Dirac
mass is vanishingly small when the upper y-normal boundary
terminates with B sublattices, as illustrated in Fig. 5(c). Ob-
viously, the smallness of the Dirac mass should be related to
the fact that exchange fields on B sublattices are absent when
γ = 0. This implies that, for a given sublattice termination,
the magnitude of the exchange field on the corresponding
sublattices determines the main contribution to the magnitude
of the Dirac mass.

As it turns out that both ferromagnetic and antiferromag-
netic exchange fields can induce a finite Dirac mass to the
helical edge states, regardless of the boundary sublattice ter-
minations, a natural question to ask is: For a given type
of exchange field, do the boundary Dirac masses associated
with the two kinds of sublattice terminations have the same
sign or opposite signs? Naively, one may think that when
γ > 0, since the exchange fields take the same direction on
the two types of sublattices, the Dirac masses should also take
the same sign for the two kinds of sublattice terminations.
In contrast, when γ < 0, since the exchange fields take op-
posite directions on the two kinds of sublattices, one may
think that the Dirac masses associated with the two kinds
of sublattice terminations should also take opposite signs.
However, we find that the results are just the opposite. To show
this, we focus on the upper y-normal boundary and derive the
low-energy Hamiltonians describing the boundary physics on
the zigzag and beard edges.
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Here we focus on the limit λν = 0 and consider t and λso

to be positive constants for the convenience of discussion.
First, let us consider the upper y-normal boundary to be a
beard edge [terminating with A sublattices, see the upper
edge in Fig. 4(a)]. We find that the corresponding low-energy
Hamiltonian has the form (see details in Appendix A)

Hb(qx ) = vqxsz + Mxsx + Mysy, (7)

where qx denotes a small momentum measured from kx = 0
at which the boundary Dirac point is located (see the dis-
persion of edge states in Fig. 4), and the velocity of the
helical edge states is v = 3

√
3λso. On the other hand, when

the upper y-normal boundary is a zigzag edge [terminating
with B sublattices, see the upper edge in Fig. 5(a)], we find
that the low-energy Hamiltonian has the form (see details in
Appendix B)

Hz(q′
x ) = v′q′

xsz + 1 − γ η2

1 + η2
(Mxsx + Mysy), (8)

where q′
x denotes the momentum measured from kx = π/

√
3

at which the boundary Dirac point is located [see Fig. 5(c)],
and the explicit expressions of the parameters read

v′ = 2
√

3tλsoη

1 + η2
+ 2

√
3λso(η2 − 1)

1 + η2
,

η = 4tλso√
t2

(
t2 + 16λ2

so

) − t2
. (9)

In real materials, λso is commonly much smaller than t . Focus-
ing on the regime λso 
 t , it is easy to find that η � t/2λso �
1, and the Hamiltonian can be approximately reduced as

Hz(q′
x ) ≈ 2vq′

xsz − γ (Mxsx + Mysy). (10)

The two low-energy Hamiltonians, (7) and (8), provide a clear
understanding of the dependence of the boundary Dirac mass
on the exchange field and sublattice termination. Remarkably,
the results show that the Dirac masses on the zigzag and beard
edges with the same orientation have opposite signs when γ >

γc = η−2, and the same sign when γ < γc. When η � 1, the
critical value γc can be set as zero.

As Dirac masses of opposite signs lead to the formation of
domain walls hosting bound states [39], apparently, the depen-
dence of Dirac mass on the sublattice termination shown in the
two low-energy boundary Hamiltonians suggests that Dirac-
mass domain walls can form on the same y-normal boundary.
Put it more explicitly, when γ > γc and the y-normal bound-
ary consists of two flat parts, with one part taking the beard
edge (terminating with A sublattices) and the other taking
the zigzag edge (terminating with B sublattices), then the
sublattice domain walls, which correspond to the intersections
of the beard and zigzag edges, are Dirac-mass domain walls
hosting bound states. The numerical results shown in Fig. 6
confirm this expectation. We would like to emphasize two
important properties of the sublattice domain walls that can
be inferred from the numerical results. First, as the sublattice
domain walls on the same boundary can support bound states,
it suggests that sharp corners are not a necessary condition
to achieve bound states in a second-order topological phase
if the boundary Dirac mass shows sensitive dependence on

FIG. 6. Tunable bound states at the sublattice domain walls.
Chosen parameters are t = 1, λso = 0.1, Mx = My = 0.2, γ = 1, and
λν = 0. (a1) and (b1) show the energy spectra (only a few eigenener-
gies near zero energy are shown) corresponding to systems with the
geometries shown in (a2) and (b2), respectively. Periodic boundary
conditions are imposed in the x direction, namely, the left and right
armchair edges in (a2) and (b2) are connected when diagonalizing
the Hamiltonian. The red dots in (a1) and (b1) correspond to the
eigenenergies of the bound states at the sublattice domain walls. The
shade of the red color on the lattice sites in (a2) and (b2) reflects the
weight of the probability density of the bound states.

the sublattice terminations. Indeed, Fig. 6 demonstrates that
bound states are present even though there is no sharp cor-
ner in the system with periodic boundary conditions in one
direction. Second, as the bound states are associated with
the sublattice domain walls, it suggests that the locations of
the bound states can be tuned by locally manipulating the
sublattice termination. This fact can be intuitively inferred by
a comparison of the locations of the bound states in Figs. 6(a2)
and 6(b2).

In addition to the exchange field, it is known that the
superconductivity can also induce a Dirac mass to the helical
edge states and gap them out [72]. An important fact to note is
that the Dirac masses induced by exchange field and supercon-
ductivity are competing in nature. Above we have shown that
the Dirac masses induced by exchange field on the two sides
of a sublattice domain wall can have different magnitude and
signs. Apparently, this raises the possibility to realize domain
walls with the Dirac mass on one side dominated by the super-
conductivity and on the other side dominated by the exchange
field. It is known that MZMs will emerge at such domain walls
[72–75]. In the following, we consider conventional s-wave
superconductivity to demonstrate that MZMs can be realized
at the sublattice domain walls.

V. MAJORANA ZERO MODES AT SUBLATTICE
DOMAIN WALLS

Before proceeding, it is worth pointing out that a number
of proposals on the realization of 2D second-order TSCs or
topological superfluids have been raised in the past few years,
including TI/superconductor heterostructures [22,23,75–84],
superconductors with mixed-parity pairings [24,85–87], spin-
orbit coupled superconductors with s + id pairing [88,89],
odd-parity superconductors [25,41,90–93], etc. [94–102], also
with the MZMs localized at sharp corners being the smoking
gun. Among the various proposals, the TI/superconductor
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heterostructures are arguably most close to implementation
owing to the abundance of candidate materials.

By putting the TI described by the Kane-Mele model in
proximity to an s-wave superconductor, the whole system
can be effectively described by a Bogoliubov-de Gennes
(BdG) Hamiltonian. Consider the basis �k = (ψk, ψ

†
−k)T ,

H = 1
2

∑
k �

†
kHBdG(k)�k with

HBdG(k) =
(
H(k) − μs0σ0 i�syσ0

−i�∗syσ0 −H∗(−k) + μs0σ0

)
, (11)

where μ is the chemical potential, and � is the s-wave pairing
amplitude. Below we will assume � to be a momentum-
independent real constant for the convenience of discussion.

To show intuitively that MZMs can emerge at the sublat-
tice domain walls, we derive the corresponding low-energy
boundary Hamiltonian based on the BdG Hamiltonian. For
generality, now we consider the staggered sublattice potential
to be finite. Also focusing on the upper y-normal boundary
for illustration of the key physics, we find that, for the beard
edge, the low-energy boundary Hamiltonian reads (see details
in Appendix A)

HBdG;b(qx ) = vqxτ0sz + Mxτzsx + Myτ0sy

−(μ − λν )τzs0 − �τysy, (12)

and for the zigzag edge, the low-energy boundary Hamilto-
nian reads (see details in Appendix B)

HBdG;z(q′
x ) = v′q′

xτ0sz + 1 − γ η2

1 + η2
(Mxτzsx + Myτ0sy)

−
(

μ + η2 − 1

1 + η2
λν

)
τzs0 − �τysy, (13)

where τ0 and τx,y,z are identity matrix and Pauli matrices in
the particle-hole space. It is readily seen that the staggered
potential effectively induces an opposite shift in the chemical
potential. This is easy to understand since the terminating
sublattices for these two kinds of edges are different and
hence have different potentials. As will be shown below, this
can benefit the realization of MZMs at the sublattice domain
walls.

Without loss of generality, let us still focus on the regime
t � λso so that η � 1 and the form of the low-energy bound-
ary Hamiltonian on the zigzag edge can be simplified as

HBdG;z(q′
x ) ≈ v′q′

xτ0sz − γ (Mxτzsx + Myτ0sy)

−(μ + λν )τzs0 − �τysy. (14)

It is straightforward to find that the gap-closing condition of
the boundary energy spectrum for the beard edge is

M =
√

(μ − λν )2 + �2, (15)

and for the zigzag edge, the gap-closing condition is

|γ |M =
√

(μ + λν )2 + �2, (16)

where M =
√

M2
x + M2

y . It is worth noting that, for simplicity,

the gap-closing condition for the zigzag edge is obtained via
the approximate Hamiltonian (14). The accurate condition
can also be easily obtained according to the Hamiltonian
(13), but will have a somewhat more complex expression [see

FIG. 7. The evolution of boundary energy gap on the upper
y-normal edge with respect to μ for a cylindrical geometry with pe-
riodic boundary conditions in the x direction. Chosen parameters are
t = 1, λso = 0.1, Mx = My = 0.2, γ = 0.5, λν = 0, and � = 0.1.
For (a1)–(a3), the open boundaries are beard edges, and the critical
value of μ at which the boundary energy gap of the upper edge is
equal to 0.265 according to the chosen parameters. For (b1)–(b3),
the open boundaries are zigzag edges, and the critical value of μ

is equal to 0.077. (a1) μ = 0, (a2) μ = 0.265, (a3) μ = 0.35, (b1)
μ = 0, (b2) μ = 0.07, and (b3) μ = 0.15.

Eq. (B15)]. In Fig. 7, we assume that the exchange field is
fixed, and show the evolution of the boundary energy spectra
(red solid lines) with respect to μ. We find that the critical
μc at which the boundary energy gap on the upper edge gets
closed agrees excellently with the value predicted by the low-
energy boundary Hamiltonians (12) and (13), reflecting the
power of the edge theory in describing the boundary physics.

For a given edge, the gap closure of the boundary
energy spectrum signals a change of the boundary topol-
ogy. For the upper beard edge, its Dirac mass falls into
the superconductivity-dominated region when M < Mc,b ≡√

(μ − λν )2 + �2, and the exchange-field-dominated region
when M > Mc,b. Similarly, the Dirac mass of the upper zigzag
edge falls into the superconductivity-dominated region when
|γ |M < Mc,z ≡

√
(μ + λν )2 + �2, and the exchange-field-

dominated region when |γ |M > Mc,z. When the Dirac masses
on the upper beard and zigzag edges fall into different regions,
the sublattice domain walls will bind MZMs.

Without loss of generality, let us consider μ � 0 and λν �
0 to exemplify the physics. With this choice, the condition to
realize MZMs at the sublattice domain walls is

M > Mc,b, |γ |M < Mc,z. (17)

Since the two inequalities above are independent of the sign
of γ , it indicates that MZMs at sublattice domain walls can
be achieved for both ferromagnetic and antiferromagnetic
exchange fields as long as the two inequalities are simulta-
neously fulfilled.

We would like to make a further remark on Eq. (17). The
two inequalities suggest that the topological region supporting
MZMs can be made very sizable. For instance, by tuning μ =
λν , γ = 0, MZMs can be realized once M > |�|. In Fig. 8,
we consider a ferromagnetic exchange field and show the re-
alization of MZMs at the sublattice domain walls for a sample
with cylindrical geometry (left and right edges are connected,
hence there is no sharp corner). By a comparison of Figs. 8(a2)
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FIG. 8. Tunable MZMs at sublattice domain walls for a fer-
romagnetic exchange field. Chosen parameters are t = 1, λso =
0.1, Mx = My = 0.2, γ = 1, � = 0.15, λν = 0.2, and μ = 0.2. The
geometry considered is depicted in (a2) and (b2), and a few cor-
responding eigenenergies near zero energy are shown in (a1) and
(b1). Periodic boundary conditions are imposed in the x direction.
The red dots in the energy spectra denote MZMs (their energies are
not exactly zero due to splitting induced by finite-size effects) at
the sublattice domain walls. The right panels show their probability
density profiles with the shade of the red color on the lattice sites
reflecting the weight.

and 8(b2), it is easy to see that the positions of MZMs can
be tuned to any place on the upper edge by manipulating the
boundary sublattice terminations. Apparently, one can also
manipulate two sublattice domain walls to move toward each
other, then one can study the splitting and annihilation of two
MZMs. In Fig. 9, we consider an antiferromagnetic exchange
field and show explicitly that the physics is similar.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have shown when the lattice structure
has sublattice degrees of freedom, the bound states in second-
order TIs and TSCs are unnecessarily pinned at some specific
sharp corners. By adjusting the boundary sublattice termina-
tions to form sublattice domain walls, we have shown that the
positions of the bound states can be freely manipulated. For
the honeycomb lattice considered, if one designs a sample
with the diamond shape as considered in Ref. [36] or also
with the honeycomb shape so that all edges take either the
beard-type or the zigzag-type sublattice termination, then the
sublattice domain walls allow to form at any place on the
boundary. Accordingly, the positions of the bound states can
be manipulated to any place on the boundary. It is reasonable
to expect that such a sublattice-enriched tunability would ben-
efit the manipulation and application of the bound states, e.g.,
braiding MZMs [103–105].

About the experimental implementation, we would like to
first emphasize that our predictions are relevant to both quan-
tum materials and classical systems. For quantum-material
realization, one route is to apply a magnetic field to a two-
dimensional first-order TI described by the Kane-Mele model,
such as silicene, germanene, stanene [106–108]. As twisted
transition metal dichalcogenide homobilayers are predicted
to effectively realize Kane-Mele model and allow various
types of magnetic orders [109,110], they may also serve as
a platform to explore the predicted boundary physics. An-
other route is to find intrinsic magnetic second-order TI with

FIG. 9. Tunable MZMs at sublattice domain walls for an antifer-
romagnetic exchange field. All parameters are the same as in Fig. 8
except γ = −1.

sublattice degrees of freedom through first-principle calcu-
lations [37,111,112]. Generalizations to the superconducting
counterpart can be simply achieved by putting the above two
classes of systems in proximity to a superconductor [73,75],
as demonstrated in Sec. V. In quantum materials, as the
lattice constant is at the atomic length scale, adjusting bound-
ary sublattice terminations requires sophisticated tools, e.g.,
scanning tunneling microscope or scanning force microscope
[113,114]. For classical-system realization, since the Kane-
Mele model subjected to an in-plane Zeeman field has been
effectively realized in an acoustic system [38], our predic-
tion on the realization of bound states at sublattice domain
walls in a second-order TI can be immediately explored. It
is worth emphasizing that the manipulation of bound states
at sublattice domain walls is expected to be much easier in
classical systems than in quantum materials due to their much
larger length scales. For instance, one can simply remove one
sublattice on the boundary in an electric circuit by just remov-
ing all wires connected to that sublattice. As a final remark,
it is worth pointing out that, since the wave functions of the
helical edge states decay exponentially away from the bound-
ary, the boundary Dirac masses are mainly contributed by the
exchange field and superconductivity at the neighborhood of
the edges. In other words, the predicted boundary physics in
this paper can also be realized even when the exchange field
and superconductivity are nonuniform or only appear at the
neighborhood of the edges.

In summary, we have shown that the sublattice degrees
of freedom and second-order topology have an interesting
interplay, which can lead to the presence of rich boundary
physics, such as the formation of highly controllable bound
states.
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APPENDIX A: LOW-ENERGY BOUNDARY
HAMILTONIAN ON THE BEARD EDGE

The low-energy boundary Hamiltonians on the beard and
zigzag edges for the Kane-Mele model have been derived in
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a previous paper of ours [59], but there we did not consider
the staggered potential and exchange field. Here for self-
consistency, we provide the main steps of the derivation.

Start with the BdG Hamiltonian in the momentum space,

HBdG(k) = t

(
2 cos

√
3kx

2
cos

ky

2
+ cos ky

)
τzs0σx

−t

(
2 cos

√
3kx

2
sin

ky

2
− sin ky

)
τzs0σy

+2λso

(
sin

√
3kx − 2 sin

√
3kx

2
cos

3ky

2

)
τ0szσz

+λντzs0σz − μτzs0σ0 + 1 + γ

2
(Mxτzsx

+Myτ0sy)σ0 + 1 − γ

2
(Mxτzsx + Myτ0sy)σz

−�τysyσ0, (A1)

where τi, si, and σi are Pauli matrices acting on the particle-
hole, spin and sublattice degrees of freedom, respectively, and
τ0, s0, and σ0 denote identity matrices in the respective sub-
spaces. For notational simplicity, the nearest-neighbor lattice
constant has been set to unity.

When the upper boundary is a beard edge, the numerical
results show that the corresponding boundary Dirac point is
located at the time-reversal invariant momentum kx = 0 in the
reduced boundary Brillouin zone. To derive the low-energy
boundary Hamiltonian in an analytical way, we expand the
bulk Hamiltonian around kx = 0 up to the linear order in mo-
mentum (the expansion is only performed in the kx direction),
leading to

HBdG(qx, ky) = t

(
2 cos

ky

2
+ cos ky

)
τzs0σx

− t

(
2 sin

ky

2
− sin ky

)
τzs0σy

+ 2
√

3λsoqx

(
1 − cos

3ky

2

)
τ0szσz

+ λντzs0σz − μτzs0σ0 + 1 + γ

2
(Mxτzsx

+ Myτ0sy)σ0 + 1 − γ

2
(Mxτzsx + Myτ0sy)σz

− �τysyσ0, (A2)

where qx denotes a small momentum, which is measured from
kx = 0. In the next step, we decompose the Hamiltonian into
two parts, HBdG = H0 + H1, with

H0(qx, ky) = t

(
2 cos

ky

2
+ cos ky

)
τzs0σx

−t

(
2 sin

ky

2
− sin ky

)
τzs0σy,

H1(qx, ky) = 2
√

3λsoqx

(
1 − cos

3ky

2

)
τ0szσz + λντzs0σz

−μτzs0σ0 + 1 + γ

2
(Mxτzsx + Myτ0sy)σ0

+1 − γ

2
(Mxτzsx + Myτ0sy)σz − �τysyσ0.

(A3)

We will treat H1 as a perturbation, which is justified at least
when the parameters in H1 are all much smaller than t . One
can see that the two terms in H0 have a momentum depen-
dence similar to the Su-Schrieffer-Heeger (SSH) model [115],
but with the dimension of the Hamiltonian being increased
from 2 to 8. On the other hand, H0 is independent of qx. This
implies that each y-normal edge may harbor a zero-energy flat
band with fourfold degeneracy if periodic boundary condi-
tions are imposed in the x direction. To confirm this, we focus
on the upper y-normal edge for illustration.

To simplify the derivation, we consider a half-
infinity sample with the boundary corresponding to
the upper beard edge. Accordingly, a natural basis is
�qx = (c1,A,qx , c1,B,qx , c2,A,qx , c2,B,qx , ..., cn,A,qx , cn,B,qx , ...)

T

with cn,α,qx = (cn,α,qx,↑, cn,α,qx ,↓, c†
n,α,−qx ,↑, c†

n,α,−qx ,↓), where
α = {A, B}. Under this basis, the matrix form of H0 reads

H0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 tτzs0 0 0 0 · · ·
tτzs0 0 2tτzs0 0 0 · · ·

0 2tτzs0 0 tτzs0 0 · · ·
0 0 tτzs0 0 2tτzs0 · · ·
0 0 0 2tτzs0 0 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(A4)

Here each “0” element denotes a four-by-four null matrix. The
wave functions of the zero-energy bound states are determined
by solving the eigenvalue equation H0|�α〉 = 0. By observa-
tion, one can notice that τz and sz both commute with H0, so
|�α〉 can be assigned with the form

|�τ s〉 = (ψ1A, ψ1B, ψ2A, ψ2B, ...)T ⊗ |τz = τ 〉 ⊗ |sz = s〉,
(A5)

where |τz = τ 〉 and |sz = s〉 with τ = ±1 and s = ±1 corre-
spond to the two eigenstates of τz and sz, respectively. Solving
the eigenvalue equation H0|�τ s〉 = 0 is equivalent to solving
the following iterative equations:

tψ1B = 0,

tψ1A + 2tψ2A = 0,

2tψ1B + tψ2B = 0,

· · ·
tψnA + 2tψ(n+1)A = 0,

2tψnB + tψ(n+1)B = 0,

· · · . (A6)

According to the iterative structure, it is easy to find

ψ(n+1)A = − 1
2ψnA, ψnB = 0. (A7)

Therefore, the eigenvectors take the form

|�τ s〉 = N
(
1, 0,− 1

2 , 0, · · · ,
(− 1

2

)(n−1)
, 0, · · · )T

⊗|τz = τ 〉 ⊗ |sz = s〉, (A8)
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where N denotes the normalization constant. According to the
normalization condition 〈�τ s|�τ s〉 = 1, simple calculations
reveal

N 2
∞∑

n=0

1

22n
= N 2 1

1 − 1
4

= 4

3
N 2 = 1, (A9)

so N =
√

3
2 . As ψnA decays exponentially with the increase

of n, the existence of four such eigenvectors indicates the
existence of four zero-energy bound states, confirming the
correctness of the simple analysis based on the connection to
SSH model. It is worth noting that the TI has only one
pair of gapless helical states on a given edge, so there
should exist only two degenerate zero-energy bound states
at qx = 0. Here the existence of four zero-energy bound
states originates from the doubling due to the introduction
of particle-hole redundancy. The low-energy Hamiltonian on
the upper y-normal beard edge is then obtained by pro-
jecting H1 onto the four-dimensional subspace spanned by
the four orthogonal eigenstates. Put it explicitly, the ma-
trix elements of the low-energy boundary Hamiltonian are
given by

[HBdG,b(qx )]τ s,τ ′s′ = 〈�τ s|H1(qx )|�τ ′s′ 〉. (A10)

It is worth noting that here H1(qx ) is also an infinitely large
matrix, and its form is given by a partial Fourier transform
of H1(qx, ky) in the y direction. By some straightforward
calculations and choosing (|�11〉, |�1−1〉, |�−11〉, |�−1−1〉)T

as the basis for the low-energy boundary Hamiltonian,
one can obtain (more details on how to determine each
term in the low-energy Hamiltonian can be found in
Ref. [59])

HBdG,b(qx ) = vqxτ0sz + Mxτzsx + Myτ0sy

− (μ − λν )τzs0 − �τysy, (A11)

where v = 3
√

3λso. Without the superconductivity (the
particle-hole redundancy is accordingly removed) and stag-
gered potential, the low-energy boundary Hamiltonian re-
duces to the form in Eq. (7). The boundary energy spectra
associated with this boundary Hamiltonian read

E (qx ) = ±
√

F ± 2
√

G, (A12)

where F = v2q2
x + M2 + (μ − λν )2 + �2 and G = (μ −

λν )2(v2q2
x + M2) + M2�2. The gap of the boundary energy

spectra gets closed at qx = 0 when the following condition is
fulfilled,

M =
√

(μ − λν )2 + �2. (A13)

APPENDIX B: LOW-ENERGY BOUNDARY
HAMILTONIAN ON THE ZIGZAG EDGE

Following the same spirit, we can derive the low-energy
boundary Hamiltonian on the upper y-normal zigzag edge.
Since numerical results show that the boundary Dirac point

on the y-normal zigzag edge is located at kx = π/
√

3, we
similarly expand the Hamiltonian up to the linear order in
momentum, which then gives

HBdG(q′
x, ky) = t

(
−

√
3q′

x cos
ky

2
+ cos ky

)
τzs0σx

+ t

(√
3q′

x sin
ky

2
+ sin ky

)
τzs0σy

+2λso

(
−

√
3q′

x − 2 cos
3ky

2

)
τ0szσz

+ λντzs0σz − μτzs0σ0 + 1 + γ

2
(Mxτzsx

+ Myτ0sy)σ0 + 1 − γ

2
(Mxτzsx + Myτ0sy)σz

−�τysyσ0, (B1)

where q′
x denotes a small momentum measured from kx =

π/
√

3. Similarly, we decompose the Hamiltonian into two
parts, H = H0 + H1, with

H0(q′
x, ky) = t cos kyτzs0σx + t sin kyτzs0σy

− 4λso cos
3ky

2
τ0szσz,

H1(q′
x, ky) = −

√
3tq′

x cos
ky

2
τzs0σx +

√
3tq′

x sin
ky

2
τzs0σy

− 2
√

3λsoq′
xτ0szσz + λντzs0σz − μτzs0σ0

+ 1 + γ

2
(Mxτzsx + Myτ0sy)σ0 + 1 − γ

2
(Mxτzsx

+Myτ0sy)σz − �τysyσ0. (B2)

Also focusing on the upper y-normal boundary, the change
from a beard edge to a zigzag edge is accompanied with the
change of terminating sublattice from sublattice A to sub-
lattice B. For simplicity, we also consider the half-infinity
geometry, and then the corresponding basis becomes �q′

x
=

(c1,B,q′
x
, c2,A,q′

x
, c2,B,q′

x
, c3,A,q′

x
, c3,B,q′

x
, ...)T . Under this basis,

the corresponding matrix form of H0 reads

H0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 T1 0 0 0 · · ·
T †

1 0 T1 0 0 · · ·
0 T †

1 0 T1 0 · · ·
0 0 T †

1 0 T1 · · ·
0 0 0 T †

1 0 · · ·
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (B3)

where now each “0” element in H0 is an eight-by-eight null
matrix, and

T1 =
(

2λsoτ0sz 0
tτzs0 −2λsoτ0sz

)
. (B4)

As here τz and sz also commute with H0, the wave functions
for zero-energy bound states can also be assigned with the
from

|�τ s〉 = (ψ1B, ψ2A, ψ2B, ψ3A, ψ3B, ...)T

⊗|τz = τ 〉 ⊗ |sz = s〉. (B5)
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The eigenvalue equation H0|�τ s〉 = 0 leads to the following
iterative equations:

2λso,sψ2B = 0,

tτψ2B − 2λso,sψ3A = 0,

2λso,sψ1B + tτψ2A + 2λso,sψ3B = 0,

−2λso,sψ2A + tτψ3B − 2λso,sψ4A = 0,

· · ·
2λso,sψ(n−1)B + tτψnA + 2λso,sψ(n+1)B = 0,

−2λso,sψnA + tτψ(n+1)B − 2λso,sψ(n+2)A = 0,

· · · , (B6)

where tτ = tτ and λso,s = λsos. The solutions are found to
take the form (more details can be found in Ref. [59])

|�τ s〉 = N (ητ s, 1, 0, 0, ξητ s, ξ , 0, 0, ξ 2ητ s, ξ
2, ...)T

⊗|τz = τ 〉 ⊗ |sz = s〉, (B7)

where

ξ =
√

t2
(
t2 + 16λ2

so

) − (
t2 + 8λ2

so

)
8λ2

so

,

N =
√

1 − ξ 2

1 + η2
,

η = 4tλso√
t2

(
t2 + 16λ2

so

) − t2
, (B8)

and ητ s = −τ sη. Similarly, projecting H1 onto the four-
dimensional subspace spanned by the four orthogonal wave
functions associated with the four zero-energy bound states,
one can obtain the low-energy boundary Hamiltonian, which
reads

HBdG;z(q′
x ) = v′q′

xτ0sz + 1 − γ η2

1 + η2
(Mxτzsx + Myτ0sy)

−
(

μ + η2 − 1

1 + η2
λν

)
τzs0 − �τysy, (B9)

where

v′ = 2
√

3tη + 2
√

3λso(η2 − 1)

1 + η2
. (B10)

For real materials, it is common that t � λso. When t � λso,
one finds

η = 4tλso√
t2

(
t2 + 16λ2

so

) − t2

≈ 4tλso(
t2 + 8λ2

so

) − t2

= t

2λso
� 1. (B11)

In this limit, v′ ≈ 2v, and the boundary Hamiltonian for the
zigzag edge can be simplified as

HBdG;z(q′
x ) ≈ v′q′

xτ0sz − γ (Mxτzsx + Myτ0sy)
−(μ + λν )τzs0 − �τysy. (B12)

The corresponding boundary energy spectra read

E (q′
x ) = ±

√
F ′ ± 2

√
G′, (B13)

where F ′ = v′2q2
x + γ 2M2 + (μ + λν )2 + �2 and G′ = (μ +

λν )2(v′2q2
x + γ 2M2) + γ 2M2�2. The gap of the boundary

energy spectra gets closed at q′
x = 0 when the following con-

dition is fulfilled,

|γ |M =
√

(μ + λν )2 + �2. (B14)

If one determines the gap-closing condition according to the
Hamiltonian (B9), one only needs to do the replacement, γ →
(1 − γ η2)/(1 + η2), and λν → λν (η2 − 1)/(1 + η2), namely,
the criterion (B14) for gap closure is simply modified as

∣∣∣∣1 − γ η2

1 + η2

∣∣∣∣M =
√(

μ + η2 − 1

1 + η2
λν

)2

+ �2. (B15)
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