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The quantum kinetic approach based on the density matrix offers a complete quantum mechanical description
of dynamical optical and transport currents in solid-state systems. Starting from the quantum Liouville equa-
tion for the density matrix in an external electric field, we identify a strong photovoltaic response due to the
nonlinear optical transition between heavy and light hole sub-bands enabled by Td symmetry in a quantum well,
which we term the quadrupolar photovoltaic effect (QPE). The photovoltaic current exhibits a strong resonance
in the vicinity of the heavy hole-light hole splitting, with a magnitude governed by the momentum relaxation
time, which can reach nanoseconds in GaAs holes. Since the heavy hole-light hole splitting can be tuned from
a few meV to nearly 100 meV, the QPE could serve as the basis for a terahertz photodetector, addressing the
famous terahertz gap. We discuss experimental observation and device applications.
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I. INTRODUCTION

The past decade has witnessed a spectacular resurgence
in the study of nonlinear electromagnetic effects, motivated
by the rise of topological materials and cutting-edge devel-
opments in semiconductors [1–12]. Second-order responses
require inversion symmetry breaking and this is satisfied by
most topological materials, which has led to discoveries such
as Hall effects [13–15] in time-reversal invariant systems
and advances in generating nonreciprocal currents [16–19].
Among the latter, photocurrents are intimately related to
the Hilbert space topology and underlie photovoltaic devices
[5,20–37], with potential applications in solar cells, energy
harvesting, and terahertz devices [38–43].

Recent years have witnessed a flurry of interest in holes
in III-V zinc-blende semiconductors such as GaAs, which
have a spin- 3

2 , enabling physics that is impossible in spin-
1
2 electron systems. Hole systems have been synthesised to
high quality, exhibiting very large mobilities, display strong
topological effects [44–54], and are intensively studied for
all-electrical quantum computing applications [55–58]. Until
recently, inversion-breaking tetrahedral-symmetry terms were
believed to be negligible for holes [59]. Hence, photovoltaic
effects, which require inversion symmetry breaking, have not
been investigated in purely hole systems. Yet, recent research
[60] has revealed that tetrahedral-symmetry terms can be
large, and the combination of spin- 3

2 and tetrahedral symmetry
results in a quadrupole spin-orbit interaction with electric
fields. This interaction opens the door to photovoltaic applica-
tions in the elusive terahertz range. We note that similar terms

may be present in low-dimensional diamond structures in Si
and Ge, but they stem from the interface and their magnitude
must be determined for individual geometries [61].

In this paper, we determine the full photovoltaic response
of a doped asymmetric hole GaAs quantum well and iden-
tify a strong resonance due to optical transitions between the
lowest light hole (LH) and heavy hole (HH) subbands. We
refer to this as the quadrupolar photovoltaic effect (QPE),
since, in the spherical tensor decomposition of the spin density
matrix, the HH-LH splitting can be understood as a (spin)
quadrupole moment of hole systems with an effective spin
j = 3

2 [62]. The optical transition is caused by tetrahedral
symmetry terms that go beyond the Luttinger Hamiltonian
and are responsible for an asymmetry in transition rates across
the Fermi surface. The effect relies on finite doping and dis-
order and is not captured by a naive application of Fermi’s
golden rule. Whereas photovoltaic effects have a long his-
tory in noncentrosymmetric semiconductors [63,64], all the
examples studied in the past involved transitions between the
valence and conduction bands rather than between valence
subbands, as we find here. More importantly, the QPE enables
high-quality photodetectors in the elusive terahertz regime,
addressing the famous terahertz gap [39,40,65–67]. This en-
dows the QPE with significant practical utility: THz radiation
passes through industrial materials, enabling inspection of
packaged products and quality checks. Thanks to its low ener-
gies, it does not damage tissues or cause cancer, making it
suitable for security detectors. Conventional photodetecting
techniques do not work in the THz regime because there are
no real materials with energy gaps in the range 1–100 meV
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[39,40,65–67]. Only strained twisted bilayer graphene has
recently been reported to be useful in the THz regime, accord-
ing to calculations in Ref. [68]. Hence, the QPE addresses a
fundamental gap: the energies involved lie in the THz range
and the HH-LH splitting can be adjusted by the top gate field
over the entire THz range, as we show below.

The paper is organized as follows. In Sec. II, an effective
model Hamiltonian for a 2D hole GaAs system and theoretical
quantum kinetic theory to calculate the second-order optical
current are provided. We discuss an electric-dipole term which
emerges in an asymmetric quantum well and provide a 2 × 2
effective Hamiltonian to describe the mz = 3

2 and mz = − 1
2

states. Then, we calculate both diagonal and off-diagonal
components of the density matrix and, afterward, the non-
linear optical current is obtained. In Sec. III, we provide our
numerical results showing the optical transitions between the
LH and HH bands. In addition, the impact of the contribution
of the Dresselhaus spin-orbit interaction on the QPE is inves-
tigated. Finally, we summarize our main results in Sec. IV.

II. MODEL AND THEORY

A. Effective Hamiltonian for a 2D hole GaAs system

We study a hole quantum well (QW) in GaAs where the
first HH subband is occupied while the first LH subband
is unoccupied. We consider an effective low-energy model
Hamiltonian at zero temperature for the system, and then we
utilize the density matrix method to calculate the nonlinear
optical current.

The hole dispersion relation in quantum well structures is
determined by the strong spin-orbit interaction in the Lut-
tinger Hamiltonian [59]. The 4 × 4 Luttinger Hamiltonian,
HL, describes the valence band of common diamond and zinc-
blende semiconductors. In the spherical approximation, it
takes the form HL = h̄2

2m [(γ1 + 5
2γ2)k2I4 − 2γ2(k · J)2], where

J represents the vector of spin- 3
2 matrices, analogous to the

customary vector of Pauli matrices in electron systems. For
GaAs, the Luttinger parameters are γ1 = 6.85 and γ2 = 2.10.
We consider an asymmetric QW formed at a heterointerface
along the z direction, where the Cartesian coordinates are
aligned with the main crystal symmetry axis. In a QW, size
quantization leads to a spin quantization axis along the con-
finement direction, so the HH states have mz = ± 3

2 and the
LH states have mz = ± 1

2 . The asymmetric confinement can
be described by a triangular potential V (z) = −eFzz for z > 0
and ∞ otherwise, where e = −|e| is the electron charge and
F = Fzẑ is the interface electric field. The band Hamiltonian
H0 for the QW, including the confinement potential, is written
as H0 = HL + V (z)I4 + Hdz , where I4 is the 4 × 4 identity
matrix. The band Hamiltonian includes an electric-dipole
term, Hdz , which emerges as a result of Td symmetry [59] in
an asymmetric QW, where the inversion asymmetry is induced
by a static top gate electric field. This term has been omitted in
previous studies due to the belief that its size is negligible, yet
Ref. [60] demonstrated that it is large in zinc-blende materials
such as GaAs. The explicit form of the electric-dipole term
Hdz induced by a triangular potential (due, e.g., to a top gate)
is [60] Hdz = 1√

3
eaBχFz{Jx, Jy}, with eaB � 2.5D (aB is the

Bohr radius and D is a Debye), while χ is a parameter that

controls the strength of the electric-dipole matrix elements.
This term couples the mz = 3

2 and mz = − 1
2 states, as well

as mz = − 3
2 to mz = 1

2 , allowing for HH-LH transitions that
would otherwise be forbidden. In the language of spherical
tensors, this term constitutes a spin quadrupole [59].

The band Hamiltonian H0 can be simplified using second-
order perturbation theory [60]. This reduces it to two copies
of the following 2 × 2 effective Hamiltonian:

Heff = ε01 − �ε

2
σz + (λ′k + γ ′

1k3 + γ ′
2k5 + γR3k7)

× (ie−iθσ+ + H.c.), (1)

where k = kxx̂ + kyŷ, ε0 = (ε1 + ε2)/2, ε1(2) = ε1
HH(LH) +

(γ1 + γ2) h̄2k2

2m , k± = kx±iky, σ± = (σx±iσy)/2, �ε = ε2 −
ε1, the third term represents the Rashba spin-orbit coefficients
as λ′ = λ + βχ1sin 2θ , λ =

√
3h̄2

m γ2
∫ ∞

0 dzF 1
HH(z) d

dz F 1
LH(z),

where F n
i (z) are the envelopes given by Airy functions,

γ ′
1 = γR1 + βχ2sin 2θ , γ ′

2 = γR2 + βχ3sin 2θ , where θ =
arctan(ky/kx ) is the polar angle of the wave vector k. Note that
only odd powers of k are permitted since inversion symmetry
is broken, while time-reversal symmetry is preserved. For the
range of the considered electric fields, we find that the linear
Rashba spin-orbit coupling has a similar order to the cubic
Rashba spin-orbit coupling. The coefficients of the Rashba
spin-orbit coupling γR(n=1,2,3) can be calculated as

γRn = (−1)n

(2n − 1)!
�2n

(
2

λ

)2n−1

, (2)

where � = −√
3h̄2ξγ2/2m. In addition, the dipolar spin-orbit

coupling terms βχn=1,2,3, which arise from finite electric-
dipole matrix elements (Hd with χ �= 0), can be written as

βχn = 2n

�
γRneaBχFzξ, (3)

where ξ = ∫ ∞
0 dzF 1

HH(z)F 1
LH(z). We stress that Heff is writ-

ten in the basis { 3
2 ,− 1

2 }, in which one state represents HHs
and the other LHs, using the methodology of Ref. [69]. An
additional copy of this matrix exists for {− 3

2 , 1
2 }. Our nota-

tion is somewhat unconventional, which leads to the unusual
form for the Rashba terms. The term ∝βχ2 is of the same
order as the Rashba spin-orbit coefficients, demonstrating its
indispensability for a quantitative theory of hole dynamics
in asymmetric GaAs QWs. This term vanishes when χ = 0,
showing that the dipolar spin-orbit coupling is, therefore, nec-
essary for a quantitative theory of the spin-orbit couplings for
HHs in asymmetric GaAs QWs.

The dispersion relations of the effective Hamiltonian are
obtained as

εs
k = ε0 + s

√(
�ε

2

)2

+ (λ′k + γ ′
1k3 + γ ′

2k5 + γR3k7)2, (4)

where s = ± and, furthermore, the eigenvectors of the system
are given by

us
k = 1√

2h(k, θ )

⎛
⎝ s

√
h(k, θ ) − s �ε

2

−i
√

h(k, θ ) + s �ε
2 eiθ

⎞
⎠, (5)
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where h(k, θ ) equals

h(k, θ ) =
√(

�ε

2

)2

+ (λ′k + γ ′
1k3 + γ ′

2k5 + γR3k7)2. (6)

B. Kinetic theory and density matrix approach

Since the photovoltaic effect is a kinetic phenomenon [70],
we formulate a full quantum kinetic theory based on the
density matrix [71–73], which captures interband transitions
induced by electric fields as well as disorder. We work in
the crystal momentum representation |k, s〉 = eik·r|us

k〉, where
|us

k〉 is the lattice-periodic part of the Bloch wave function.
We commence with the quantum Liouville equation for the
time-dependent single particle density matrix fk(t ) averaged
over the disorder configuration in momentum space [73],

∂ fk(t )

∂t
+ i

h̄
[Hk, fk(t )] = 0, (7)

where Hk is the total Hamiltonian of the system including the
light-matter interaction,

H = Heff + U (r) + HE + Hdx , (8)

where U (r) is the impurity potential and the time-dependent
external field of a monochromatic light wave, HE = −eE·r̂
represents the perturbed interaction with the external elec-
tric field in the length gauge, and r̂ is the position operator.
For concreteness, we henceforth consider E ‖ x̂, where x̂ is

aligned with the [100] crystal axis, HE = −eExcos(ωt )x̂. The
electric-dipole term along x̂, which is the main term responsi-
ble for the QPE, is given by

Hdx = 1√
3

eaBχEx{Jy, Jz}. (9)

Notice again Jy and Jz are the components of the vector of
spin- 3

2 matrices.
Having written the total Hamiltonian, which breaks parity

and preserves time reversal, the quantum kinetic equation de-
scribing the dynamics of the impurity-averaged density matrix
fk takes the form

∂ fk(t )

∂t
+ i

h̄
[Heff,k, fk(t )] + J ( fk(t ))

= − i

h̄
[HE + Hdx , fk(t )], (10)

where J[ fk(t )] is the scattering term due to impurities. We
approximate the scattering term [73] as J[ fk(t )] = fk(t )/τ (k),
where τ (k) is a time taken to relax the hot charge carri-
ers toward the equilibrium state. To calculate the τ (k) by
making use of Fermi’s golden rule, we consider U (r, θ ) =
U0

∑
i δ(r − ri ) + U0

∑
i(r − ri ) cos θ as a sum of short-

range and asymmetric scattering potentials, respectively. After
lengthy but straightforward calculations [74], the time τ (k) is
given by

1

τ (k, θ )
= 1

τ0

[
1 + 1

2π

∫
dθ ′

(
−3B∂kh(k, θ ′)

2A2k3
+ 3B2

4A2k4
+ 1

2

(
∂kh(k, θ ′)

Ak

)2

+ B∂2
k h(k, θ ′)
2A2k2

)]

+ 1

τ0(k)

(
1 − 3

2A2k3

⎡
⎣ f1∂k f1 + 1

2
f2∂k f2 − h(k, θ )

√(
�ε

2

)2

+ f 2
1

(
∂k f1

f1
− ∂k f2

f2

(
�ε

2 f1

)2
)⎤⎦

+ 1

2(Ak)2

[
(∂k f1)2 + f1∂

2
k f1 + 1

2

(
f2∂

2
k f2 + (∂k f2)2

) − h(k, θ )

√(
�ε

2

)2

+ f 2
1

(
∂2

k f1

f1
+ ∂2

k f2

f2
+ 2

∂k f1

f1

∂k f2

f2

+ 1

9

((
∂k f1

f1
+ ∂k f2

f2

)2

+ 2
∂k f2

f2

∂k f1

f1

)
− ((∂k f2)2 + f2∂k f2)

[(
�ε
2

)2 + f 2
1

]
( f1 f2)2

− 2

3

(∂k f1)2[(
�ε
2

)2 + f 2
1

]
(

1 + f1∂k f2

f2∂k f1

))])
,

(11)

where A = h̄2(γ1 + γ2)/2m, B = h(k, θ ′) − h(k, θ ), f1 =
λk + γR1k3 + γR2k5 + γR3k7, f2 = βχ1k + βχ2k3 + βχ3k5,
τ0 = h̄3(γ1 + γ2)/(nimU 2

0 ), and τ0(k) = Ah̄k6/2π2niU 2
0 with

ni is the impurity density. For numerical purposes, we average
over θ and k = kF to approximate τ (k, θ ) with a constant τ .

To evaluate the QPE, the impurity-averaged density matrix,
fk, is expanded systematically in powers of the electric field
as fk(t ) = f (0)

k + f (1)
k (t ) + f (2)

k (t ) + ... [73], where f (0)
k is the

equilibrium density matrix, which is diagonal, with matrix
elements equal to the Fermi-Dirac distribution for each band.
We assume the temperature to be absolute zero. The density
matrix for a two-band model can be decomposed into the
diagonal, fk,d (t ) and off-diagonal, fk,od (t ) parts in the band

basis representation. Therefore, Eq. (10) becomes

∂ f n
d

∂t
+ i

h̄

[
Heff, f n

d

] + f n
d

τ
= − i

h̄

[
HE + Hdx , f (n−1)

d

]
,

∂ f n
od

∂t
+ i

h̄

[
Heff, f n

od

] + f n
od

τ
= − i

h̄

[
HE + Hdx , f (n−1)

od

]
,

(12)

where we ignore the cross contributions of the scattering
terms; Jd ( f n

od ) = Jod ( f n
d ) = 0. The conventional driving term,

stemming from the commutator −(i/h̄)[HE , fk(t )], takes the
form (eE/h̄) · (∇k fk(t ) − i[Rk, fk(t )]). The Berry connec-
tion Rss′

k = 〈us
k|i∇k|us′

k 〉 is a vector in real space as well as
a matrix in the Hilbert space spanned by the lattice-periodic
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Bloch wave. Notice that the condition Rss′
k = R∗,s′s

k is satis-
fied. The conventional driving term by itself does not yield a
second-order electrical response in a spin- 3

2 hole system, but
the dipolar term Hdx does. Therefore, we have a new term in
the covariant derivative:

− i

h̄

〈[
HE + Hdx , f (n−1)

]〉
= eE

h̄
· [∇k f (n−1) − i�ss′

k

(
f (n−1)

(
εs

k

) − f (n−1)
(
εs′

k

))]
,

(13)

where �ss′
k = Rss′

k − aBχξ�ss′
k , �ss′

k = (ζk + (1 − αk2)�k)x̂
with α = (�/λ)2 [more details about the matrix �ss′

k are pre-
sented in Supplemental Material (SM) Sec. III].

The lengthy expansion procedure is performed in the
Supplemental Material and can be summarized as follows.

First, in linear response, one calculates f (1)
k , hence in the

driving term on the right-hand side (RHS) of Eq. (10), one
replaces fk → f (0)

k . Next, to determine f (2)
k , the procedure is

repeated, except now on the RHS of Eq. (10) we have fk →
f (1)
k . Once the contribution f (2)

k has been found, it is then
traced with the velocity operator, which in the crystal momen-
tum representation is v = (1/h̄)(∇kεk − i[R,Heff,k]). The
final expression for the optical current thus obtained is jc

s′s =
−e
h̄

∑
ss′

∫
dk
4π2 {∇kε

s
kδss′ + iRs′s

k [εs′
k − εs

k] f (2)
k,s′s, where the first

and second terms represent the intra- and interband contri-
butions, respectively. Since f (2)

k,ss′ ∝ |E|2 in second order, the
optical current jc

s′s ∝ |E|2. The QPE current is obtained by
considering the time-independent terms in the total current.
Eventually, the contribution of the off-diagonal current along
the x direction is given by

jc
x,od = − e

h̄

∫
dk
4π2

(eEx )2

{(
R∗,+−

kx
�+−

kx
P+−

x + R∗,+−
kx

∂kx �
+−
kx

( f0(ε+
k ) − f0(ε−

k ))
)
(ε+

k − ε−
k )(

ε+
k − ε−

k − i h̄
τ

)2 − (h̄ω)2

}

+ e

h̄

∫
dk
4π2

(eEx )2

{R∗,+−
kx

�+−
kx

M+−
x

((
ε+

k − ε−
k − i h̄

τ

)2 + (h̄ω)2
)
(ε+

k − ε−
k )((

ε+
k − ε−

k − i h̄
τ

)2 − (h̄ω)2
)2(

ε+
k − ε−

k − i h̄
τ

)
}

− e

h̄

∫
dk
4π2

(eEx )2

{ P+−
x R∗,+−

kx
�+−

kx

(
h̄
τ

)
(ε+

k − ε−
k )((

h̄
τ

)2 + (h̄ω)2
)(

h̄
τ

+ i(ε+
k − ε−

k )
)
}
, (14)

where we define

P ss′
x = [

∂kx f0
(
εs

k

) − ∂kx f0
(
εs′

k

)]
,

Mss′
x =

[
∂kx ε

s
k − ∂kx ε

s′
k + ih̄

τ 2
∂kx τ (k)

]

×[
f0
(
εs

k

) − f0
(
εs′

k

)]
, (15)

and R+−
kx

= 〈u+
k |i∂kx |u−

k 〉. Notice that we obtain a similar ex-
pression for the the contribution of the off-diagonal current
along the y direction. Although the Berry connection is gauge
dependent, the optical current involves only its off-diagonal
matrix elements, which can be expressed in terms of interband
velocity matrix elements and are gauge covariant. Hence the
final result for the current is gauge invariant, as expected. We
stress that the optical current is not captured fully by Fermi’s
golden rule since the latter contains only band off-diagonal
elements of the position operator.

III. RESULTS AND DISCUSSION

We now discuss our results for the QPE, its parameter
dependence, and its physical interpretation. To begin, the QPE
current along the x and y directions is shown in Fig. 1 as a
function of the incident light frequency using a conservative
estimate of τ = 39 ps. This ensures that even for a Fermi
energy of 1 meV, the condition εF τ/h̄ 
 1 is satisfied, so the
subbands are well-defined and the kinetic equation is appli-
cable. The longitudinal current (x̂ direction) is accompanied
by a smaller nonlinear anomalous Hall current (ŷ direction).

Hole mobilities can be orders of magnitude larger than the
conservative estimate used in Fig. 1 [53,75–79], leading to
much larger peaks. The effect can be easily measured in
widely available semiconductors such as GaAs.

The physical explanation for the QPE is as follows. First,
owing to the linear-k dependence of ξk, the quantity �+−

k �=
�+−

−k , so the driving term is no longer symmetric in k, and

FIG. 1. The optical current jc along (a) x and (b) y. The contribu-
tions jd and jod come from the diagonal and off-diagonal parts of the
density matrix, respectively. The QPE peaks occur at h̄ω = ε+

kF
− ε−

kF

and h̄ω = ε+
kF

− ε−
kF

− δω, where δω = √
3/4( h̄

τ2
)2/(ε+

kF
− ε−

kF
). The

peak of the nonlinear anomalous Hall current occurs at the optical
transition h̄ω = ε+

kF
− ε−

kF
. Here Fz = 1 MV/m, τ = 39 ps, U0 =

2.5 eV m−1, ni = 2.3 × 1011 cm−2, and other parameters are given
in Table I in SM Sec. III. The Fermi energy εF = 20.9 meV and
kF = 0.1 nm−1 for the LH band. The HH and LH band extrema are
10.4 and 17.1 meV, respectively.
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FIG. 2. (a) Anisotropy of the integrand term R∗,+−
kx

�+−
kx

M+−
x as

a function of θ for finite χ . Note that �x,ss′
k �= �x,ss′

−k . (b) The QPE
current for the different values of the Fermi energy. The scattering
potential strength U0 = 2.5 eV m−1, the impurity density ni = 2.3 ×
1011 cm−2 and other parameters as in Fig. 1. (c) The HH and LH
band structures in two different approaches. The QPE requires the
Fermi energy to intersect the LH subband. (d) The variation of the
LH-HH energy splitting with the top gate field Fz.

this results in an imbalance in the excited population be-
tween k and −k. Since E lies along x ([100]), the term
(vxneff(k) − vxneff(−k))τ corresponds to the displacement of
excited holes. Here vx is the band group velocity, which is
approximately symmetric, while neff(k) is the excited hole
density. The surface energy at ε+

kF
oscillates under the action

of the time-dependent electric field along x ([100]), resulting
in different hole populations along +kx and −kx. This gives
rise to a net current that clearly depends on χ and on the mo-
mentum relaxation time. We emphasize that the QPE vanishes
if the quadrupole term χ is neglected.

The QPE resonance occurs only for hole excitation around
ε+

kF
. There are two optical transitions associated with two

peaks given by the denominator of the QPE current terms,
which have the form (ε+

k − ε−
k − ih̄τ−1 − h̄ω) and (ε+

k −
ε−

k − ih̄τ−1)2 − (h̄ω)2; the direct interband transition between
the LH and HH bands with the k position around the intersec-
tion of the Fermi energy and the LH band, h̄ω = ε+

kF
− ε−

kF
,

and another transition that consists of an intraband transition
with relaxation time around the Fermi energy and then an
interband transition between the LH and HH bands, h̄ω =
ε+

kF
− ε−

kF
− √

3/4(h̄τ−1)2/(ε+
kF

− ε−
kF

). The second process is
forbidden between the conduction and valence bands due to
Pauli blocking in a semiconductor.

The main contribution to the QPE along the x direc-
tion stems from the second term in Eq. (14), in which
the integrand is anisotropic in the angle θ , as shown in
Fig. 2(a). It yields a finite optical current for finite χ , caused

by the asymmetric velocity distributions in the bands as a
result of kinetic processes. When χ = 0, the velocity of
particles for the HH and LH bands is the same, the dis-
placements of the LH and HH Fermi surfaces cancel out,
and the QPE vanishes. An additional contribution to the
QPE arises from Fermi surface oscillations that occur upon
optical excitation owing to the difference between the HH
and LH effective masses: this likewise produces a resonant
current peak upon inter-subband absorption in GaAs. Our
analytical calculations show that the injection current contri-
bution [12] is proportional to R∗,+−

kx
�+−

kx
M+−

x (k)( f (0)(ε+
kF

) −
f (0)(ε−

kF
)), which is the dominant contribution to the QPE. In

addition, the higher-order pole current contribution is well-
defined by ∂τ

∂kx
R∗,+−

kx
�+−

kx
(ε+

kF
− ε−

kF
)( f (0)(ε+

kF
) − f (0)(ε−

kF
)).

We obtain that the injection contribution as well as the
higher-order pole current are particular contributions to
obtain the nonlinear optical response along the x and y
directions. However, the anomalous current and double res-
onant current are proportional to P+−(k) and are therefore
negligible.

The direction of the longitudinal QPE is set by the interplay
of Td symmetry with the applied electric field. Td symmetry
implies that, for example, x is not equivalent to −x, while
the orientation of the external electric fields determine the
direction of the current as x or −x. A quadrupolar Hall current
is also present, driven by the same mechanism as the longi-
tudinal current. However, there is a slight asymmetry in Jy

as compared to J−y due to the anisotropy of the integrand as
explained in Ref. [74]. The ratio of the quadrupolar longitudi-
nal and Hall currents is determined by crystal symmetry and
depends on the electric field direction: for E ‖ [110] they are
the same.

Next, we study the effects of the Fermi energy and relax-
ation time on the optical transitions. Increasing the magnitude
of the Fermi energy εF increases the Fermi surface area, re-
sulting in a larger peak for the photovoltaic effect current,
as shown in Fig. 2(b). The main peak occurs at the optical
band edge. In addition, with increasing Fermi energy, there is
a redshift in the QPE. We concentrate on the band structure
shown in Fig. 2(c) at a given Fermi energy. There is no optical
response if the Fermi energy does not intersect the LH band.
As h̄ω approaches ε+

kF
− ε−

kF
, a hole can be excited from the

LH to the HH subband. Furthermore, the optical transition
point resonance varies depending on the gap between the LH
and HH subbands. This gap can be tuned over the entire THz
range (1–100 meV) by changing the gate electric field Fz,
Fig. 2(d) [80].

We show the maximum peak value of the QPE along x as
a function of the Fermi energy averaged over θ in Fig. 3(a)
for different impurity strengths U0. The peak decreases with
increasing U0. Since M+−(k) is directly related to the band
velocity difference between HH and LH, the current increases
with increasing Fermi energy, then shows a maximum at a cer-
tain value of the Fermi energy depending on the curvatures of
the band structure, following which it decreases. In Fig. 3(b),
we show the peak of the QPE current as a function of the
mean relaxation time averaged over the angle θ 〈τ (kF )〉 =
(1/2π )

∫ 2π

0 τ (kF , θ )dθ for a given Fermi energy εF . To get
the height of the peak, we identify the dominant term in the
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FIG. 3. The peak value of the photovoltaic response along the x̂
direction as a function of (a) the Fermi energy averaged over θ for
different values of U0 and (b) the scattering time 〈τ (kF )〉 averaged
over θ at εF = 20.26 meV. (c) and (d) are the same as (a) and (b),
respectively, for the peak value of the photovoltaic response along
the y direction. We set ni = 2.3 × 1011 cm−2, Fz = 1 MV/m, and
other parameters are given in Table III in SM Sec. III.

QPE as

jc
x,od ∝ ωτ 2

h̄

[
∂ f (ε+

k )

∂kx
− ∂ f (ε−

k )

∂kx
+ ih̄

τ 2

∂τ (k)

∂kx

]
k=kF ,θ=π

,

(16)

where only the real part is taken. There is excellent agreement
between our numerics and Eq. (16). Similar explanations for
the height of the peak also apply to the current along the y
direction, as shown in Figs. 3(c) and 3(d).

The calculated QPE peak, using conservative figures for
the hole mobility, is already considerably stronger than the
photovoltaic shift current expected in topological insula-
tors of J/I0 ∼ 0.13 nAm/W [6], while the experiment by
Okada et al. [81] obtained J/I0 ∼ 10−3 nAm/W for topo-
logical insulators. In the best-quality GaAs hole samples
recently reported in Ref. [53], the measured hole mobility was
3.6 × 106 cm−2/Vs, yielding τ = m∗μ/e ∼ 0.2 ns. This
value of τ yields a QPE peak of 20 nAm/W which is two or-
ders of magnitude larger than in topological materials. For the
sake of completeness, we have also compared GaAs with the
most common zinc-blende semiconductors. The III-V zinc-
blende QW semiconductors including AlAs, InSb, InAs, and
AlSb exhibit a strong QPE current along x and y directions due
to optical transitions between the lowest LH and HH subbands
as shown in Fig. 4. GaAs semiconductor exhibit the highest
QPE peaks along the x and y directions when τ , U0, and χ

are set to the identical values, with the exception of InAs,
whose peak along the y direction is bigger than that in GaAs
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FIG. 4. The optical current jc along the x and y directions
for various zinc-blende QW semiconductors. For all cases, we set
Fz = 1 MV/m, 〈τ 〉 = 39 ps, kF = 0.1 nm−1 and other parameters
are given in Table II in SM Sec. I.

for given kF . The band group velocity in InAs is higher than
that in GaAs, and as a result, the R∗,+−

ky
�+−

kx
M+−

x along the y
direction is bigger.

It is important to consider that QW systems without a
center of inversion (crystals with point group Td ) in their un-
derlying crystal structures inherently exhibit the Dresselhaus
spin-orbit interaction. Therefore, we extend our study to ex-
plore the QPE when both Rashba and Dresselhaus interactions
are present. The Dresselhaus spin-orbit interaction, for J = 3

2
holes is given by [59,82]

HD =CD1 kx
{
Jx, J2

y − J2
z

} + BD1 kx
(
k2

y − k2
z

)
Jx

+ BD2 kx
(
k2

y − k2
z

)
J3

x + BD3 kx
(
k2

y + k2
z

){
Jx, J2

y − J2
z

}
+ BD4 k3

x

{
Jx, J2

y − J2
z

} + cp, (17)

where cp denotes cyclic permutation of the Cartesian coor-
dinate elements in each term and CD1 is the bulk linear k
coefficient, BDi with i = 1, 2, 3, and 4 are the bulk cubic-k
Dresselhaus coefficients. The terms with prefactors CD1 and
BD1 dominate for common experimental density, while the
remaining terms are around two orders of magnitude less and
frequently ignored. Now, we add HD to the band Hamiltonian
and project H + HD onto the HH and LH bands using the
Schrieffer-Wolff transformation. We then obtain an effective
2 × 2 Hamiltonian in the HH and LH subspace given by
Eq. (155) in SM Sec. VII. Although the band energy did
not change considerably, the Berry connection significantly
changed by including HD to the Hamiltonian. This leads to a
quantitative change in R∗,+−

k �+−
k as shown in Fig. 12 in SM

Sec. VII. Moreover, our numerical results show that when the
coefficient BDi = 0 with i = 2, 3, and 4, the term R+−

k will be
reduced by 20%. The nonlinear optical current along the x and
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FIG. 5. The optical current j along the x and y directions in-
duced by a time-dependent in-plane electric field E = Ex cos(ωt )x̂
in the presence (i.e., HD �= 0) and absence (i.e., HD = 0) of the
Dresselhaus spin-orbit interaction. Here, Fz = 1 MV/m, τ = 39 ps,
U0 = 2.5 eV. m−1, ni = 2.3 × 1011 cm−2.

y directions is shown in Fig. 5 as a function of the incident
light frequency using both the total Rashba and Dresselhaus
spin-orbit interactions provided by H + HD and that when
only H is considered. As can be observed, the Dresselhaus
spin-orbit interaction greatly increases the QPE peak. It has
become clear that quantum nonlinear effects are sensitive
to changes in the Hamiltonian parameters [83] or external
perturbations of the system [11]. Here, we conclude that the
Berry connection is enhanced by a factor of 2.5 due to the
Dresselhaus spin-orbit interaction, and thus the photovoltaic
peak rises.

We have focused on zero temperature, where phonon scat-
tering is negligible. At higher temperatures phonons limit τ

[84] and give rise to intraband transitions [85,86], making
photovoltaic effects temperature dependent. Experimentally,
the photovoltaic current for GaAs depends nonmonotonically
on temperature [85], while theory showed that phonons cause

the bulk photovoltaic current in GeTe to decrease with increas-
ing temperature [87].

IV. CONCLUSION

We have identified a strong resonance in the second-order
optical response of doped spin- 3

2 hole QWs in zinc-blende
materials due to a unique quadrupolar interaction with elec-
tric fields. The size and width of the resonance peak are
determined by the momentum relaxation time, making the
effect very strong in high-mobility systems. The existence
of this peak in the photovoltaic response is intimately tied
to these tetrahedral symmetry terms, which go beyond the
Luttinger Hamiltonian and lead to a quadrupole interaction
with electric fields. In addition, we have demonstrated that the
material characteristics and the relaxation time both affect the
quadrupolar photovoltaic amplitude and it greatly increases
by adding the Dresselhaus spin-orbit interaction. Since the
HH-LH splitting can be tuned by a top gate over the entire
terahertz range, the effect can serve as the basis for a terahertz
photodetector. Running this process in reverse could result
in a source of terahertz radiation. Our method can also be
generalized to study spin and orbital magnetic effects in the
nonlinear optical response of hole QWs [88–90].
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